Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis and biological evaluation of fluoro analogues of antimitotic phenstatin

Alina Ghinet ^{a,b,c}, Aurélien Tourteau ^{b,d}, Benoît Rigo ^{b,c,*}, Vivien Stocker ^{b,c}, Marie Leman ^{b,c}, Amaury Farce ^{b,d}, Joëlle Dubois ^e, Philippe Gautret ^{b,c}

^a Department of Organic Chemistry, 'Al. I. Cuza' University of Iasi, Faculty of Chemistry, Bd., Carol I, nr. 11, 700506 Iasi, Romania

^b Univ Lille Nord de France, F-59000 Lille, France

^c UCLille, EA GRIIOT (4481), Laboratoire de Pharmacochimie, HEI, 13 Rue de Toul, F-59046 Lille, France

^d Institut de Chimie Pharmaceutique Albert Lespagnol, EA GRIIOT (4481), IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France

^e Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherches de Gif, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France

ARTICLE INFO

Article history: Received 17 January 2013 Revised 24 March 2013 Accepted 26 March 2013 Available online 4 April 2013

Keywords: Phenstatin Tubulin Antimitotic agent Fluorobenzophenone Eaton's reagent

1. Introduction

The microtubule system, formed of α - and β -tubulin heterodimers, is involved in many essential cell functions¹ and is recognized as an attractive pharmacological target for anticancer drugs.^{2,3} These cytoskeletal structures are involved in many cellular functions.¹ One of their key roles is in the mitotic spindle, intimately involved in cell division, which bridges chromosomes in the center and centrosomes at opposite poles of the cell, ultimately leading to, during the metaphase/anaphase transition, separation of the sister chromatids and segregation into daughter cells. The importance of microtubules in cell division makes them an important target for anticancer drugs.³ Most of the antimitotic drugs in clinical use or in development, bind to three major tubulin sites: the vinca, taxane and colchicine sites.⁴ Combretastatin A-4 1 binds to tubulin at the colchicine binding site⁵ and exhibits very strong inhibition of a variety of human cancer cell lines.⁴ The trimethoxyphenyl unit and the cisoid disposition of the two aromatic rings are both essential for activity (Fig. 1).⁶ Research on combretastatin A-4 to improve water solubility and in vivo activity⁵ has led to the water-soluble prodrug combretastatin A-4 phosphate (CA-4P, Fosbretabulin) **2**, currently in phase II human cancer clinical trials⁷

ABSTRACT

With the aim of investigating the influence of fluorine, in particular on the A-ring, a new series of fluoro analogues (**7a-l**) of phenstatin (**3**) was synthesized and tested for interactions with tubulin polymerization and evaluated for cytotoxicity on an NCI-60 human cancer cell lines panel. We have shown that the replacement of 3,4,5-trimethoxyphenyl A-ring of phenstatin with 2,4,5-trifluoro-3-methoxyphenyl unit, results in the conservation of both antitubulin and cytotoxic effect. Fluoro *iso*combretastatin **7k** was the most effective anticancer agent in the present study and demonstrated the highest antiproliferative potential on leukemia cell lines SR (GI₅₀ = 15 nM) and HL-60(TB) (GI₅₀ = 23 nM) and on melanoma cell line MDA-MB-435 (GI₅₀ = 19 nM).

© 2013 Elsevier Ltd. All rights reserved.

with phase III trials under way. CA-4P acts as a vascular disrupting agent (VDA).⁷ CA-4P does not induce the common side effects of existing chemotherapies such as alopecia and bone marrow toxicity. However, cardiovascular toxicity and neurotoxicity are dose limiting for this compound,⁸ and also it is prone to double-bond isomerization,⁹ leading to the E-isomer which displays dramatically reduced activity.^{6c} Research on combretastatin A-4 in order to improve in vivo activity has led to the discovery of phenstatin 3 (Fig. 1).¹⁰ The water-soluble phenstatin phosphate prodrug **4** and the parent phenstatin 3 were essentially indistinguishable and very similar to the combretastatin A-4 phosphate prodrug 2 in terms of both potency and differential cytotoxicity.¹⁰ Nevertheless this compound has not been advancing in human clinical trials, and we recently described that phenstatin **3** is subject of many metabolic transformations as well on the methoxy or hydroxy groups.¹¹

The replacement of a hydrogen or a hydroxyl group by a fluorine atom is a strategy widely employed in drug development to alter the chemical properties, cellular and systemic distribution and biological activity of drugs,¹² and in CA-4 series, replacement of the ring B hydroxyl group by a fluorine atom led to compounds with activities in the nanomolar range.¹³ In phenstatin series, a fluorine substituent has been placed in all positions of B-ring, sometimes to obtain synthetic intermediates,¹⁴ but activities were modest¹⁵ except for the OH to F replacement (compound **5**,

^{*} Corresponding author. Tel.: + 33 3 28 38 48 58. *E-mail address:* benoit.rigo@hei.fr (B. Rigo).

^{0968-0896/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmc.2013.03.064

Figure 1. Structure of reference compounds CA-4 **1**, phenstatin **3** and their prodrugs **2**, **4**, structure and inhibitory activity on tubulin polymerization (ITP) of some biologically active fluorobenzophenones **5**,¹⁶ and **6**,²⁵ and structure of target fluoro analogues of phenstatin **7**.

Fig. 1).¹⁶ It is generally considered that the 3,4,5-trimethoxyphenyl ring A of phenstatin is essential for the biological activity.^{6a,c,11a,17} However, it has been demonstrated that some modifications of the A ring such as 2,3,4-trimethoxyphenyl,¹⁸ halogeno-methoxy-phenyl,¹⁹ 2,3-methylenedioxy-4-phenyl,²⁰ 3,4,5-trimethylphenyl moieties,²¹ or even change for a heterocyclic ring²² led to equal or better activity. In that context, we were interested by the fact that the old antiprotozoal and anthelmintic compound, flubendazole **6**,²³ is an antitubulin polymerization agent,^{24,25} whose the antitumor properties were recently highlighted,²⁵ partly thanks to its absence of toxicity and induced neuropathy.²⁶ Taking these facts in consideration, we decided to study the biological properties of benzophenones and derivatives, analogues to phenstatin, and substituted in ring A or ring B by fluorine atoms. It is known that some substituents placed in the 2-position of ring A are compatible with good biological activities (OMe,¹⁸ NH₂¹⁶). Thus, a fluorine atom was designed in that position as well as an isoster of these groups as for blocking a potential metabolic location, leading to the synthesis of compounds with a 2,4,5-trifluoro-3-methoxyphenyl group.

2. Chemistry

Fluorophenstatins **7a**–**f** were obtained by reacting commercially available carboxylic acids **8–10** with protected phenols **11**, **12**,

amine **13** and commercial 3-fluoro-1,4-dimethoxybenzene **14** in Eaton's reagent ($P_2O_5/MeSO_3H$ 1:10 w/w). Protected compounds **11–13** were prepared as described previously.^{11a} Surprisingly, the condensation of 2,4,5-trifluoro-3-methoxybenzoic acid **8** with chloroacetate **12** was accompanied by the O-demethylation of the methoxy group at C2' position, followed by the deprotection of the chloroacetyl group to give catechol **7b** as unique product of the reaction (Scheme 1). Furthermore, a *para*-demethylation of the ketone **7e** was observed during its formation in Eaton's conditions to afford compound **7f** in 19% yield.

Removal of the protecting groups of benzophenones **7a**, **7c**, and **7d** was easily performed: the chloroacetyl group of ketone **7a** afforded benzophenone **7g** in 96% yield under mild basic conditions (sodium acetate, methanol) and the acetamide unit of ketones **7c** and **7d** was cleaved under acidic conditions (aqueous 10% HCl, methanol) to provide benzophenones **7h** and **7i** in 76% and 80%, respectively.

In order to explore the influence of the modification of the connector between the two phenyl rings of phenstatin, we were interested in the synthesis of fluorinated analogs with an ethylene or a carbonyl-reduced linker. The direct methylenation of benzophenones **7e** and **7g** with the Wittig reagent methylenephosphorane, prepared from methyltriphenylphosphonium bromide and potassium *tert*-butoxide, afforded *iso*combretastatins **7j** and **7k** in moderate 44% and 34% yield, respectively. The reduced form of phenstatin was previously obtained from Grignard reaction of the corresponding aldehyde.²⁷ However, the sodium borohydride reduction of the carbonyl unit of fluorophenstatin **7g**, provided a simpler route to benzhydrol **7l** (81%) (Scheme 3).

3. Biological evaluation

The synthesized compounds **7a–1** were tested for their ability to interact with tubulin using an assembly assay and compounds **7c**, **7e–1** were selected and evaluated for cytotoxicity against the 60-human cancer cell lines panel from the National Cancer Institute (NCI). The results are summarized in Tables 1–3.

