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Abstract: Al-F bonds are among the most stable o bonds
known, exhibiting an even higher bond energy than Si—F
bonds. Despite a stability advantage and a potentially high
Lewis acidity of AI-F complexes, they have not been described
as structurally defined catalysts for enantioselective reactions.
We show that Al—F salen complexes with appended ammoni-
um moieties give exceptional catalytic activity in asymmetric
carboxycyanations. In addition to aromatic aldehydes, enal
and aliphatic substrates are well accepted. Turnover numbers
up to around 10° were achieved, whereas with previous
catalysts 10'-107 turnovers were typically attained. In contrast
to Al-Me and Al-Cl salen complexes, the analogous Al—F
species are remarkably stable towards air, water, and heat, and
can be recovered unchanged after catalysis. They possess
a considerably increased Lewis acidity as shown by DFT
calculations.

Asymmetric 1,2-additions of cyanide to aldehydes have been
intensively studied because the enantioenriched cyanohydrin
products are valuable chiral building blocks."! Although it is
industrially employed in enzymatic processes,™”! the direct
use of HCN is difficult for safety reasons and thus less volatile
HCN equivalents are often utilized, in particular trimethyl-
silyl cyanide and ethyl cyanoformate.>®”1 Whereas addition
of HCN is reversible, the O-protected products formed from
TMSCN and EtO(C=0)CN are stable towards the reverse
reaction and hence less prone to racemization.”! On a pro-
duction scale, the use of EtO(C=O)CN appears more
attractive for practical, safety, and cost reasons.®! The
installed carboxy groups were also used for elegant further
transformations like [3,3]-rearrangements.”’

Although very active catalysts have been developed that
can be applied to cyanosilylations with very small catalyst
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loadings,"! for carboxycyanations, the turnover numbers
(TONs) are lower, with catalyst loadings usually in the
range of 1-10 mol %.2* As a general
trend, cooperative catalysis has proven
to be beneficial for both carboxy- and
carbocyanations.'?4

In this Communication, we report
a new strategy for the carboxycyanation
of aldehydes, which permits unprece-
dented TONs.”! In our approach,
a Lewis acid catalyst cooperates with
an internal ammonium salt moiety.!'”)
The study was driven by the idea that
a “naked” cyanide would facilitate the 1,2-addition to
a simultaneously activated aldehyde while the ammonium
should promote a face-selective attack.™ Key for the high
catalyst efficiency is a robust Al-F unit that provides an
extraordinarily stable and active catalyst.

Initial experiments (0.1 mmol scale) were conducted with
ligands like 4 (5 mol %), which bear two ammonium units
(Table 1, entry 1). The Al catalysts were formed in situ using
AlMe;. However, activity and ee were poor in CH,Cl, at
—50°C. To improve the catalyst solubility, ligand 5 was
studied, which bears a single ammonium unit (entry 2). The
reactivity was massively improved by using KCN as an
additive, which also has a positive impact on the ee (entry 3).
A further ee enhancement was achieved with ligand 6, which
has a Et,MeN"CH, residue (entry 4), and with BF,” as X" in 7
(entry 5). The influence of longer linkers between the salen
core and the ammonium group were studied (entries 6 and 7),
and the best results were obtained with the (CH,); unit in
ligand 9.

“Non-nucleophilic” counterions X" initially had an unex-
pected impact. With triflate in ligand 10 (and also PF¢") in
place of BF,~, the enantioselectivity was nearly completely
lost (entry 8). In contrast, when using ligand 10 but with
Me,AICI for complexation, it was largely regained (entry 9).
Solvent screening using the catalyst formed from 9 and AlMe;
revealed that slightly better enantioselectivity is attained in
CHCI;. The amount of 2 and KCN could then be lowered
without any negative effect (entry 10).

The so far most selective catalyst formed in situ from 9
(X~ =BF,") and AlMe; proved to be a complex mixture of
several species as judged by "H-/'’F NMR. Our speculation
that a much more active {Al-F} catalyst might have been
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Table 1: Development of the model reaction.

