The effect of SDE on the separation of diastereomeric salts: a case study for the resolution of mandelic acid derivatives with Pregabalin

Zsolt Szeleczky ${ }^{\text {a }}$, Péter Bagi ${ }^{\text {a }}$, Emese Pálovics ${ }^{\text {b }}$, Elemér Fogassy ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
${ }^{\mathrm{b}}$ Research Group for Organic Chemical Technology, Hungarian Academy of Sciences, 1521 Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 8 April 2014
Accepted 18 June 2014

Abstract

A resolution method has been elaborated for mandelic acid and 2-chloromandelic acid applying the (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (Pregabalin) as the resolving agent. The formation of the corresponding diastereomers was kinetically controlled. This observation was rationalized by the behavior of enantiomeric mixtures of mandelic acid, 2-chloromandelic acid, and 3-(aminomethyl)-5-methylhexanoic acid. It was found that the eutectic composition of Pregabalin influenced the diastereomeric excess of the diastereomers formed under kinetic control.

2014 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for enantiomerically pure compounds is increasing, hence the preparation of enantiopure chiral compounds and the fundamental understanding of chiral-chiral recognition are of interest in industrial and academic research. There are a wide variety of methods to prepare chiral compounds in optically active form including the transformation of compounds from the natural pool of chirality, asymmetric synthesis, and the resolution. ${ }^{1-10}$

The preparation of chiral compounds in enantiopure form via asymmetric synthesis ${ }^{11,12}$ or fractional crystallization of diastereomers formed in the reaction of the corresponding racemic compound and a resolving agent is based on the non-linear effects of chiral-chiral recognition. ${ }^{13,14}$ The non-linear behavior of a given enantiomeric mixture, which was named as self-disproportion of enantiomers (SDE) by Soloshonok, implies that the associates formed either from the enantiomer in excess, or from the racemic portion, may behave differently. The underlying phenomenon of SDE is the complementarity of the enantiomers, more precisely the amount and strength of the non-covalent interactions between the individual chiral molecules, which leads to the observation that the starting enantiomeric excess value may differ from the one in equilibrium if a given enantiomeric mixture is subjected to partitioning between two phases. ${ }^{15-17}$ The self-disproportion of the enantiomers was first observed by Pasteur when he obtained pure enantiomers during the crystallization of sodium ammonium tartrate. ${ }^{18}$ Roseboom proved that the partition equilibrium of the

[^0]enantiomeric mixtures between the solid and the liquid (molten) phase is dependent on the initial composition of the enantiomeric mixture and this behavior of the enantiomeric mixtures is often not linear. ${ }^{19}$

Based on the binary melting point- and the ternary solubility diagrams, the enantiomeric mixtures can be divided into three groups, the conglomerate- or the racemate-forming compounds or the solid-solutions. Approximately 80% of enantiomeric mixtures are racemate-forming compounds. Often the non-linear behavior of the enantiomeric mixture can be observed when they are purified with methods based on the partitioning of the enantiomeric mixture between two phases (e.g., solid and liquid phase). ${ }^{2}$

The utilization of the binary melting point and the ee versus ee ${ }_{0}$ diagrams (where ee_{0} refers to the initial composition of the enantiomeric mixture and ee is the enantiomeric excess after purification) for designing the purification of a given enantiomeric mixture was the subject of our earlier study. ${ }^{20}$ Herein we would like to emphasize on how the relative position of the initial enantiomeric composition (ee_{0}) compared to the eutectic composition (ee_{E}) influences the outcome of the enantiomeric enrichment procedure. Starting from enantiomeric mixtures that are either less pure or purer than the eutectic composition ($\mathrm{ee}_{0}<\mathrm{ee}_{\mathrm{E}}$ or $\mathrm{ee}_{0}>\mathrm{ee}_{\mathrm{E}}$), the crystalline phase obtained has a lower or higher enantiomeric purity than the initial composition, respectively, (ee < ee ${ }_{0}$ or ee $>\mathrm{ee}_{0}$). In these instances, it may be assumed that the equilibrium in solution is displaced toward the formation of either heterochiral or homochiral supramolecular associates, respectively. ${ }^{20}$ These associates initiate the crystallization that is responsible for the aforementioned phenomenon. Hence the eutectic composition (ee_{E}) may be a characteristic value to indicate whether the
hetero- or homochiral interaction is dominant, while the ee_{E} value may also show which one of the two diastereomeric associates has higher complementarity.