The replacement of the trimethoxyphenyl unit of parent phenstatin by a 2,4,5-trifluoro-3-methoxyphenyl moiety (compound **7g**, Scheme 2) led to the best antitubulin activity in this series (**7g**: $IC_{50} = 28.23 \pm 2.79 \,\mu$ M, Table 1). Unexpectedly, the transformation of the carbonyl bridge of compound **7g** in an ole-finic one (compound **7k**) decreased the biological activity (generally speaking, the *iso*combretastatins present higher activities than the corresponding ketones),²⁸ while the reduction of the carbonyl linker in compound **7l** abolished the antitubulin efficacy in the same way as for dihydrophenstatin. The modification of the classical B-ring of compound **7g** by a 2',3'-dihydroxy-4'-methoxy-phenyl in compound **7b** or 3'-amino-2',4'-dimethoxyphenyl in compound **7h** conserved the antitubulin potential, validating the structure-activity relationships concerning the C2' position of

 8: R¹=R²=R⁴=F, R³=OMe, R³=R⁴=H
 11: R⁵=R⁸=H, R⁶=OCOCH₂CI, R⁷=OMe
 7a: R¹=R²=R⁴=F, R³=R⁷=OMe, R⁵=R⁸=H, R⁶=OCOCH₂CI 90%

 9: R¹=F, R²=OMe, R³=R⁴=H
 12: R⁵=R⁷=OMe, R⁶=OCOCH₂CI, R⁸=H
 7b: R¹=R²=R⁴=F, R³=R⁷=OMe, R⁵=R⁶=OH, R⁶=H 71%

 10: R¹=R²=R³=SOMe, R⁴=H
 13: R⁵=R⁷=OMe, R⁶=NHCOCH₃, R⁸=H
 7b: R¹=R²=R⁴=F, R³=R⁵=R⁷=OMe, R⁶=NHCOCH₃, R⁸=H 76%

 14: R⁵=R⁸=OMe, R⁶=H, R⁷=F
 7d: R¹=R⁴=R³=H, R²=F, R³=R⁵=R⁶=OMe, R⁴=R⁶=H, R⁷=F 51%

7f: R1=R3=R5=R8=OMe, R2=OH, R4=R6=H, R7=F 19%

phenstatin^{11a} and CA-4 analogs.⁶ In our previous investigations,^{11a} the acetylation of 3'-amino derivatives and the protection of the phenol groups by a chloroacetyl function in the benzophenone series abolished the potency on microtubule assembly. This behavior was also observed in the current fluorobenzophenone series, protected compounds **7a**, **7c**, and **7d** being inactive (Table 1).

In the trimethoxyphenyl series, the modification of ring-B substitution by a 4'-fluoro-2',5'-dimethoxyphenyl unit in compound **7e**²⁹ resulted in a sevenfold decrease of antitubulin potency compared to parent phenstatin **3**, its *iso*combretastatin analog **7j**²⁹

Table	1
-------	---

Inhibitory	activities	on	tubulin	polymerization
------------	------------	----	---------	----------------

Compd No.	%TPI ^{a,b}	IC_{50}^{b} ($\mu M \pm SD$)	R^2
7a	46	N.D. ^c	_
7b	93	29.16 ± 2.04	0.97112
7c	39	N.D.	-
7d	3	N.D.	-
7e	77	24.04 ± 5.74	0.69119
7f	48	N.D.	-
7g	88	28.23 ± 2.79	0.96761
7h	89	29.20 ± 1.96	0.97561
7i	45	N.D.	-
7j	44	N.D.	-
7k	77	42.18 ± 3.49	0.94922
71	49	N.D.	-
Phenstatin 3	99	3.43 ± 0.70	0.93782
Desoxypodophyllotoxin	100	1.76 ± 0.44	0.97402

^a Inhibition of tubulin polymerization at a 100 µM concentration.

^b Values represent mean of two experiments.

^c Not determined.

Table 2

Results of the in vitro human cancer cell growth inhibition^a for compounds 7e, 7g, 7h, 7j and 7k

Cell type Compound Phenstatin 3 7e 7g 7h 7i 7k $GI_{50}^{b}(nM)$ Cell line Leukemia CCRF-CEM 192 3310 3350 1100 37 HL-60(TB) 203 2020 3690 273 23 K-562 186 1830 340 37 46 _ 43 969 SR 961 455 15 Non-Small NCI-H23 421 3750 30700 2200 385 NCI-H460 6.0^c Cell lung 115 2230 3000 1220 343 NCI-H522 102 1340 752 601 25 Cancer _ _ 2980 HCT-15 Colon 55 1760 666 45 Cancer KM12 _ 50 1030 890 568 47 SW-620 _ 63 703 2840 587 45 _ M14 72 804 547 38 Melanoma N.D. MDA-MB-435 _ 25 285 407 260 19 MALME-3M _ 433 9530 11500 >10000 44 Ovarian OVCAR-3 2.0 1500 2090 217 45 521 Cancer NCI/ADR-RES 68 789 1670 375 38 _ SK-OV-3 _ 213 2440 8370 1050 94 _ Renal ACHN 693 6840 7900 6540 67 _ RXF 393 144 2470 4510 2160 176 Cancer SN12C 602 5160 5810 498 209 34.0 2080 2440 DU-145 257 3910 139 Prostate Cancer PC-3 207 3720 10200 2240 140 _ Central SF-268 748 3850 6540 2670 75 Nervous SF-539 _ 164 2470 3590 2160 31 _ SNB-19 419 67 System 4390 5470 3300 _ Cancer SNB-75 109 1740 1700 920 55 Breast cancer MDA-MB-231/ATCC ____ 388 2090 8550 945 94 HS 578T 2190 52 194 1600 3780 BT-549 365 3130 34100 4120 61 MG-MID^f (nM) 60.19 195 2880 4677 1820 295

^a Data obtained from NCI's in vitro 60 cell 5-dose screening.³¹

^b GI₅₀ is the molar concentration of synthetic compound causing 50% growth inhibition of tumor cells.

^c Data obtained from Ref. 10.

^d Data obtained from Ref. 30.

e Not determined.

^f Average activity parameter over all cell lines for the tested compounds.

deleting all the activity. Compound **7f** (the *para*-demethylated derivative of **7e**) was also inactive on microtubule assembly.

In vitro cytotoxicity of nine compounds (**7c**, **7e–l**) was assessed by NCI. They were tested initially at a high single dose (10 μ M) in the full 60-cell panel. Only compounds which satisfied predetermined threshold inhibition criteria have progressed to the 5-dose screen in order to evaluate their GI₅₀ values (Table 2).

*Iso*combretastatin derivative **7k** exhibited the most important in vitro cytotoxicity among studied compounds: inhibition of CCRF-CEM, HL-60(TB), K-562, SR, HCT-15, KM12, SW-620, M14, MDA-MB-435, MALME-3M, NCI-ADR/RES, and SF-539 cell lines with GI₅₀ values ranging from 15 to 47 nM (Table 2). The closely related benzophenone **7g** showed decreased cellular activity. The ketone precursor **7e** was more active than the *iso*combretastatin **7j**. Both showed good cytotoxicity against colon cancer and melanoma cell lines. **7e** also exhibited very potent anti-proliferative activity against leukemia cell lines K-562 and SR. Amino derivative **7h** was twofold less active than analogue **7g**, showing best cytotoxic activity on MDA-MB-435 melanoma cell line (**7g**: GI₅₀ = 285 nM, **7h**: IC₅₀ = 407 nM, Table 2).

A mean graph midpoints (MG_MID) was calculated for each derivative selected for GI₅₀ calculation, giving an average activity parameter over all cell lines for compounds **7e**, **7g**, **7h**, **7j**, and **7k**. These data indicated that compounds **7e** and **7k** possessed the best antiproliferative activity among the tested compounds (Table 2).

Benzophenones **7c**, **7f**, and **7i** and benzhydrol **7l** did not satisfy predetermined threshold inhibition criteria in the initial singledose assay and did not progress to the 5-dose screen. Results from these studies are reported in Table 3. Fluoro derivatives **7c** and **7i**

Table 3

In vitro s	growth inhibition	percentage	(GI%)	caused by	v the selected com	pounds ("	7c. 7	f. 7i.	and 71)	against	some tun	or cell li	nes in	the sin	gle-dos	e assav
/			· /		,	(-	, -	-,,								,