Communications

X mol% 4-10, o
0 x mol% R,AI-Y, oJ\oa
H o} y equiv. KCN,
OO + o gy CHaCl-50°C.24h CN
1a 2 3a

i 4-10 Bu o i| ligand | NRZ% X n R
® || 4 |NMeBn| pBr 1 | CH;NMe,Bn/Br
I nNR23 5 NMeBn| Br 1 tBu
§ N OH ‘| & |NEtMe| Br 1 tBu
O\N OH 7 NEt,Me | BF,~ 1 tBu
' R'  i| 8 |[NEtMe| BF, | 2 Bu
§ il 9 |[NEtMe| BFy | 3 Bu
L Bu i 10 [NEpMe| TO- | 3 Bu
Entry Ligand (x) R,Al-Y 2 (equiv) y  Yield [%]" ee[%]"

1 4(50) MeAl-Me 4 0 9 12

2 5 (5.0) Me,Al-Me 4 0 20 15

3 5(5.00 MeAl-Me 4 2 100 39

4 6 (5.0) MeAl-Me 4 2 100 53

5 7 (5.0) Me,Al-Me 4 2 100 85

6 8(50) MeAl-Me 4 2 63 66

7 9 (5.0) MeAl-Me 4 2 100 88

8 10 (5.0) Me,Al-Me 4 2 99 12

9 10 (5.0) Me,Al-Cl 4 2 99 79
10¢ 9 (5.0) MeAl-Me 2 1 100 90
11410 (5.0) MeAl-F 2 1100 90
126410 (1.0)  MeAlF 1 0.1 100 92
1354410 (0.1)  MeAlF 1 0.1 100 93
14910 (1.0)  MeAlCl 1 0.1 12 69

[a] Determined by "H-NMR of the crude product using an internal
standard. [b] Determined by HPLC. [c] The reaction was performed in
CHCl,. [d] Preformed catalyst was used. [e] Reaction time: 48 h.

formed in the presence of a BF,  counterion through
a methyl/fluoride exchange was supported by HR-MS and
X-ray crystal structure analysis of one of these species
(Figure 1, left), which revealed a dimeric aggregate with an
anionic F-Al-F-Al-F axis.

A monomeric {AlI-F}OTf salen complex featuring a free
coordination site was then synthesized from ligand 10 and
Me,AIF."® X-ray crystal structure analysis (Figure 1, right)
and PGSE (Pulsed Gradient Spin Echo) NMR experiments

Figure 1. X-ray crystal structure analyses of dimeric {Al,F;}BF, (a) and
monomeric {AI-F}PF, (b) complexes. H atoms, included solvent
molecules and a second monomer per unit cell (for (b); see the
Supporting Information) are omitted for clarity.
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(see the Supporting Information) confirm a monomeric
structure for the {Al1-F}X complexes.!'”)

{AlI-F}OTf provided 3a in a quantitative yield with good
ee (entry 11). Its superior performance permitted us to
employ a catalytic amount of KCN (0.1 equiv) and obviated
the need for an excess of 2, while at the same time improving
the ee through a reduced catalyst load (entry 12). A quanti-
tative yield was still obtained with 0.1 mol % of {AI-F}OTf
(TON =1000, entry 13). A comparison of {AI-F}OTf with its
Al—CI counterpart revealed that the latter is much less active
(entry 14).

The optimized conditions with a standard {Al-F}OTf
loading of 0.1 mol% were applied to various aldehydes
(Table 2)."®1 Both 6 and « donors on aromatic aldehydes were
well tolerated (entries 2, 4-7, 9-11). In the case of an ortho-
positioned donor, the ee was slightly reduced, but the
reactivity was still useful to high (entries 6, 9). Substrates
bearing ¢ or macceptors (entries 8, 12-14), as well as 2-
furylcarbaldehyde (entry 15), furnished nearly quantitative
yields. The catalyst performance is thus not very sensitive
towards electronic effects.

