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ABSTRACT: Organocatalytic strategies for the programmed, catalytic oxidation of π-bonds through regioselective halo-
genation remain comparatively underdeveloped. The vicinal dichlorination of unactivated alkenes is a pertinent example, 
where stoichiometric reagents and pre-functionalisation steps are often employed. This is surprising given the promi-
nence of the 1,2-dichloro moiety in an array of bioactive natural products of both terrestrial and marine origin. Inspired by 
Willgerodt’s seminal discovery in 1886 that PhICl2 can be generated by passing Cl2(g) through iodobenzene, a catalytic 
vicinal dichlorination of unactivated alkenes has been designed based on an I(I)/I(III) manifold. In situ generation of p-
TolICl2 is achieved using Selectfluor® and CsCl. Substrate scope, mechanistic delineation and preliminary validation of an 
enantiomeric variant are established. Over a century after the initial discovery of the Willgerodt reagent (PhICl2), an op-
erationally simple, catalytic alternative has been validated. 

KEYWORDS. 1,2-chlorination • halogenation • iodine • organocatalysis • selectivity • stereospecificity

Organocatalysis-based strategies to enable the vicinal 
dihalogenation of unactivated alkenes are conspicuously 
under represented.1 The exigency is particularly promi-
nent in the 1,2-dichlorination of unactivated alkenes using 
low molecular weight catalysts and simple chloride salts.2 

This is surprising, given the diversity of marine and ter-
restrial poly-chlorinated, secondary metabolites bearing 
the 1,2-dichloro motif (Figure 1), and the well-delineated 
biosynthesis pathways that generate formal electrophilic 
“Cl+” sources from abundant salts.3 Prominent synthesis 
campaigns directed towards the chlorosulfolipids by 
Vanderwal,4 Carreira,5 and Yoshimitsu,6 have been in-
strumental in triggering a renaissance in organo-chlorine 
chemistry: This is a consequence of the unique conforma-
tional7 and physicochemical properties of the vicinal di-
chloro unit, and the wider biological and environmental 
impacts of complex, polychlorinated systems.8 Logically, 
this has led to a rapid expansion in strategies to enable 
this fundamental transformation. In addition to reliable, 
multi-step processes that involve alkene pre-activation, 
such as epoxide functionalisation under Appel condi-
tions,9 a number of reagent-based processes remain in-
dispensable: The venerable Mioskowski reagent (Et4NCl3) 
remains popular although caution must be exercised 
during preparation due to the corrosive nature of Cl2(g).

10 
These strategies are complemented by a series of elegant 
transition metal-mediated protocols using manganese,11 
molybdenum,12 ruthenium13 and vanadium.14 Stereospeci-
ficity is frequently  observed in many scenarios due to the 
involvement of transient chloronium ions;15 an aspect of 
reagent-based chlorination that has been beautifully har-
nessed in the aforementioned total syntheses.4-8 More 
recently, an organo-catalytic strategy to access the elusive 
vicinal syn-configured adducts has been achieved by 
Denmark and co-workers via a key seleniranium interme-

diate.16 It is important to highlight that there have been 
rapid advances in the catalytic, diastereo- and enantiose-
lective vicinal dichlorination of allylic alcohol deriva-
tives.17,18,19 Recently, Hennecke and co-workers reported a 
catalytic, enantioselective dichlorination of Z-configured, 
alkyl substituted styrenes using 1,3-dichloro-5,5-
dimethylhydantoin (DCDMH) and TESCl as the electro-
philic and nucleophilic chlorinating reagents, respective-
ly, in the presence of a cinchona alkaloid-based catalyst.20 
Whilst these conditions are effective for alkyl substituted 
styrenes, simple alkenes remain challenging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Top: Selected examples of marine and terrestrial 
natural products containing the vicinal dichloro motif. Bot-
tom: The conceptual framework of this study. 
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Emulating the formal Umpolung process enabled by 
haloperoxidases in biology (Cl- → Cl+) has proven to be a 
valuable and expansive blueprint for the design of syn-
thetic chlorination processes.3 Inspired by this, and based 
on our interest in the I(I)/I(III) manifold,21 we sought to 
generate Willgerodt-type reagents (ArICl2)

22 in situ from a 
simple aryl iodide organocatalyst, oxidant and chloride 
source. First isolated in 1886, this reagent has a distin-
guished history in stoichiometric chlorination,17,23 yet 
there is a conspicuous absence of catalytic variants.24,25 
Motivation stemmed from previous work on the catalytic 
vicinal difluorination of alkenes, and mitigating the cur-
rent safety and sustainability shortcomings of stoichio-
metric reagent preparation.  