Pr Leukemia Non-small cell lung cancer SR 49 4/54 0/54 Non-small cell lung cancer NOR-52 30 30 CNS cancer SNP-55 44 44 Colon cancer HCC-2998 31 44 Melanoma UACC-257 37 44 Renal cancer UACC-257 37 44 Nor-state cancer PC3 30 44 Ovarian cancer NDA-MB-468 81 45 45 Ovarian cancer NDA-MB-468 81 45 45 Ovarian cancer NDA-MB-455 21 71 153 Present cancer NCI-MSE 71 153 Non-small cell lung cancer NCI-HSE2 71 153 Non-small cell lung cancer NCI-HSE2 71 153 Non-small cell lung cancer NCI-HSE2 71 153 Non-small cell lung cancer NDA-MB-435 100 153 Non-small cell lung cancer NDA-MB-435 16 153 Non-small cell lung cancer NDA-MB-435 16 153 Non-small cell lung cancer NDA-MB-435 16 16 NDA-MB-435 NDA-MB-435 16 16	Compd No.	Panel	Most sensitive cell lines	GI%	Positive cytostatic effect ^b	Positive cytotoxic effect ^c
Non-small cell lung cancer NCI-H522 83 HOP-62 30 CNS cancer SNB-75 44 Colon cancer SNB-75 31 KM12 31 54 KM12 37 SN-620 37 Frosta cancer UO-31 31 Prostat cancer UO-31 31 Prostat cancer NDA-MB-468 81 Melanoma MDA-MB-468 81 Melanoma MDA-MB-475 55 Melanoma MDA-MB-475 9 Melanoma MDA-MB-475 1/53 Melanoma MDA-MB-475 1/53 Melanoma MC-1952 45 Kn12 59 1/53 Mon-small cell lung cancer NCI-H522 45 MC-1952 45 1/53 Melanoma MDA-MB-435 10 MC-1952 59 1/51 Mon-MB-4155 100 1/51 MC-70 59 1/51 Mol-MB-468 81 1/51 MC-1952 59 1/51 MD-MB-468 81 1/51 MO-MB-468 81 1/51 MO-MB-468 81 1/51 <t< td=""><td>7c</td><td>Leukemia</td><td>SR</td><td>49</td><td>4/54</td><td>0/54</td></t<>	7c	Leukemia	SR	49	4/54	0/54
IND-62 30 CNS cancer SNB-75 44 Colon cancer HCC-2998 31 KM12 57 57 Melanoma UACC-257 21 Prostate cancer U-31 30 Prostate cancer U-31 27 Breast cancer MDA-MB-468 81 Ovarian cancer MDA-MB-468 81 Melanoma MDA-MB-455 21 Melanoma MDA-MB-455 21 Melanoma MDA-MB-455 21 Melanoma MDA-MB-435 21 Melanoma HC-2998 71 Melanoma HC-2998 71 Non-small cell lung cancer NC1-H522 45 KM12 59 1/53 KM12 59 1/53 KM12 59 1/53 KM12 59 1/51 KM12 51 1/51 KM12 51 1/51 KM12 51 1/51 KM12		Non-small cell lung cancer	NCI-H522	83		
CNS cancer NB-75 44 Colon cancer HCC-2908 31 W12 57 SW-620 37 W-620 37 Prostate cancer U0-31 30 Prostate cancer MDA-MB-468 81 Ovarian cancer MDA-MB-468 81 Prostate cancer MCI-MDR-RES 55 Prostate cancer MDA-MB-435 20 Prostate cancer MC-MDR-488 49 Mon-small cell lung cancer MCI-MS2 71 KM12 S9 1/53 1/53 Mon-small cell lung cancer MCI-MS2 53 M14 43 1/59 1/59 Mon-MB-468 81 1/59 1/59 Prostate cancer MCF-7 52 MDA-MB-468 81 1/59 1/59 Mon-small cell lung cancer KG2 51 MDA-MB-468 <t< th=""><th></th><th></th><th>HOP-62</th><th>30</th><th></th><th></th></t<>			HOP-62	30		
Colon cancer HCC-2998 31 KM12 57 KM2 37 Melanoma UACC-257 21 Renal cancer U0-31 30 Prostate cancer C-3 27 Breast cancer MDA-MB-468 81 Ovarian cancer NCI/ADR-RES 55 71 Leukemia SR 22 0/58 0/58 71 Leukemia MDA-MB-455 21 1/53 71 Leukemia NO-MB-435 21 1/53 71 Leukemia NDA-MB-435 21 1/53 71 Leukemia NCI-MDE-435 1/1 1/53 71 Leukemia NCI-1522 45 1/1 1/53 71 Melanoma MDA-MB-435 100 1/1 1/1 1/1 71 Melanoma MDA-MB-468 81 1/1 1/1 1/1 1/1 71 Melanoma MDA-MB-468 81 1/1 1/1 1/1 1/1 1/1 71 Leukemia K-5		CNS cancer	SNB-75	44		
KM12 57 SW-620 37 SW-620 37 Frank Cancer UO-31 30 Prostate cancer PC-3 27 Breast cancer MDA-MB-468 81 Ovarian cancer NCI/ADR-RES 55 7f Leukemia SR 22 0/58 0/58 Melanoma MDA-MB-435 21 1/53 1/53 For Leukemia HL-60(TB) 49 9/53 1/53 Melanoma MDA-MB-435 21 1/53 For Leukemia HL-60(TB) 49 9/53 1/53 Mon-small cell lung cancer NCI-H522 45 1/53 K71 Sw-620 72 1/53 1/53 K112 S9 1/51 1/53 1/51 Melanoma MDA-MB-435 100 1/51 1/51 M14 43 1/59 1/51 1/51 M14 43 1/59 1/51 1/51 MDA-MB-468 81 1/59 1/51 1/51 <t< th=""><th></th><th>Colon cancer</th><th>HCC-2998</th><th>31</th><th></th><th></th></t<>		Colon cancer	HCC-2998	31		
Nu-620 37 Melanoma UAC2-257 21 Renal cancer U0-31 30 Prostate cancer PC-3 27 Breast cancer MDA-MB-468 81 Ovarian cancer NCI/ADR-RES 55 7f Leukemia SR 22 0/58 0/58 7i Leukemia MDA-MB-463 49 9/53 1/53 7i Leukemia SR 22 0/58 0/58 7i Leukemia SR 23 0/53 1/53 7i Leukemia SR 23 0/58 1/53 7i Leukemia SR 61 1/53 1/53 7i Non-small cell lung cancer HCC-2998 72 1/53 1/53 7i Melanoma MDA-MB-435 100 1/54			KM12	57		
MelanomaUACC-25721Renal cancerUO-3130Prostate cancerPC-327Breast cancerMDA-MB-46881Ovarian cancerNCI/ADR-RES557fLeukemiaSR22MelanomaMDA-MB-435217iLeukemiaHL-60(TB)49Mon-small cell lung cancerNCI-H52245K-5627171Non-small cell lung cancerNCI-H52245KM125959SW-62077MelanomaMDA-MB-43510MAC-3557171SR61NO-small cell lung cancerNCI-H52245KM1259SW-62077MelanomaMDA-MB-43510MAC-357171MelanomaMDA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43510MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43615MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681MA-MB-43681 <td></td> <td></td> <td>SW-620</td> <td>37</td> <td></td> <td></td>			SW-620	37		
Renal cancer U0-31 30 Prostate cancer MDA-MB-468 81 Ovarian cancer MDA-MB-468 81 Tí Leukemia SR 22 0/58 0/58 Tí Leukemia SR 22 0/58 0/58 Tí Leukemia SR 22 0/58 0/58 Tí Leukemia SR 21 1/53 Tí Leukemia NDA-MB-435 21 1/53 Non-small cell lung cancer NCI-H522 45 1/53 Kn12 S8 61 1/53 1/53 Non-small cell lung cancer NCI-H522 45 1/53 1/53 Kn12 S9 53 1/53 1/53 1/53 Rom-small cell lung cancer NCI-H522 45 1/53 1/53 1/53 Roma MC2-198 71 1/53 1/53 1/53 1/53 Roma MDA-MB-4635 100 1/53 1/53 1/53 1/53 Roma MCF-7 52 1/54 1/59 </td <td></td> <td>Melanoma</td> <td>UACC-257</td> <td>21</td> <td></td> <td></td>		Melanoma	UACC-257	21		
Prostate cancer PC-3 27 Breast cancer MDA-MB-468 81 Ovarian cancer NCI/ADR-RES 55 7f Leukemia SR 22 0/58 0/58 7i Leukemia MDA-MB-435 21 1 7i Leukemia HL-60(TB) 49 9/53 1/53 7i Non-small cell lung cancer NCI-H522 45 1/51 7i Melanoma MDA-MB-435 100 7i Melanoma MDA-MB-435 100 7i Leukemia K-562 41 1/59 0/59 7i Leukemia MDA-MB-435 100 7i Leukemia Si 31 7i Leukemia K-562 41 1/59 0/59 7i Leukemia Si		Renal cancer	UO-31	30		
Breast cancer MDA-MB-468 81 Ovarian cancer NCI/ADR-RES 55 7f Leukemia SR 22 0/58 0/58 Melanoma MDA-MB-435 21 1 7i Leukemia HL-60(TB) 49 9/53 1/53 7i Leukemia NCI-H522 45 1/54 7i Non-small cell lung cancer NCI-H522 45 7i McI-715 53 1/51 7i Melanoma MDA-MB-4035 100 7i McI-70 52 1/14 43 7i Leukemia K-562 41 1/59 7i Leukemia K-562 41 1/59 7i Leukemia K-562 31 7i Leukemia K-562 41 1/59 7i Leukemia 53 1/151 1/151 <		Prostate cancer	PC-3	27		
Ovarian cancerNCI/ADR-RES557fLeukemiaSR220/580/58MelanomaMDA-MB-4352177iLeukemiaHL-60(TB)499/531/537iNon-small cell lung cancerNCI-H5227171Non-small cell lung cancerNCI-H525372K-70575372MelanomaMDA-MB-435100M14437471LeukemiaMCF-752MDA-MB-4688171LeukemiaK-562411/59Non-small cell lung cancerK-562411/59MDA-MB-4688171LeukemiaK-56253Mon-small cell lung cancerK-562411/59MDA-MB-4688171LeukemiaK-56253Mon-small cell lung cancerK-152253MOn-small cell lung cancerK-152253Colon cancerK01/H2253Colon cancerK01/H2253Colon cancerK01/H2253Colon cancerK01/JDR-RES55		Breast cancer	MDA-MB-468	81		
7fLeukemia MelanomaSR220/580/58MelanomaMDA-MB-435217iLeukemiaHL-60(TB)499/531/537iLeukemiaMC-MB-435911/537iLeukemiaMC-MB-435611/53Non-small cell lung cancerNCI-H522451/53Colon cancerNCI-H522451/53KM12591/531/537iMelanomaMDA-MB-4351007iM14437iLeukemiaK-562117iLeukemiaK-562411/597iLeukemiaK-562317iLeukemiaK-562411/597iLeukemiaK-562317iColon cancerKCI-H522327iLeukemiaK-562411/597iLeukemiaK-562317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1522317iLeukemiaK-1622317iLeukemiaK-1622317iLeukemiaK-1622317iLeukemiaK-1622317iLeukemiaK-1622317i		Ovarian cancer	NCI/ADR-RES	55		
MelanomaMDA-MB-435217iLeukemiaHL-60(TB)499/531/537iLeukemiaHL-60(TB)499/531/53K-5627153717171727iMelanomaMCI-H522537271727iMelanomaMDA-MB-4351007171727iLeukemiaMCF-7527273737iLeukemiaK-562411/590/597iLeukemiaK-5623174757iLeukemiaK-56231757iLeukemiaK-56231757iMelanomaMCI-H522537iMenanaK-562411/597iMenanaK-562317iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMCI-H522537iMenanaMinana7iMenanaMinana7iMenanaMinana7iMenanaMinana <t< td=""><td>7f</td><td>Leukemia</td><td>SR</td><td>22</td><td>0/58</td><td>0/58</td></t<>	7f	Leukemia	SR	22	0/58	0/58
7iLeukemiaHL-60(TB)499/531/53K-56271K-56271SR61K-56261Non-small cell lung cancerNCC-1452245Colon cancerHCC-299872HCT-1553KM1259SW-62077MelanomaMDA-MB-435M1443Preast cancerMCF-7MA-MB-4688171LeukemiaK-562KM1253SR33On-small cell lung cancerKM12SR33Non-small cell lung cancerKM12Non-small cell lung cancerKM12KM1253Non-small cell lung cancerKM12Non-small cell lung cancerKM12Non-small cell lung cancerKM12Non-small cell lung cancerKM12Nori, ADR-RES35		Melanoma	MDA-MB-435	21		
K-562 71 SR 61 Non-small cell lung cancer NCI-H522 45 Colon cancer HCC-2998 72 HCT-15 53 KM12 59 SW-620 77 Melanoma MDA-MB-435 100 M14 43 Breast cancer MCF-7 52 MDA-MB-468 81 71 Leukemia K-562 41 1/59 0/59 SR 33 34 34 34 34 70 SR 35 34 34 34 34	7i	Leukemia	HL-60(TB)	49	9/53	1/53
SR61Non-small cell lung cancerNCI-H52245Colon cancerHCC-299872HCT-1553KM1259SW-62077MelanomaMDA-MB-435100M1443Breast cancerMCF-752MDA-MB-4688171LeukemiaK-52SR33Non-small cell lung cancerNCI-H52253Non-small cell lung cancerNCI-H52253Colon cancerKM1226Ovarian cancerNCI/ADR-RES35			K-562	71		
Non-small cell lung cancerNCI-H52245Colon cancerHCC-299872HCT-1553KM1259SW-62077MelanomaMDA-MB-435100M1443Breast cancerMCF-752MDA-MB-4688171LeukemiaRSR33Non-small cell lung cancerNCI-H52253Colon cancerM1226Varian cancerNCI-ADR-RES35			SR	61		
Colon cancerHCC-299872HCT-1553KM1259KM1259W-62077MelanomaMDA-MB-435M1443Breast cancerMCF-7MDA-MB-4688171LeukemiaR52K-56231SR33Colon cancerMCI-1522Colon cancerMCI-292KM1226Ovarian cancerNCI-MDR-RESSR35		Non-small cell lung cancer	NCI-H522	45		
HCT-15 53 KM12 59 SW-620 77 Melanoma MDA-MB-435 M14 43 Preast cancer MCF-7 MDA-MB-468 81 71 Leukemia K-562 R 33 Non-small cell lung cancer NCI-H522 Colon cancer KM12 Ovarian cancer NCI/ADR-RES NCI/ADR-RES 35		Colon cancer	HCC-2998	72		
KM1259SW-62077MelanomaMDA-MB-435MDA-MB-435100M1443Preast cancerMCF-7MDA-MB-4688171LeukemiaK-62041Non-small cell lung cancerNCI-H522Colon cancerKM12Ovarian cancerNCI/ADR-RES35			HCT-15	53		
SW-62077MelanomaMDA-MB-435100M1443Preast cancerMCF-752MDA-MB-4688171LeukemiaK-562411/59SR33Non-small cell lung cancerNCI-H52253Colon cancerKM1226Ovarian cancerNCI/ADR-RES35			KM12	59		
MelanomaMDA-MB-435100M1443Breast cancerMCF-7MDA-MB-4688171LeukemiaK-56251SRSR33Non-small cell lung cancerNCI-H522Colon cancerKM12Ovarian cancerNCI/ADR-RES35			SW-620	77		
M14 43 Breast cancer MCF-7 52 MDA-MB-468 81 71 Leukemia K-562 41 1/59 0/59 SR 33 Non-small cell lung cancer KM12 53 Colon cancer KM12 26 Ovarian cancer NCI/ADR-RES 35		Melanoma	MDA-MB-435	100		
Breast cancer MCF-7 52 MDA-MB-468 81 71 Leukemia K-50 41 1/59 0/59 SR 33 34 34 Non-small cell lung cancer MCI-H522 53 54 Colon cancer KM12 26 54 Ovarian cancer NCI/ADR-RES 35			M14	43		
MDA-MB-468 81 71 Leukemia K-562 41 1/59 0/59 R 33 33 Non-small cell lung cancer KM12 53 Colon cancer KM12 26 Ovarian cancer NCI/ADR-RES 35		Breast cancer	MCF-7	52		
71 Leukemia K-562 41 1/59 0/59 SR 33 34			MDA-MB-468	81		
SR33Non-small cell lung cancerNCI-H52253Colon cancerKM1226Ovarian cancerNCI/ADR-RES35	71	Leukemia	K-562	41	1/59	0/59
Non-small cell lung cancerNCI-H52253Colon cancerKM1226Ovarian cancerNCI/ADR-RES35			SR	33		
Colon cancerKM1226Ovarian cancerNCI/ADR-RES35		Non-small cell lung cancer	NCI-H522	53		
Ovarian cancer NCI/ADR-RES 35		Colon cancer	KM12	26		
		Ovarian cancer	NCI/ADR-RES	35		