How the complementarity between the racemic compound and the resolving agent affects the efficiency of those resolutions when the enantiomers of racemic amino acid derivatives were separated using resolving agents with a structure related to the corresponding racemic compound has previously been investigated. If the racemic compound and the structurally related resolving agent were reacted in a ratio of $1: 1$, the mixture obtained may be regarded as a quasi-enantiomeric mixture with a quasi-enantiomeric excess of 50%. It was established that the enantiomeric purity of the enantiomeric mixtures obtained from the corresponding crystalline diastereomers (ee_{D}) was in good agreement with the eutectic composition of the racemic amino acid derivatives ($\mathrm{ee}_{\mathrm{D}} \cong \mathrm{ee}_{\mathrm{E}}$) when structurally related resolving agents were used. ${ }^{21,22}$ Similar trends were observed in those resolutions when the enantiomers of the racemic compound were separated using a structurally non-related resolving agent. ${ }^{23}$

In continuation of this, we wished to investigate in more detail those resolutions when the racemic compound was reacted with a resolving agent having a non-related structure. Hence herein, racemic mandelic acid MA and racemic 2 -chloromandelic acid CMA were chosen as model compounds and were resolved using the structurally unrelated (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid PREG (Pregabalin) as the resolving agent (Fig. 1). In order to elaborate upon a resolution procedure for the mandelic acid derivatives MA and CMA, our aim was to study how the eutectic composition (ee_{E}) of the racemic compound MA or CMA or the resolving agent PREG influenced the efficiency of the resolution, as well as the purity of the enantiomeric mixtures (ee_{D}) of the mandelic acid derivatives MA or CMA under kinetic or thermodynamic control.

Figure 1. Mandelic acid MA, 2-chloromandelic acid CMA, and (R)-(-)-3-(amino-methyl)-5-methylhexanoic acid PREG used herein.

2. Results and discussion

2.1. The behavior of enantiomeric mixtures of mandelic acid MA, 2-chloromandelic acid CMA, and 3-(aminomethyl)-5methylhexanoic acid PREG

In order to investigate the behavior of the enantiomeric mixtures of mandelic acid MA, 2-chloromandelic acid CMA, and 3-(aminomethyl)-5-methylhexanoic acid PREG, racemic and enantiopure MA, CMA, or PREG were mixed to obtain the corresponding enantiomeric mixtures as detailed in Table 1, and were dissolved in the corresponding hot solvent. Water was used as the solvent for mandelic acid MA and 2-chloromandelic acid (CMA), while aqueous ammonia was used as the solvent for Pregabalin (PREG). The crystals were obtained by gradually cooling the reaction mixture to $26^{\circ} \mathrm{C}$ and then separating them from the mother liquor after 30 min of crystallization. The results are summarized in Table 1.

The correlation between the initial enantiomeric purity (ee_{0}) and the final enantiomeric purity (ee) in case of the MA, CMA, or PREG is shown in Figure 2. Mandelic acid MA, 2-chloromandelic acid CMA, and Pregabalin PREG are all racemate-forming
compounds with eutectic compositions (ee_{E}) of $38 \%, 10 \%$, and 80%, respectively.

2.2. The resolution of mandelic acid MA or racemic 2-chloromandelic acid CMA with (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (R)-PREG

The resolution of the racemic mandelic acid MA or the 2-chloromandelic acid CMA was carried out using (R)-Pregabalin PREG as the resolving agent. Mandelic acid MA or 2-chloromandelic acid CMA was mixed with 0.5 equiv of (R)-Pregabalin (PREG) and 0.25 equiv of sodium carbonate as the achiral auxiliary ${ }^{24}$ and the mixture obtained was dissolved in hot water. The reaction mixture was allowed to cool to $26^{\circ} \mathrm{C}$ whereupon the crystalline diastereomeric salt (R)-MA $\cdot(R)$-PREG or (R)-CMA (R)-PREG appeared and this was separated from the mother liquor appeared after 15 min or 168 h , respectively, (Scheme 1 and Table 2).

In order to obtain the enantiomeric mixtures of MA and CMA, the corresponding diastereomer (R)-MA•(R)-PREG or (R)-CMA•(R)-PREG, respectively, was treated with aqueous ammonia, whereupon the (R)-Pregabalin PREG precipitated. Next, hydrochloric acid was added to the mother liquor and the crystals of MA or CMA were collected after 2 h of crystallization. The results are summarized in Table 2.

In the resolution experiments of mandelic acid MA or 2-chloromandelic acid CMA with (R)-Pregabalin PREG, the enantiomeric excess (ee_{D}) and the resolving capability values (F) were $\mathrm{ee}_{\mathrm{D}}=$ 80% and $F=0.45$ in the case of MA, or ee $=92 \%$ and $F=0.49$ for CMA after 15 min (Table 2, entries 1 and 3). These values decreased to $\mathrm{ee}_{\mathrm{D}}=62 \%$ and $F=0.43$ for MA or $\mathrm{ee}_{\mathrm{D}}=29 \%$ and $F=0.36$ for CMA when the crystallization time was 168 h (compare Table 2, entries 1 and 2 or 3 and 4).