It was envisaged that inexpensive, commercially available 
p-TolI would serve as an excellent small molecule organo-
catalyst upon which to base an I(I)/I(III) catalysis cy-
cle.26,27 Inspired by the seminal studies by Cotter and co-
workers who explored the role of trifluoroacetic acid in 
the stoichiometric reaction of iodobenzene dichloride 
with alkenes,28 the effect of various additives on reaction 
efficiency were also investigated (Table 1). To that end, a 
process of design was initiated by exploring the vicinal  

dichlorination of model substrate 1 in the presence of 
10 mol% catalyst loading. Initially, the title reaction was 
attempted with p-TolI as the catalyst and KCl in di-
chloromethane. A screen of common oxidants, including 
NaOCl, NaIO4, CAN, AcO3H, t-BuO2H, H2O2, K2S2O8, 
proved ineffective. Switching to m-CPBA furnished the 
corresponding epoxide in 68%, whereas reactions using 
Oxone® resulted in a competing background reaction in 
the absence of catalyst: This latter scenario would render 
translation to an enantioselective paradigm futile. Finally, 
Selectfluor® was investigated. An early study by Lal and 
co-workers disclosed its ability to oxidise iodide and bro-
mide ions but not chlorides, rendering it ideal for this 
study.29 Changing solvent to TFE boosted reaction effi-
ciency, yielding the product in 51% yield (Table 1, entries 
1-4). Further improvement resulted from performing the 
reaction in hexafluoroisopropanol (HFIP) and utilising 
CsCl as a chloride source (entries 5-10). As illustrated in 
entry 11, the control reaction without p-TolI did not fur-
nish the expected product 2. Cognisant of the critical role 
of HFIP in Gulder and co-workers recent study on hali-
ranium-ion cyclisation cascades, a co-solvent system was 
explored using HFIP.30  

Table 1. Optimization of the I(I)/I(III)-mediated vicinal dichlorination of alkenes. 

 

 

 

 

 

entry 
MCl 

(X eq.) 
solvent 

additive 

(X eq.) 
time (h) T (°C) yield

[a]
 

1 KCl (5.0) CH2Cl2 - 15 r.t. <5% 

2 KCl (5.0) MeCN - 15 r.t. <5% 

3 KCl (5.0) CF3CO2Et - 15 r.t. <5% 

4 KCl (5.0) TFE - 3 r.t. 51% (42%) 

5 KCl (5.0) HFIP - 3 r.t. 59% 

6
[b]

 KCl (5.0) HFIP - 3 r.t. 60% 

7 NaCl (5.0) HFIP - 3 r.t. <5% 

8 CsCl (5.0) HFIP - 3 r.t. 70% 

9 CsCl (3.0) HFIP - 3 r.t. 76% 

10
[c]

 CsCl (3.0) HFIP - 3 r.t. 71% 

11
[d]

 CsCl (3.0) HFIP - 3 r.t. <5%
[e]

 

12 CsCl (3.0) CH2Cl2 HFIP (9.0) 3 r.t. 88% (73%) 

13
[d]

 CsCl (3.0) CH2Cl2 HFIP (9.0) 3 r.t. 12% 

14
[d]

 CsCl (3.0) CH2Cl2 HFIP (9.0) 8 0 <5% 

15 CsCl (3.0) CH2Cl2 HFIP (9.0) 8 0 78% (65%) 

16
[f]

 CsCl (3.0) CH2Cl2 HFIP (9.0) 8 0 84% (75%) 

[a] 
1
H NMR yield using DMF as internal standard (yield after column chromatography). [b] Reaction performed in the dark. [c] 

5 mol% of p-TolI. [d] Control experiment without catalyst. [e] Complete consumption of the starting material by 
1
H NMR. [f] 20 

mol% of p-TolI. N.B. A screening of common oxidants is provided in the SI. 
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Figure 2. Establishing the scope of the catalytic, vicinal 
dichlorination of alkenes and a demonstration of stereospeci-
ficity. 

1
H NMR yield using DMF as internal standard (yield 

after column chromatography). [a] p-TolI (20 mol%), Select-
fluor

®
 (1.1 eq.), CsCl (3.0 eq.), HFIP (9.0 eq.), CH2Cl2, 8 h, 0 °C. 

[b] p-TolI (20 mol%), Selectfluor
®
 (1.1 eq.), CsCl (3.0 eq.), 

HFIP (9.0 eq.), CH2Cl2, 8 h, r.t. [c] p-TolI (40 mol%), Select-
fluor

®
 (2.2 eq.), CsCl (6.0 eq.), HFIP (18.0 eq.), CH2Cl2, 8 h, 0 

°C. 