 a Data obtained from NCI's in vitro disease-oriented human tumor cell screen at 10 μ M concentration. 31

^b Ratio between number of cell lines with percentage growth from 0 to 50 and total number of tested cell lines.

^c Ratio between number of cell lines with percentage growth of <0 and total number of cell lines.

Scheme 2. Reagents and conditions: (i) AcONa \cdot 3H₂O 4.5 equiv, MeOH, reflux, 2 h; (ii) aqueous 10% HCl, MeOH, reflux, 12–16 h.

displayed a cytostatic effect on four and nine cell lines, respectively. In addition, **7i** demonstrated a minor cytotoxic effect on MDA-MB-435 cell line (growth percentage: -2.6% at 10^{-5} M concentration). Benzophenone **7f** and benzhydrol **7l** were inactive at 10 μ M concentration.

4. Molecular modeling

Docking studies were realized in the colchicine binding site of tubulin, on new compounds that presented a biological potential (**7b**, **7g**, **7h** and **7k**), *iso*combretastatin A-4 and phenstatin **3** (Fig. 2) in order to gain some insights into their binding mode and therefore help the design of new pharmacomodulations. Contrary to the other compounds, phenstatin **3** occupies an upright position in the entrance of the pocket (Fig. 2e), most surely because

Scheme 3. Reagents and conditions: (i) CH₃PPh₃Br 2 equiv, tBuOK 5 equiv, toluene, 80 °C, 18 h; (ii) CH₃PPh₃Br 2 equiv, tBuOK 5 equiv, THF, rt, 24 h; (iii) NaBH₄ 2 equiv, EtOH/ H₂O, rt, 3 h.

Figure 2. Structure and docking of fluorophenstatins in the tubulin binding site: (a) compound **7b**, (b) compound **7g**, (c) compound **7h**, (d) compound **7k**, (e) superimposition of compounds **7b** and **7g** with phenstatin **3** (in orange), and (f) superimposition of compound **7k** with *is*ocombretastatin A-4 (in purple).

of the somewhat larger volume of its triple methoxy substituted cycle compared to the less voluminous fluorines. However, the B cycle is well superposed with the corresponding ring of its newly synthesized analogues. It nonetheless looses the hydrogen bond tying the other molecules to Val 181, which is compensated by a hydrogen bond between its *para* methoxy and Ala 250. Compound **7b** showed preferentially a conformation lying flatly in the bottom of the binding site, with its halogenated ring forming hydrophobic contacts with Leu 252 and 255. The *meta* hydroxyl on the B ring was involved in a hydrogen bond with the skeleton of Val 181. This

conformation accounted for just below a half of the solutions (Fig. 2a).

Compound **7g** behaved essentially the same way, with half of the solutions occupying the binding site in the same conformation as compound **7b** and forming the same interactions (Fig. 2b).

Compound **7h**, on the contrary, displayed a rather fuzzy collection of conformations in this region of the binding site. Moreover, these conformations split equally between two general orientations, pointing the nitrogen either toward the right or the left of the pocket. A secondary set of conformations gathered six closely related solutions that were placed upright in the binding site, with the nitrogen in the bottom. It formed two hydrogen bonds, one between the nitrogen and the backbone carbonyl of Lys 352, the other between the methoxy of the A cycle and the backbone of Ala 250. The difference in placement of this compound when compared with its congeners appears to be made up by a stronger hydrogen bond net (Fig. 2c).

Compound **7k** (Fig. 2d) displayed again a horizontal placement in the binding site. However, it showed two sets of conformations differing by their orientation. The more numerous had also a better score and was very similar to compound **7g**. It formed the same hydrogen bond with Val 181. The second cluster was rotated to point the cycles upward and had no hydrogen bond to stabilise it.

Comparing phenstatin **3** and *iso*combretastatin A-4 (Fig. 2e and f), it is interesting to note that the binding mode of *iso*combrestatin A-4 is also a flat positioning in the bottom of the pocket, where the trimethoxy barely fits and pushes the whole molecule toward Val 181. This notable difference between phenstatin and *iso*combretastatin A-4 despite their structural closeness may be related to a possible interaction with Lys 352. Although oriented away from the pocket, this residue could anchor phenstatin by both it lateral methoxy and its linker carbonyl, while *iso*combretastatin A-4 misses this last and would be therefore less stabilised by a phenstatin-like conformation displaying much less contact with the binding site.

5. Conclusions

The synthesis and the biological evaluation of a new family of fluorobenzophenones 7a-i are reported. In summary, we have shown that the replacement of trimethoxyphenyl ring A of phenstatin with 2,4,5-trifluoro-3-methoxyphenyl unit results in conservation of an antitubulin and cytotoxic effect, less active than the parent compound, but which could counterbalance the metabolic degradation observed with phenstatin,¹¹ especially the O-demethylations of methoxy groups on ring A. The replacement of the carbonyl bridge of the fluorobenzophenone 7g with an olefinic group in compound **7k** resulted in an increase of the antiproliferative potential, while reducing the carbonyl linker in compound 71 abolished the biological efficacy. A docking study of the compounds also hint that the replacement of methoxy groups by fluorine in phenstatin analogs give them a putative binding mode similar to that of isocombretastatin A-4 due to a decreased bulk of the corresponding cycle. Further investigation on the metabolic profile of the best candidates issued from this study will be realized in due course.