High yields and ee values were also attained with enals.
With (E)-cinnamaldehyde, the product was formed in more

Table 2: nvestigation of the substrate scope.

x mol% {AI-F}OTf, 0.1 equiv. KCN, j’\
0 O CHcly, -50°C, t o~ “OEt

A B8

R”"H EtO” “CN R™ CN
1 5 {AI-F}OTf: / 3
=N, .N=
Al
By o' "o Bu
mo® X, By
MeEt,N®

Entry 1/3 R- x  t[h] Yield [%]® ee [9%]®

1 a  2-naphthyl- 01 24 >99 93
2 b  6-MeO-2-naphthyl- 0.1 24 92 93
3 ¢ Ph 0.1 24 99 91
4 d  4-Me-CH,- 01 72 85 88
5 e  3-Me-CH, 0.1 48 98 90
6 f  2-MeCiH, 0.1 48 99 82
7 g 4-MeO-CH, 05 72 78 93
8 h  3-MeO-CiH,- 01 24 >99 92
9 i 2-MeO-CeH, 0.1 48 61 84
10 j  3,4-Me;qCeHs- 01 72 74 86
11k  3,4-(MeO),-CeH;- 05 72 97 96
12 1 4-ClCeH,- 0.1 48 >99 89
13 m  4FCH, 0.1 48 >99 89
14 n 3-MeO,C-C¢H,- 0.1 48 99 80
15 o 2furyl 0.1 48 98 82
16 p  (E)-Ph-CH=CH- 01 48 >99 96
17 q  (E)-4-MeO-C¢H,-CH=CH- 0.1 48 90 97
189 r  (E)-Me-CH=CH- 01 72 96 94
199 ¢ (E)-Me-CH=CH- 0.01 72 98 93
200 s Et- 01 72 99 81
219t PhCH,CH,- 01 72 99 90
229 u  ‘Bu- 01 72 99 78

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[a] Yield of isolated product after column chromatography. [b] Deter-
mined by HPLC. [c] Reaction in CH,Cl,/CHCl, (1:1) at —80°C.
[d] 0.05 equiv of KCN.
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than 99% yield and in highly enantioenriched form
(entry 16). A mdonor slightly affected the product yield
(entry 17). Moreover, the small, linear y-acidic crotonalde-
hyde was well accepted (entry 18). It was shown that even
lower catalyst loadings are possible without disturbing the
catalyst performance. When using as little as 0.01 mol % of
{AI-F}OTH{, a highly enantioenriched product was formed in
an almost quantitative yield (TON=9800, entry 19). The
method is also applicable to enolizable substrates like
propanal and dihydrocinnamaldehyde (entries 20-21), as
well as bulky aliphatic substrates like pivaldehyde (entry 22).

To study the preparative value of {Al-F}OTf, gram-scale
experiments were conducted using cinnamaldehyde in anal-
ogy to Table 2, entry 16. The product was again isolated in
quantitative yield and with 96 % ee. Efficient stirring proved
to be essential to maintain high yields, which is ascribed to the
phase-transfer catalysis (PTC) character of this reaction. {Al—
F)OTf was recovered unchanged (characterized again by 'H-/
YF-NMR and HR-MS) in 72% yield through precipitation
from the reaction mixture and reused under identical
conditions, providing 3p in 88% yield and with 95% ee.
The lower yield is ascribed to an incomplete precipitation of
the tiny catalyst amount. The catalyst recycling needs to be
technically optimized, but the data establish a proof of
principle.

Moreover, five additional experiments were conducted on
a 200 mg scale at —50°C using 0.1 mol% {Al-F}OTf and
almost identical results were obtained as on the 0.1 mmol
scale reported in Table 2 [1a (72 h): 100 %, 93 % ee; 1¢ (72 h):
98%, 91% ee; 1e (48 h): 100%, 90% ee; 1p (72 h): 100 %,
96 % ee; 1q (72 h): 92%, 96 % ee].

Control experiments were conducted with the chiral Al
salen complex 11, which lacks an appended ammonium
moiety (Table 3).'11 furnished very small amounts of nearly
racemic 3a, even at high catalyst loadings and working with
an excess of 2 and relatively large amounts of KCN (entry 1).
By adding [Et,N]OTHf, the reactivity was increased. However,
nearly no enantioselectivity was found and the reactivity was
much lower than with the bifunctional {AlI-F}OTf (entry 2).
[Et,N]OTT also catalyzed the reaction in the absence of 11,
but with decreased activity (entry 3). The results support the
essential role of the ammonium moiety in the dual activation
catalyst {AlI-F}OTf.