Based on the data shown in Table 2, it can be concluded that kinetic control governed the initial formation of the (R)-MA $\cdot(R)$-PREG and (R)-CMA•(R)-PREG diastereomers leading to good enantiomeric separation of MA or CMA after 15 min of crystallization. The decrease in the enantiomeric excess $\left(\mathrm{ee}_{\mathrm{D}}\right)$ and in the resolving capability values (F) over time may be explained by the effect of thermodynamic control, i.e., the formation of (S)-MA $\cdot(R)$-PREG or (S)-CMA $\cdot(R)$-PREG diastereomers became more favorable after 168 h of crystallization than at the initial stages of the crystallization.

The behavior of the enantiomeric mixtures of the corresponding racemic compound MA or CMA and the resolving agent PREG may be the underlying phenomenon of these kinetic effects observed during the resolution of MA or CMA with (R)-PREG. As it was shown in Section 2.1, mandelic acid MA, 2-chloromandelic acid CMA, and Pregabalin PREG are all racemate-forming compounds (Table 1 and Fig. 2). This behavior indicates that in the case of enantiomeric mixtures with an enantiomeric purity above the eutectic composition, the equilibrium in the solution is displaced toward the formation of the corresponding homochiral supramolecular associates, which may help the initial crystallization of the corresponding diastereomeric salts during the resolution of MA or CMA with (R)-PREG leading to high enantiomeric excess and resolving capability values after 15 min of crystallization (Table 2, entries 1 and 3). This hypothesis can also be verified by the fact that the difference between the corresponding eutectic composition values $\left(\mathrm{ee}_{\mathrm{E}}\right)$ is greater in the case of 2-chloromandelic acid CMA and Pregabalin PREG $\left[\mathrm{ee}_{\mathrm{E}}(\right.$ CMA $)=10 \%$ vs $\mathrm{ee}_{\mathrm{E}}($ PREG $)=$ 80\%] than the ee_{E} difference of mandelic acid MA and Pregabalin PREG $\left[\mathrm{ee}_{\mathrm{E}}(\mathbf{M A})=38 \%\right.$ vs $\mathrm{ee}_{\mathrm{E}}($ PREG $)=80 \%$] which led to more efficient separation of the 2-chloromandelic acid enantiomers CMA.

It was shown in our previous study that the eutectic composition $\left(\mathrm{ee}_{\mathrm{E}}\right)$ of the racemic compounds is in good agreement with

Table 1
Recrystallization of the enantiomeric mixtures of mandelic acid MA, 2-chloromandelic acid CMA, and 3-(aminomethyl)-5-methylhexanoic acid PREG

Starting enantiomeric mixtures of MA, CMA, or PREG (ee_{0})	The yield and the enantiomeric purity of the recrystallized product					
	MA		CMA		PREG	
	Yield (\%)	ee ${ }^{\text {a }}$ (\%)	Yield (\%)	ee ${ }^{\text {a }}$ (\%)	Yield (\%)	ee^{a} (\%)
0	-	0	-	0	-	0
5	-	n.d.	$72^{\text {b }}$	4	-	n.d.
10	60	2	$73^{\text {b }}$	11	82	1
20	54	11	25	47	74	2
30	57	27	25	65	80	2
40	52	42	33	72	51	5
50	51	55	37	84	43	5
60	51	69	49	95	31	14
70	51	88	39	92	25	34
80	53	97	59	95	63	73
90	68	99	58	98	60	94
100	-	100	-	100	-	100

${ }^{\text {a }}$ Enantiomeric purity based on the specific rotation.
${ }^{\text {b }} 4.4 \mathrm{mmol}$ of CMA was recrystallized, while in all other instances, 1.1 mmol of CMA was used.

Figure 2. The correlation between the initial and final enantiomeric purity (ee_{0} and ee) obtained by fractional crystallization of enantiomeric mixtures of MA, CMA, or PREG.

Scheme 1. The resolution of racemic MA or CMA with (R)-PREG by fractional crystallization for 15 min or 168 h .