6. Experimental section

6.1. Chemistry

6.1.1. Materials and methods

Starting materials are commercially available and were used without further purification. Melting points were measured on a MPA 100 OptiMelt[®] apparatus and are uncorrected. NMR spectra were acquired at 400 MHz for ¹H NMR, at 100 MHz for ¹³C NMR, and at 376 MHz for ¹⁹F NMR on a Varian 400 MHz Premium Shielded[®] spectrometer. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm; 77.1 ppm). Splitting patterns are designed as: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet and sym m, symmetric multiplet. Coupling constants *J* are reported in hertz (Hz). Thin layer chromatographies were realized on Macherey Nagel silica gel plates with a fluorescent indicator and were visualized with UV-lamp at 254 and 366 nm. Column chromatographies were performed using a Combi*Flash* Rf Companion (Teledyne-Isco System) and Redi*Sep* packed columns. IR spectra

were recorded on a Varian 640-IR FT-IR Spectrometer. Elemental analyses (C, H, N) of new compounds were determined by 'Pôle Chimie Moléculaire', Faculté de Sciences Mirande, Université de Bourgogne, Dijon, France.

6.1.2. General procedure A for Friedel–Crafts reactions in the presence of Eaton's reagent

Eaton's reagent was prepared from phosphorus pentoxide (P_2O_5) and methanesulfonic acid (CH_3SO_3H) (weight ratio $P_2O_5/$ CH_3SO_3H 1:10). The mixture was heated at 40 °C under nitrogen atmosphere until complete homogeneity. Benzoic acid (1.15–1.5 equiv) and aromatic derivative (1.0 equiv) were then added to Eaton's reagent. The mixture was heated at 50 °C under inert atmosphere for 3–14 h. After cooling to room temperature, the reaction medium was diluted with dichloromethane and carefully poured into a separatory funnel containing sodium bicarbonate aqueous solution (50% NaHCO₃) (neutralization to pH 7). The aqueous solution was extracted with dichloromethane, and the combined organic layers were dried (MgSO₄). Solvent was removed under reduced pressure to produce a brownish oil. The crude product was purified by Flash chromatography on Redi*Sep* packed columns to provide pure fluorobenzophenones **7a–f**.

6.1.2.1. 2-Methoxy-5-(2,4,5-trifluoro-3-methoxybenzoyl)phenyl chloroacetate (7a). The general procedure A was followed using 2,4,5-trifluoro-3-methoxybenzoic acid 8 (12.8 g, 62.0 mmol), 2-methoxyphenyl chloroacetate 11 (10.4 g, 51.6 mmol) and Eaton's reagent (4.6 g P₂O₅ in 31.4 mL CH₃SO₃H). The mixture was heated at 50 °C for 14 h. The final brown oil was purified by flash chromatography with EtOAc/n-heptane 3:7 and recrystallized from absolute EtOH to give pure chloroacetate 7a (18.1 g, 90%) as a white solid; mp (EtOH) 121–123 °C; TLC R_f (EtOAc/n-heptane 5:5) = 0.78; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.97 (s, 3H, OCH₃), 4.05 (t, J = 1.3 Hz, 3H, OCH₃), 4.24 (s, 2H, OCOCH₂Cl), 6.89 (d, J = 8.2 Hz, 1H, ArH), 7.00 (ddd, J = 9.0, 8.3, 5.6 Hz, 1H, ArH), 7.38 (q, I = 2.2, 1.5 Hz, 1H, ArH), 7.42 (t, I = 1.3 Hz, 1H, ArH).¹⁹F NMR $(CDCl_3, 376 \text{ MHz}) \delta (ppm) - 147.21 (m, I = 20.7, 16.4, 8.3 \text{ Hz}, 1\text{F},$ ArF), -139.02 (dddd, / = 23.2, 20.6, 13.5, 9.1 Hz, 1F, ArF), -131.8 (m, I = 13.6, 6.5 Hz, 1F, ArF). ¹³C NMR (CDCl₃, 100 MHz) δ 40.5 (CH₂), 56.3 (CH₃), 60.9 (t, *J* = 3.6 Hz, CH₃), 107.6 (sym m, CH), 114.6 (CH), 117.1 (CH), 124.5 (d, J = 1.8 Hz, CH), 130.8 (C), 145.5 (sym m, C), 146.3 (C), 146.9 (dd, J = 11.8, 3.5 Hz, C), 147.1 (dd, *J* = 14.8, 5.6 Hz, C), 148.6 (C), 150.8 (dd, *J* = 8.3, 2.1 Hz, C), 151.3 (C), 164.7 (C), 189.7 (C). IR $v \text{ cm}^{-1}$: 1755, 1655, 1605, 1430, 1099. Calcd for C₁₇H₁₂ClF₃O₅: C, 52.53; H, 3.11. Found: C, 52.40; H, 3.47.

(2,3-Dihydroxy-4-methoxyphenyl)-(2,4,5-trifluoro-3-6.1.2.2. methoxyphenyl)methanone (7b). The general procedure A was followed using 2,4,5-trifluoro-3-methoxybenzoic acid 8 (2.5 g, 12.1 mmol), 2,6-dimethoxyphenyl chloroacetate 12 (1.9 g, 8.1 mmol) and Eaton's reagent (0.9 g P₂O₅ in 6.1 mL CH₃SO₃H). The mixture was heated at 50 °C for 12 h. The final brown oil was purified by flash chromatography with EtOAc/n-heptane 3:7 to provide the deprotected and mono O-demethylated pure compound **7b** (1.9 g, 71%) as a yellow solid; mp (EtOAc/*n*-heptane) 120–121 °C; TLC $R_{\rm f}$ (EtOAc/*n*-heptane 3:7) = 0.17; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.98 (s, 3H, OCH₃), 4.09 (s, 3H, OCH₃), 5.54 (s, 1H, ArOH), 6.51 (d, J = 9.2 Hz, 1H, ArH), 6.97 (sym m, 1H, ArH), 6.98 (d, J = 9.2 Hz, 1H, ArH), 11.89 (s, 1H, ArOH). ¹⁹F $(CDCl_3, 376 \text{ MHz}) \delta (ppm) - 146.37 (ddd, J = 20.5, 12.4, 9.6 \text{ Hz}, 1F,$ ArF), -138.92 (dddd, J = 22.4, 20.5, 13.5, 9.5 Hz, 1F, ArF), -132.42 (sym m, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 56.4 (CH₃), 62.2 (t, J = 3.1 Hz, CH₃), 103.3 (CH), 109.9 (dd, J = 20.2, 3.1 Hz, CH), 114.4 (C), 121.9 (sym m, C), 125.5 (d, J = 2.4 Hz, CH), 133.5 (C), 138.3 (m, C), 145.9 (ddd, J = 255.0, 15.0, 5.3 Hz, C), 147.4 (ddd, *J* = 248.5, 11.7, 3.1 Hz, C), 148.5 (dt, *J* = 249.6, 3.3 Hz, C), 150.8 (C), 153.1 (C), 194.3 (C). IR ν cm⁻¹: 3467, 1633, 1597, 1508, 1463, 1429, 1278, 1095, 1066, 777. Calcd for C₁₅H₁₁F₃O₅: C, 54.89; H, 3.38. Found: C, 54.77; H, 3.17.

N-[2,6-Dimethoxy-3-(2,4,5-trifluoro-3-methoxyben-6.1.2.3. zoyl)phenyl]acetamide (7c). The general procedure A was followed using 2,4,5-trifluoro-3-methoxybenzoic acid 8 (2.0 g, *N*-(2,6-dimethoxyphenyl)acetamide 9.7 mmol), 13 (1.3 g. 6.5 mmol) and Eaton's reagent (0.9 g P₂O₅ in 6.1 mL CH₃SO₃H). The mixture was heated at 50 °C for 14 h. The final brown oil was purified by flash chromatography with EtOAc/n-heptane 5:5 to give pure acetamide **7c** (1.9 g, 76%) as a white solid; mp (EtOAc/n-heptane) 160–162 °C; TLC R_f (EtOAc/*n*-heptane 75:25) = 0.21; ¹H (CDCl₃, 400 MHz) δ (ppm) 2.15 (br s, 3H, NHCOCH₃), 3.58 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 4.02 (s, 3H, OCH₃), 6.60 (br s, 1H, ArNH), 6.79 (d, J = 8.6 Hz, 1H, ArH), 7.18 (sym m, 1H, ArH), 7.56 (d, J = 8.7 Hz, 1H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) –145.27 (m, 1F, ArF), –139.81 (m, 1F, ArF), -131.77 (sym m, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 23.2 (CH₃), 56.3 (CH₃), 62.1 (CH₃), 62.2 (t, *J* = 3.1 Hz, CH₃), 106.8 (CH), 110.6 (dd, J = 20.2, 3.1 Hz, CH), 119.3 (sym m, C), 124.0 (sym m, C), 130.6 (CH), 137.9 (sym m, C), 147.1 (sym m, C), 149.2 (sym m, C), 151.7 (sym m, C), 156.4 (d, J = 3.1 Hz, C), 156.8 (sym m, C), 159.4 (C), 166.8 (C), 188.6 (C). Due to the presence of the two methoxy groups next to the acetamide function, the signal corresponding to the methyl group at 23.2 ppm is very weak. IR v cm⁻¹: 3210, 1660, 1595, 1510, 1461, 1349, 1089, 995. Calcd for C₁₈H₁₆O₅NF₃: C, 56.40; H, 4.21; N, 3.65. Found: C, 56.09; H, 4.30; N, 3.67.