Table 3: Control experiments.

x mol% 11, Q
y equiv. KCN, N N
additive, CH,Cly, - Al -
-50°C,24h :
ta+2 — 21 L 3 gy o é\o By
B Bu 1"
Entry x 2 (equiv) y (equiv) additive (mol%) Yield [%]® ee [%]"
1 5 2.0 0.5 — 12 17
2 0110 0.2 [ELNJOTF (0.1) 31 2
3 - 10 0.2 [Et,NJOT (0.1) 23 -

[a] Determined by "H-NMR of the crude product using an internal
standard. [b] Determined by HPLC.
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Scheme 1 shows a possible mechanism. Addition of KCN
likely improves the reactivity by generating {AI-F}CN.[21
1 is activated through coordination to the Al center, thereby
facilitating a quasi-intramolecular attack by cyanide.””” Prod-
uct release and catalyst regeneration are achieved through
carboxylation by 2.

0-CO,Et
F-Al NRs KON [FA]  NR, R—
O — g -

IC=N:

oTf
{AI-F}OTf {AI-F}CN

Scheme 1. Possible mechanism.

The superior performance of {AI-F}OTf is ascribed to two
factors: increased stability and Lewis acidity. AI-F bonds are
among the most stable o bonds, with reported bond energies
of 659-672 kI mol~'.!®! This stability is reflected by the high
robustness of { AI-F}OTf, which is remarkably stable to water,
air (over several months at room temperature), and melted
without decomposition (judged by 'H-/"F NMR) at 221°C. In
contrast to the related {Al-Cl} and {Al-Me} catalysts, it can
be recovered unchanged after the title reaction.

The AI-F bond was investigated by means of density
functional theory (DFT)?! and intrinsic bond orbitals
(TBOs)®! which lead to useful Lewis structures and are
appropriate to interpret quantum chemical calculations.?
The structurally reduced Al salen complexes 12 were studied
to describe the binding situation around the aluminum center
for X =F, Cl and Me (Figure 2).

The calculated Al-F distance of 1.69 A is in very good
agreement with the crystal structure (1.688-1.702 A). The
IBO analysis shows that the AI-F o bond is strongly polarized
towards the F atom: only 0.23 of the corresponding bond
charge (12%) is located at the Al atom (for CI 0.38, for Me

Figure 2. Intrinsic bond orbitals for the Al=X bonds in complexes 12:
top right: Al=F; bottom left: AI=Cl; bottom/right: Al-Me.
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0.50). It follows that the Al atom in the AI-F complex
possesses a higher partial charge (+1.26) than in the
respective Cl and Me complexes (4+1.09 and +1.11), thus
confirming a higher Lewis acidity. A Mulliken population
analysis shows the same trend, as shown in the Supporting
Information. This suggests that the AI-F bond is more ionic
than the Al—Cl and Al—C bonds. This is supported by the
lower Wiberg bond order of 0.58 for the AI-F bond compared
to 0.77 and 0.74 for the Al-Cl and Al—C bonds.

In conclusion, we have reported an exceptionally active,
broadly applicable catalyst for the asymmetric carboxycya-
nation of aldehydes, which gives unprecedented TONs of up
to around 10*. Our results suggest that a Lewis acidic Al
center cooperates with an internal ammonium salt moiety.
Key for the high efficiency is the AI-F unit. This is explained
by 1) a high Lewis acidity as found by DFT studies and 2) a
remarkable catalyst stability, which also allows catalyst
recovery. As a result of these advantages, {Al-F} catalysts
might be of technical interest. To our knowledge, this is the
first application of a structurally defined Al catalyst contain-
ing an AI-F obond in asymmetric catalysis. Even higher
enantioselectivity might be possible with alternative catalyst
cores. We expect that Al-F catalysts will find wide applica-
tion.
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AIF has landed: In comparison to its{Al—
Me} and {Al—Cl} analogues, a structurally
defined {Al—F} complex is unusually
stable towards air, moisture and heat,
probably as a result of the very strong Al—
F bond. In asymmetric carboxycyana-
tions, the {AlI=F} complex shows extra-
ordinary catalytic activity.
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