The addition of 9.0 eq. of HFIP had a notable effect on 
reaction efficiency, furnishing 2 in 88% yield (entry 12). 
However, the control reaction without catalyst at ambient 
temperature revealed a competing background reaction 

which had to be suppressed with a future view to develop-
ing an enantioselective process (entry 13). This was 
achievable at 0 °C (entry 14) and so the reaction scope was 
established at this temperature (entry 15, 78%). Increasing 
the catalyst loading to 20 mol% further increased the 
yield to 84% (entry 16). The scope of the transformation 
was then explored under the standard conditions (Figure 
2). Substrates containing spacers were employed to miti-
gate complications arising from anchimeric participation. 
The general catalysis conditions proved to be compatible 
with an array of functional groups. Esters 2, 3 and 4 were 
formed in synthetically useful yields (up to 86%): Product 
4 demonstrates the chemoselectivity of the process for 
electron rich alkenes in the presence of an electron defi-
cient system. Gratifyingly, unprotected alcohols were 
compatible with the vicinal dichlorination conditions (5, 
78%) as were free acids (6, 68%). The primary bromide 
was not susceptible to Finkelstein chemistry, allowing the 
desired vicinal dichloride to be formed cleanly (7, 80%), 
and the corresponding sulfate and tosylate were compati-
ble with the general conditions (8, 76%; 9, 75%). In view 
of the importance of phosphate groups in bioactive lipids, 
compound 10 was prepared (77%). Examples with re-
duced spacer lengths proved unproblematic.  

The masked amine 11 was generated in 77% yield, and the 
protected C3 building blocks 12 and 13 could also be ac-
cessed via this method (up to 77%). Styrenes also proved 
to be competent substrates as evidenced by dichloride 14, 
15 and 16 (up to 59%). Simultaneous scope expansion and 
mechanistic interrogation was achieved by moving to 
internal alkenes. Consistent with Denmark’s mechanistic 
description of the stoichiometric reaction,1a the reactions 
were found to be highly stereospecific (Figure 2, lower). 
The anti-configured vicinal dichlorides 17-19 were gener-
ated from the corresponding E-alkene (3JHH = 7.5 Hz for 
19). Conversely, the syn-adducts 20 and 21 derived from 
the starting Z-alkene (3JHH = 3.0 Hz for 21).  

 

 

 

 

 

Figure 3. Exploring the effects of the additive and the cata-
lyst on the dichlorination 1 → 2. Upper: Control experiments 
to demonstrate the role of HFIP. Lower: Hammett plot with 
para-substituted iodoarenes (ρ< 0). 

Cl 

H 

Me 

OMe 

y = −1.000x 
R² = 0.998 

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

log(kR/kH) 

σp 

Page 3 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

X-ray crystallographic analysis of 19 unequivocally estab-
lished the relative configuration of the vicinal dichloro 
motif, and revealed a dihedral angle φ = 169.5° (Figure 2, 
lower, CCDC 1905463). This contrasts sharply with the 
gauche conformation inherent to vicinal difluorides.31 A 
radical clock experiment also proved instructive favouring 
formation of the di- (22) and tetra-chlorinated (23) prod-
ucts with 20 or 40 mol% catalyst loading respectively. 
This is in contrast to the electrochemical conditions re-
ported by Lin and co-workers11e that generate the cyclic 
adduct 24. 

The importance of HFIP as an additive in the title trans-
formation was established by unproductive control exper-
iments using the methylated and non-fluorinated ana-
logues (<5% in both scenarios) (Figure 3, top). A Ham-
mett plot of electronically distinct, para-substituted io-
doarenes (R = OMe, Me, Cl, H) established ρ< 0 indicat-
ing a build-up of positive charge in the transition state, 
and a manifest rate acceleration as a result of electron-
donating groups (Figure 3).32 

 

Figure 4. Top: Reference spectrum of p-TolICl2 in CD2Cl2. 
Middle: Reaction mixture after 20 min. Standard reaction 
conditions at 0.2 mmol: p-TolI (40 µmol, 20 mol%), CsCl 
(0.6 mmol, 3.0 eq.), Select-
fluor

®
 (0.22 mmol, 1.1 eq.), 

HFIP (1.8 mmol, 9.0 eq.), 
CD2Cl2 (0.9 mL). Bottom: 
Reference spectrum of p-
TolI in CD2Cl2. Inset: X-ray 
structure of p-TolICl2.  
CCDC 1555066. 

Finally, it was possible to demonstrate in situ formation of 
the Willgerodt-type reagent by comparing the reaction 
mixture with p-TolI and a sample of p-TolICl2 prepared 
independently (Figure 4, inset, CCDC 1555066). Collec-
tively, these data suggest a catalytic process in which the 
C-Cl bond forming stages are mechanistically consistent 
with Denmark’s reaction classifications.1a With a view to 
rendering this process enantioselective, preliminary stud-
ies with a chiral aryl iodide catalyst33 were conducted. The 
expected dichloride 14 was generated with 64:36 e.r. thus 
providing preliminary validation (Figure 5).      

More than a century after the discovery of the Willgerodt 
reagent, a protocol to generate p-TolICl2 in situ is dis-
closed and applied to the organocatalytic, vicinal dichlo-
rination of unactivated alkenes. The general catalysis 
conditions demonstrate broad functional group tolerance 
and allow single regioisomers to be generated in a highly 
stereospecific manner. Importantly, preliminary valida-
tion of enantioselectivity is described on a challenging 
mono-substituted system,34 and is the subject of ongoing 
research in this laboratory. 

 
Figure 5. Preliminary validation of an enantioselective vari-
ant. 
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