6.1.2.4. N-[3-(3-Fluoro-4-methoxybenzoyl)-2.6-dimethoxyphenyl]acetamide (7d). The general procedure A was followed using 3-fluoro-4-methoxybenzoic acid 9 (2.0 g, *N*-(2,6-dimethoxyphenyl)acetamide 11.8 mmol), 13 (1.5 g, 7.8 mmol) and Eaton's reagent (0.7 g P₂O₅ in 4.9 mL CH₃SO₃H). The mixture was heated at 60 °C for 5 h. The final product precipitates in dichloromethane. After filtration of the obtained precipitate, the pure acetamide **7d** (2.3 g, 85%) is obtained as a white solid; mp (CH₂Cl₂) 179–180 °C; TLC R_f (EtOAc) = 0.30; ¹H (CDCl₃, 400 MHz) δ (ppm) 2.18 (br s, 3H, NHCOCH₃), 3.62 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 6.68 (br s, 1H, NHCOCH₃), 6.77 (d, J = 8.9 Hz, 1H, ArH), 6.98 (t, J = 8.0 Hz, 1H, ArH), 7.34 (d, J = 8.0 Hz, 1H, ArH), 7.60 (d, J = 8.9 Hz, 1H, ArH), 7.64 (d, J = 12.0 Hz, 1H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) -134.58 (s, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 23.4 (CH₃), 56.2 (CH₃), 56.3 (CH₃), 62.1 (CH₃), 106.4 (CH), 112.1 (d, J = 1.6 Hz, CH), 117.1 (d, J = 19.4 Hz, CH), 125.1 (m, C), 127.8 (m, C), 129.4 (CH), 130.8 (d, J = 5.4 Hz, CH), 150.6 (C), 151.9 (d, J = 11.1 Hz, C), 153.1 (C), 155.4 (d, J = 20.0 Hz, C), 157.6 (C), 167.2 (C), 192.9 (C). Due to the presence of the two methoxy groups next to the acetamide function, the signal corresponding to the methyl group at 23.2 ppm is very weak. IR v cm⁻¹: 3257, 1648, 1608, 1515, 1280, 1123, 1094, 1019, 833. Calcd for C₁₈H₁₈O₅NF: C, 62.24; H, 5.22; N, 4.03. Found: C, 62.20; H, 4.94; N, 4.17.

6.1.2.5. (4-Fluoro-2,5-dimethoxyphenyl)-(3,4,5-trimethoxyphenyl)methanone (7e)²⁹. The general procedure A was followed using 2-fluoro-1,4-dimethoxybenzene **14** (1.0 g, 6.4 mmol), 3,4,5-trimethoxybenzoic acid **10** (2.0 g, 9.6 mmol) and Eaton's reagent (0.8 g of P_2O_5 in 5.4 mL of CH₃SO₃H) at 60 °C for 3 h. The crude product was purified by column chromatography on silica gel with EtOAc/*n*-heptane 3:7 to give the pure product 7e as a white solid (1.1 g, 51%); mp (EtOAc/*n*-heptane) 110–112 °C; TLC R_f (EtOAc/*n*-heptane 3:7) = 0.75; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.70 (s, 3H, OCH₃), 3.85 (s, 6H, 2OCH₃), 3.87 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.81 (d, *J* = 12.0 Hz, 1H, ArH), 7.03 (d, *J* = 9.8 Hz, 1H, ArH), 7.07 (s, 2H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) –127.2 (dd, *J* = 12.2, 9.5 Hz, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 56.3 (2CH₃), 56.5

(CH₃), 57.1 (CH₃), 60.9 (CH₃), 101.6 (CH), 107.4 (2CH), 115.3 (CH), 123.9 (C), 132.8 (C), 141.4 (C), 142.7 (C), 151.9 (C), 152.9 (2C), 155.5 (C), 193.9 (C). IR ν cm⁻¹: 2944, 1638, 1213, 1126. Calcd for C₁₈H¹⁹FO₆: C, 61.71; H, 5.47. Found: C, 61.31; H, 5.21.

6.1.2.6. (4-Fluoro-2,5-dimethoxyphenyl)-(4-hydroxy-3,5-dimethoxyphenyl)methanone (7f)²⁹. By-product from the synthesis of benzophenone **7e**; white solid (0.4 g, 19%); mp (EtOAc/*n*-heptane) 122–124 °C; TLC *R*_f (EtOAc/*n*-heptane 3:7) = 0.61; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.70 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.89 (s, 6H, 2OCH₃), 5.98 (s, 1H, ArOH), 6.81 (d, *J* = 12.8 Hz, 1H, ArH), 7.02 (d, *J* = 9.5 Hz, 1H, ArH), 7.11 (s, 2H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) –127.7 (dd, *J* = 12.3, 9.6 Hz, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 56.3 (2CH₃), 57.1 (CH₃), 60.9 (CH₃), 101.6 (CH), 107.4 (2CH), 115.3 (CH), 124.1 (C), 129.1 (C), 139.9 (C), 146.6 (2C), 151.7 (C), 152.8 (C), 155.3 (C), 193.6 (C). Calcd for C₁₇H₁₇FO₆: C, 60.71; H, 5.09. Found: C, 60.76; H, 5.00.

6.1.3. (3-Hydroxy-4-methoxyphenyl)-(2,4,5-trifluoro-3-methoxyphenyl)methanone (7g)

Chloroacetate 7a (18.0 g, 46.3 mmol) and sodium acetate (AcO-Na·3H₂O) (28.4 g, 208.7 mmol) were dissolved in MeOH (50 mL). The solution was refluxed for 2 h. After cooling at rt, the mixture was concentrated under reduced pressure. The residue was taken into distilled water. The resulting precipitate was filtered, washed with water several times to remove remaining sodium acetate and recrystallized from absolute EtOH to obtain benzophenone 7g (13.9 g, 96%) as a white solid; mp (EtOH) 112–115 °C; R_f (EtOAc/nheptane 5:5) = 0.32; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.99 (s, 3H, OCH₃), 4.07 (t, J = 1.3 Hz, 3H, OCH₃), 5.74 (br s, 1H, ArOH), 6.91 (d, J = 8.2 Hz, 1H, ArH), 7.01 (ddd, J = 9.3, 8.1, 5.6 Hz, 1H, ArH), 7.36 (q, J = 2.2, 1.5 Hz, 1H, ArH), 7.41 (t, J = 1.3 Hz, 1H, ArH). ¹⁹F NMR (CDCl₃, 376 MHz) δ (ppm) –146.67 (m, J = 20.4, 16.4, 8.2 Hz, 1F, ArF), -139.43 (dddd, J = 23.2, 20.4, 13.5, 9.5 Hz, 1F, ArF), -131.8 (m, J = 13.6, 6.7 Hz, 1F, ArF). ¹³C NMR (CDCl₃, 100 MHz) δ 56.2 (CH₃), 62.1 (t, J = 3.9 Hz, CH₃), 109.9 (CH), 110.4 (dd, J = 20.2, 3.9 Hz, CH), 115.5 (CH), 123.9 (d, J = 1.6 Hz, CH), 130.2 (C), 144.7 (dd, J = 14.7, 4.7 Hz, C), 145.6 (C), 146.0 (dd, J = 11.8, 3.2 Hz, C). 147.2 (dd, J = 14.8, 5.5 Hz, C), 148.0 (C), 150.5 (dd, J = 7.7, 2.4 Hz, C), 151.4 (C), 189.5 (C). IR v cm⁻¹: 3421, 1647, 1579, 1436, 1352, 1099, 1020, 788. Calcd. for C₁₅H₁₁F₃O₄: C, 57.70; H, 3.55. Found: C, 57.40; H, 3.47.

6.1.4. General procedure B for deprotection of acetamide function

A mixture of acetamide **7c** or **7d** (1 equiv) and a 10% hydrochloric acid solution (5–50 mL) in methanol (10–50 mL) was stirred at reflux for 12–16 h. The final suspension was neutralized to pH 7 by slow addition of an ammoniacal solution. The aqueous solution was extracted with dichloromethane. The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The residue was recrystallized from Et₂O to afford pure aniline **7h** or **7i**.

6.1.4.1. (3-Amino-2,4-dimethoxyphenyl)(2,4,5-trifluoro-3methoxyphenyl)methanone (7h). The general procedure B was followed using acetamide 7c (0.1 g, 0.3 mmol), 10% HCl (5 mL) in methanol (10 mL). The mixture was stirred at reflux for 16 h. The crude product was purified by column chromatography on silica gel with EtOAc/*n*-heptane 1:9 and recrystallized from absolute EtOH to give the pure product 7h as a yellow solid (0.09 g, 76%); mp (EtOH) 161–162 °C; TLC *R*_f (EtOAc/*n*-heptane 75:25) = 0.18; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.63 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.97 (br s, 2H, ArNH₂), 4.03 (s, 3H, OCH₃), 6.65 (d, *J* = 8.6 Hz, 1H, ArH), 6.97 (d, *J* = 8.6 Hz, 1H, ArH), 7.13 (ddd, *J* = 12.0, 5.9, 1.6 Hz, 1H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) -145.93 (ddd, *J* = 21.1, 17.1, 9.0 Hz, 1F, ArF), -140.17 (dddd, *J* = 23.2, 20.5, 13.8, 9.6 Hz, 1F, Ar*F*), −132.10 (sym m, 1F, Ar*F*). ¹³C (CDCl₃, 100 MHz) δ 55.9 (CH₃), 61.1 (CH₃), 62.1 (t, *J* = 4.0 Hz, CH₃), 105.7 (CH), 110.7 (dd, *J* = 20.4, 4.0 Hz, CH), 120.5 (CH), 124.3 (sym m, C), 125.0 (C), 130.1 (C), 137.82 (sym m, C), 146.4 (ddd, *J* = 256.3, 15.6, 5.5 Hz, C), 146.6 (C), 147.0 (ddd, *J* = 247.3, 11.7, 4.0 Hz, C), 150.4 (dt, *J* = 256.3, 4.0 Hz, C), 151.8 (C), 189.3 (t, *J* = 1.9 Hz, C). IR ν cm⁻¹: 3459, 3366, 1642, 1580, 1499, 1355, 1079, 950, 781. Calcd for C₁₆H₁₄F₃O₄N: C, 56.31; H, 4.13; N, 4.10. Found: C, 56.79; H, 3.88; N, 4.17.

6.1.4.2. (3-Amino-2,4-dimethoxyphenyl)(3-fluoro-4-methoxyphenyl)methanone (7i). The general procedure B was followed using acetamide 7d (2.0 g, 5.8 mmol), 10% HCl (50 mL) in methanol (50 mL). The mixture was stirred at reflux for 12 h. The crude product was purified by column chromatography on silica gel with EtOAc/n-heptane 4:6 to give the pure product 7i as a vellow solid (1.4 g. 80%): mp (EtOAc/n-heptane) 80-82 °C; TLC R_f (EtOAc/ *n*-heptane 4:6) = 0.21; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.65 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 3.99 (br s, 2H, ArNH₂), 6.65 (d, J = 8.5 Hz, 1H, ArH), 6.79 (d, J = 8.5 Hz, 1H, ArH), 6.97 (t, *I* = 8.5 Hz, 1H, ArH), 7.61 (ddd, *I* = 8.5, 2.2, 1.0 Hz, 1H, ArH), 7.64 (dd, J = 12.7, 2.2 Hz, 1H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) -134.97 (g, J = 10.9, 8.2 Hz, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 55.9 (CH₃), 56.3 (CH₃), 61.3 (CH₃), 105.5 (CH), 111.9 (d, *J* = 2.4 Hz, CH), 117.4 (d, J = 19.3 Hz, CH), 118.9 (CH), 125.1 (C), 127.6 (d, J = 3.1 Hz, CH), 129.7 (C), 131.2 (d, J = 4.7 Hz, C), 145.5 (C), 150.2 (C), 151.7 (d, J = 10.9 Hz, C), 153.0 (C), 193.7 (d, J = 2.4 Hz, C). IR v cm⁻¹: 3457, 3352, 1647, 1606, 1432, 1279, 1256, 1127, 1068, 1023, 817, 762. Calcd for C₁₆H₁₆FO₄N: C, 62.95; H, 5.28; N, 4.59. Found: C, 62.79; H, 5.67; N, 4.57.

6.1.5. General procedure C for Wittig reaction

A mixture of potassium *tert*-butoxide (5 equiv) and methyltriphenylphosphonium bromide (2 equiv) in THF or toluene was stirred at rt or 80 °C for 1 h. The benzophenone **7e** or **7g** (1 equiv) dissolved in THF or toluene was added and the mixture was stirred at rt or 80 °C for 18–24 h. The solution was poured into water, then extracted in dichloromethane and dried (MgSO₄). The solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel to obtain the Wittig compound **7j** or **7k**.

6.1.5.1. 5-[1-(4-Fluoro-2,5-dimethoxyphenyl)ethenyl]-1,2,3-trimethoxybenzene $(7j)^{29}$. The general procedure C was followed using benzophenone 7e (0.5 g, 1.4 mmol), potassium tert-butoxide (0.8 g, 7.1 mmol) and methyltriphenylphosphonium bromide (1.0 g, 2.8 mmol) in toluene (20 mL) at 80 °C. The crude product was purified by column chromatography on silica gel with EtOAc/*n*-heptane 5:5 to give the pure Wittig product **7j** as a white solid (0.2 g, 44%); mp (EtOAc/n-heptane) 77–79 °C; R_f (EtOAc/ *n*-heptane 4:6) = 0.54; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.64 (s, 3H, OCH₃), 3.80 (s, 6H, 2OCH₃), 3.85 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 5.32 (d, J = 1.8 Hz, 1H, CH₂), 5.59 (d, J = 1.8 Hz, 1H, CH₂), 6.54 (s, 2H, ArH), 6.66 (d, J = 8.6 Hz, 1H, ArH), 6.74 (d, J = 8.6 Hz, 1H, ArH). ¹⁹F NMR (CDCl₃, 376 MHz) δ (ppm) –132.71 (dd, J = 11.2, 9.5 Hz, 1F, ArF). $^{13}\mathrm{C}$ NMR (CDCl_3, 100 MHz) δ 55.9 (2CH_3), 56.2 (CH₃), 60.5 (CH₃), 60.9 (CH₃), 104.2 (2CH), 106.2 (CH), 115.1 (CH₂), 121.1 (CH), 128.1 (C), 137.8 (C), 138.4 (C), 145.0 (C), 146.5 (C), 147.5 (C), 152.8 (C), 154.8 (C). IR v cm⁻¹: 2927, 1574, 1124. Calcd. for C₁₉H₂₁FO₅: C, 65.51; H, 6.08. Found: C, 65.09; H, 6.51.

6.1.5.2. 2-Methoxy-5-[1-(2,4,5-trifluoro-3-methoxyphenyl) vinyl]phenol (7k). The general procedure C was followed using benzophenone **7g** (0.3 g, 1.0 mmol), methyltriphenylphosphonium bromide (0.7 g, 2.0 mmol) and potassium *tert*-butoxide (0.5 g, 4.8 mmol) in THF (20 mL) at rt for 24 h. The crude product was purified by column chromatography on silica gel with EtOAc/ *n*-heptane 1:9. The pure Wittig product **7k** was obtained as a beige oil (0.1 g, 34%); TLC $R_{\rm f}$ (EtOAc/*n*-heptane 5:5) = 0.65; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.90 (s, 3H, OCH₃), 4.02 (s, 3H, OCH₃), 5.30 (s, 1H, CH₂), 5.58 (s, 1H, ArOH), 5.68 (s, 1H, CH₂), 6.73–6.81 (m, 3H, ArH), 6.90 (d, *J* = 2.3 Hz, 1H, ArH). ¹⁹F (CDCl₃, 376 MHz) δ (ppm) –152.26 (m, 1F, ArF), –141.67 (ddd, *J* = 23.2, 11.6, 2.7 Hz, 1F, ArF), –133.63 (q, 1F, ArF). ¹³C (CDCl₃, 100 MHz) δ 56.0 (CH₃), 62.1 (CH₃), 110.3 (2CH), 113.0 (CH), 116.6 (CH₂), 118.8 (CH), 133.3 (C), 134.4 (C), 138.7 (C), 141.9 (C), 142.1 (C), 143.0 (C), 145.5 (C), 146.6 (C), 150.1 (C). IR ν cm⁻¹: 3444, 2921, 2851, 1738, 1605, 1505, 1464, 1431, 1356, 1260, 1091, 1023, 947, 763. Calcd for ¹/₄C₇H₁₆·C₁₆H₁₃F₃O₃: C, 63.58; H, 5.11. Found: C, 63.31; H, 5.30.

6.1.6. 5-[Hydroxy(2,4,5-trifluoro-3-methoxyphenyl)methyl]-2-methoxyphenol (7l)

An aqueous solution of sodium borohydride (3.7 g, 98.1 mmol in 140 mL distilled water) was added dropwise to a solution of benzophenone **7g** (13.3 g, 44.6 mmol) in absolute ethanol (190 mL). After stirring for 3 h at room temperature, the reaction media is neutralized (pH 7) with a hydrochloric acid solution (1.5 M) and extracted with ethyl acetate (3×100 mL). Combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The final precipitate was washed with water, collected by filtration to give pure benzhydrol 71 (10.8 g, 81%) as a white solid; mp (H₂O) 128–130 °C; $R_{\rm f}$ (EtOAc/ *n*-heptane 5:5) = 0.69; ¹H (CDCl₃, 400 MHz) δ (ppm) 3.88 (s, 3H, OCH₃), 4.00 (t, J = 1.2 Hz, 3H, OCH₃), 5.63 (br s, 2H, ArOH and CHOH), 5.98 (br s, 1H, CHOH), 6.81 (d, J = 8.4 Hz, 1H, ArH), 6.88 (dd, J = 8.4, 2.5 Hz, 1H, ArH), 6.92 (d, J = 2.6 Hz, 1H, ArH), 7.09 (sym m, 1H, ArH). ¹⁹F NMR (CDCl₃, 376 MHz) δ (ppm) –152.85 (ddd, J = 20.4, 13.6, 5.5 Hz, 1F, ArF), -140.47 (sym m, J = 24.4, 21.7, 13.6, 10.9 Hz, 1F, ArF), -138.75 (sym m, J = 13.6, 5.5 Hz, 1F, ArF). ¹³C NMR (CDCl₃, 100 MHz) δ 56.0 (CH₃), 62.0 (CH₃), 69.0 (CH), 107.6 (dd, J = 20.3, 4.7 Hz, CH), 110.6 (CH), 112.6 (CH), 118.0 (CH), 135.4 (C), 145.8 (C), 146.4 (C). IR v cm⁻¹: 3396, 3264, 1510, 1475, 1087, 1039. Calcd. for C₁₅H₁₃F₃O₄: C, 57.33; H, 4.17. Found: C. 56.94: H. 4.48.

6.2. Tubulin assembly studies

Sheep brain tubulin was purified according to the method of Shelanski³¹ by two cycles assembly–dissambly and then dissolved in the assembly buffer containing 0.1 M MES, 0.5 mM MgCl₂, 1 mM EGTA, and 1 mM of GTP (pH 6.6) to give a tubulin concentration of about 2–3 mg/mL. Tubulin assembly was monitored by fluorescence according to reported procedure³² using DAPI as fluorescent molecule. Assays were realized on 96-well plates prepared with Biomek NKMC and Biomek 3000 from Beckman coulter and read at 37 °C on Wallac Victor fluorimeter from Perkin–Elmer. The IC₅₀ value of each compound was determined as tubulin by 50% compared to the rate in the absence of compound. The IC₅₀ values for all compounds were compared to the IC₅₀ of phenstatin and desoxypodo-phyllotoxine and measured the same day under the same conditions.

6.3. Cell proliferation assay

The compounds were tested against a panel of 60 human cancer cell lines at the National Cancer Institute, Bethesda, MD.^{33a} The cytotoxicity studies were conducted using a 48 h exposure protocol using the sulforhodamine B assay.^{33b}

6.4. Molecular modeling

The crystallographic structure of a heterodimer of α and β -tubuline was taken from the $1sa0^{34}$ entry of the RCSB Protein Data Bank (http://www.pdb.org)^{35} and the binding site was

thought to be that of the co-crystallised DAMA colchicine. Flexible docking of the compounds into their putative binding site was performed using GOLD 5.1 software.³⁶ The most stable docking models were selected according to the best scored conformation predicted by the GoldScore³⁶ and X-Score scoring functions³⁷ and a visual assessment of the consistency of the docking solutions, expressed as the closeness of the thirty generated conformations.

Acknowledgments

The authors gratefully acknowledge the 'Conseil Régional Nord-Pas-de-Calais' for the A.G., A.T. and V.S.'s PhD scholarships and the NCI (National Cancer Institute) for the biological evaluation of compounds on their 60-cell panel. The authors would like to thank Dr D. Perry for reviewing this manuscript.

References and notes

- (a) Hyams, J.; Lloyd, C. W. Microtubules; Wiley: New York, 1994; (b) Fojo, T. The Role of Microtubules in Cell Biology, Neurobiology, and Oncology; Humana Press: Totowa, NJ, 2008.
- (a) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665; (b) Beckers, T.; Mahboobi, S. Drugs Future 2003, 28, 767.
- 3. Dumontet, C.; Jordan, M. A. Nat. Rev. Drug Disc. 2010, 9, 790.
- 4. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer **2004**, 4, 253.
- 5. Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochemistry 1989, 28, 6984.
- (a) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033; (b) Ty, N.; Kaffy, J.; Arrault, A.; Thoret, S.; Pontikis, R.; Dubois, J.; Morin-Allory, L.; Florent, J. C. Bioorg. Med. Chem. Lett. 2009, 19, 1318; (c) Pettit, G. R.; Toki, B. E.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Chapuis, J. C. J. Med. Chem. 1999, 42, 1459.
- (a) Deshpande, H. A.; Gettinger, S. N.; Sosa, J. A. Curr. Opin. Oncol. 2008, 20, 19;
 (b) Lippert, J. W., Ill Bioorg. Med. Chem. 2007, 15, 605; (c) Mariotti, A.; Perotti, A.; Sessa, C.; Rüegg, C. Expert Opin. Investig. Drugs 2007, 16, 451; (d) Vincent, L.; Kermani, P.; Young, L. M.; Cheng, J.; Zhang, F.; Shido, K.; Lam, G.; Bompais-Vincent, H.; Zhu, Z.; Hicklin, D. J.; Bohlen, P.; Chaplin, D. J.; May, C.; Rafi, S. J. Clin. Invest. 2005, 115, 2992.
- Rustin, G. J.; Galbraith, S. M.; Anderson, H.; Stratford, M.; Folkes, L. K.; Sena, L.; Gumbrell, L.; Price, P. M. J. Clin. Oncol. 2003, 21, 2815.
- O'Boyle, N. M.; Greene, L. M.; Bergin, O.; Fichet, J.-B.; McCabe, T.; Lloyd, D. G.; Zisterer, D. M.; Meegan, M. J. *Bioorg. Med. Chem.* **2011**, *19*, 2306. and references cited therein.
- Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem. 1998, 41, 1688.
- (a) Ghinet, A.; Rigo, B.; Hénichart, J.-P.; Le Broc-Ryckewaert, D.; Pommery, J.; Pommery, N.; Thuru, X.; Quesnel, B.; Gautret, P. *Bioorg. Med. Chem.* **2011**, *19*, 6042; (b) Le Broc-Ryckewaert, D.; Pommery, N.; Pommery, J.; Ghinet, A.; Farce, A.; Wiart, J.-F.; Gautret, P.; Rigo, B.; Hénichart, J.-P. *Drug Metab. Lett.* **2011**, *5*, 209.
- 12. Kirk, K. L.; Filler, R. Biomedical Frontiers of Fluorine Chemistry, Symposium Series 639; ACS: Washington DC, 1996. pp 1–24.
- (a) Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M. O.; Marcellini, M.; Riccioni, T.; Guglielmi, M. B.; Carminati, P.; Pisano, C. J. Med. Chem. 2008, 51, 2708; (b) Lawrence, N. J.; Hepworth, L. A.; Rennison, D.; McGown, A. T.; Hadfield, J. A. J. Fluorine Chem. 2003, 123, 101.
- (a) Dodean, R. A.; Kelly, J. X.; Peyton, D.; Gard, G. L.; Riscoe, M. K.; Winter, R. W. Bioorg. Med. Chem. 2008, 16, 1174; (b) Lee, J.; Kim, S. J.; Choi, H.; Kim, Y. H.;

Lim, I. T.; Yang, H.-M.; Lee, C. S.; Kang, H. R.; Ahn, S. K.; Moon, S. K.; Kim, D.-H.; Lee, S.; Choi, N. S.; Lee, K. J. *J. Med. Chem.* **2010**, *53*, 6337.

- Chen, J.; Liu, T.; Wu, R.; Lou, J.; Dong, X.; He, Q.; Yang, B.; Hu, Y. Eur. J. Med. Chem. 2011, 46, 1343.
- Chuang, H.-Y.; Chang, J.-Y.; Lai, M.-J.; Kuo, C.-C.; Lee, H.-Y.; Hsieh, H.-P.; Chen, Y.-J.; Chen, L.-T.; Pan, W.-Y.; Liou, J.-P. *ChemMedChem* **2011**, 6, 450.
- (a) Alvarez, C.; Alvarez, R.; Corchete, P.; Perez-Melero, C.; Pelaez, R.; Medarde, M. Bioorg. Med. Chem. Lett. 2007, 17, 3417; (b) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; LopezCara, C.; Preti, D.; Fruttarolo, F.; Pavani, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di Antonella, C.; Balzarini, J.; Hadfield, J. A.; Brancale, A.; Hamel, E. J. Med. Chem. 2007, 50, 2273; (c) Hu, L.; Jiang, J.-D.; Qu, J.; Li, Y.; Jin, J.; Li, Z.-R.; Boykin, D. W. Bioorg. Med. Chem. Lett. 2007, 17, 3613; (d) Pettit, G. R.; Grealish, M. P.; Jung, M. K.; Hamel, E.; Pettit, R. K.; Chapuis, J. C.; Schmidt, J. M. J. Med. Chem. 2002, 45, 2534; (e) Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C. C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. J. Med. Chem. 2004, 47, 4247.
- Alvarez, C.; Alvarez, R.; Corchete, P.; Perez-Melero, C.; Pelaez, R.; Medarde, M. *Eur. J. Med. Chem.* 2010, 45, 588.
- Beale, T. M.; Myers, R. M.; Shearman, J. W.; Charnock-Jones, D. S.; Brenton, J. D.; Gergely, F. V.; Ley, S. V. Med. Chem. Commun. 2010, 1, 202.
- Titov, I. Y.; Sagamanova, I. K.; Gritsenko, R. T.; Karmanova, I. B.; Atamanenko, O. P.; Semenova, M. N.; Semenov, V. V. Bioorg. Med. Chem. Lett. 2011, 21, 1578.
- Gaukroger, K.; Hadfield, J. A.; Lawrence, N. J.; Nolan, S.; McGown, A. T. Org. Biomol. Chem. 2003, 3033.
- Abuhaie, C.-M.; Bîcu, E.; Rigo, B.; Gautret, P.; Belei, D.; Farce, A.; Dubois, J.; Ghinet, A. Bioorg. Med. Chem. Lett. 2013, 23, 147.
- Katiyar, S. K.; Gordon, V. R.; McLaughlin, G. L.; Edlind, T. D. Antimicrob. Agents Chemother. 1994, 38, 2086.
- 24. Cumino, A. C.; Elissondo, M. C.; Denegri, G. M. Parasitol. Int. 2009, 58, 270.
- Spagnuolo, P. A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M. A.; Di Meo, A.; Boss, J.; Ashali, I.; Zavareh, R. B.; Fine, N.; Simpson, C. D.; Sharmeen, S.; Rottapel, R.; Schimmer, A. D. Blood 2010, 115, 4824.
- Fuchs, R. Flubendazole; World Health Organization: Geneva, Switzerland, 1993; Vol. 31.
- Getahun, Z.; Jurd, L.; Chu, P. S.; Lin, C. M.; Hamel, E. J. Med. Chem. 1992, 35, 1058.
- 28. (a) Messaoudi, S.; Tréguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; De Losada, J. R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. *J. Med. Chem.* **2009**, *52*, 4538; (b) Álvarez, R.; Álvarez, C.; Mollinedo, F.; Sierra, B. G.; Medarde, M.; Peláez, R. *Bioorg. Med. Chem.* **2009**, *17*, 6422.
- 29. Stocker, V.; Ghinet, A.; Leman, M.; Rigo, B.; Millet, R.; Farce, A.; Desravines, D.; Dubois, J.; Waterlot, C.; Gautret, P. *RSC Adv.* **2013**, *3*, 3683.
- Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem. 2000, 43, 2731.
- Shelanski, M. L.; Gaskin, F.; Cantor, C. R. *Proc. Natl. Acad. Sci. U.S.A.* **1973**, *70*, 765.
 Barron, D. M.; Chatterjee, S. K.; Ravindra, R.; Roof, R.; Baloglu, E.; Kingston, D. G.; Bane, S. *Anal. Biochem.* **2003**, *315*, 49.
- (a) Boyd, R. B. The NCI In Vitro Anticancer Drug Discovery Screen. In Anticancer Drug Development Guide; Preclinical Screening, Clinical Trials, and Approval; Teicher, B., Ed.; Humana Press Inc.: Totowa, NJ, 1997; pp 23–42; (b) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesh, H.; Kennedy, S.; Boyd, M. R. J. Natl. Cancer Inst. **1990**, 82, 1107.
- Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Nature 2004, 428, 198.
- Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235.
- Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 717.
- 37. Wang, R.; Lai, L.; Wang, S. J. Comput. Aided Mol. Des. 2002, 1, 11.