Table 2
The resolution of racemic MA or CMA using (R)-PREG as the resolving agent

Entry	Racemic compound	Crystallization time (h)	Yield $^{\mathrm{a}}(\%)$	$\mathrm{ee}_{\mathrm{D}}{ }^{\mathrm{b}}(\%)$	80
1	MA	0.25	56	0.45	
2	MA	168	70	62	
3	CMA	0.25	53	92	
4	CMA	168	124	29	

${ }^{\text {a }}$ Based on the half of the racemic MA or CMA that was regarded to be 100% for each antipode.
${ }^{\mathrm{b}}$ Enantiomeric excess based on the specific rotation.
${ }^{\text {c }}$ Resolving capability, also known as the Fogassy parameter $[F=(Y / 100) \times(\mathrm{ee} / 100)]$. 3
the purity of the enantiomeric mixtures obtained at the end of the resolution process if a resolving agent with a related structure to the racemic compound is used. ${ }^{25}$ Herein, the resolving agent PREG and the racemic compounds MA and CMA are structurally unrelated and in this case, the purity of the enantiomeric mixtures of the mandelic acid derivatives MA and CMA obtained after decomposition of the corresponding diastereomeric salts MA•(R)-PREG or CMA•(R)-PREG formed under kinetic control was similar to the eutectic composition value (ee_{E}) of the resolving agent PREG.

Based on our previous and recent results, it can also be concluded that the purity of a given enantiomeric mixture (ee_{D}) obtained in a kinetically controlled resolution may be determined by the eutectic composition (ee_{E}) of either the racemic compound or the resolving agent, whichever value is higher. The purity of the enantiomeric mixture (ee_{D}) obtained after decomposition of the corresponding diastereomer is similar to or even higher than the eutectic composition (ee_{E}) of the racemic compound or the resolving agent used in that particular resolution process.

With regard to the resolution of mandelic acid MA or 2-chloromandelic acid CMA with Pregabalin PREG, the presence of either the racemic compound MA or CMA or the resolving agent PREG with a higher eutectic composition (ee_{E}) may initiate the rapid nucleation required for the crystallization to afford the diastereomers (R)-MA•(R)-PREG or (R)-CMA•(R)-PREG with a diastereomeric excess of 80% or 92%, respectively. However the supramolecular structure formed has a lower thermodynamic stability, meaning that reaching the solubility equilibria of the diastereomers and the formation of a more stable crystal structure may require more time involving a decrease in the enantiomeric excess of (R)-MA or (R)-CMA (ee: 62% or 29%, respectively).

3. Conclusions

The resolution of mandelic acid MA or the 2-chloromandelic acid CMA was studied using (R)-Pregabalin (R)-PREG as the resolving agent. The highest enantiomeric excess obtained was 80% for MA and 92% for CMA. The separation of the enantiomers of mandelic acid MA or the 2-chloromandelic acid CMA with (R)-Pregabalin (R)-PREG was influenced by kinetic control. This observation was rationalized by the behavior of the enantiomeric mixtures of racemic compound MA and CMA or the resolving agent PREG. We found that the eutectic composition (ee_{E}) of the compounds involved in the kinetically controlled resolution procedure may influence the efficiency of the enantiomeric separations.

In our previous papers, we emphasized the importance of the structural similarities of the racemic compound, the resolving agent or-in some instances-the achiral additive in the process of finding the most appropriate resolution process for a given racemic compound. ${ }^{26,27}$ Herein it seems that in addition to the structural similarities, the eutectic composition (ee_{E}) of the racemic compound or the resolving agent should also be taken into consideration when selecting the most appropriate resolving agent, as it seems that the eutectic compositions of the compounds involved in the resolution may play a decisive role in the overall
efficiency of the resolution process. The eutectic composition (ee_{E}) of a given racemate-forming compound can be easily determined by a series of crystallization experiments. ${ }^{20,26}$

4. Experimental

4.1. General

Enantiomeric excess values (ee) were calculated by comparing the specific rotation of the enantiomeric mixture with the corresponding pure enantiomer. Optical rotations were determined on a Perkin-Elmer 241 polarimeter. (R)-(-)-3-(Aminomethyl)-5methylhexanoic acid PREG was synthesized as described earlier. ${ }^{28,29}$ The racemic and enantiopure mandelic acid MA and (R)-MA and 2 -chloromandelic acid CMA and (R)-CMA were purchased from Aldrich Chemical Co.

4.2. The recrystallization of the enantiomeric mixtures of mandelic acid MA, 2-chloromandelic acid CMA, and 3-(amino-methyl)-5-methylhexanoic acid PREG

Racemic and enantiopure (R)-(-)-mandelic acid MA and (R)-MA were mixed to obtain a total amount of $0.20 \mathrm{~g}(1.3 \mathrm{mmol})$ of the given enantiomeric mixture of mandelic acid with an ee_{0} of $0-100 \%$ as reported in Table 1. This mixture was then dissolved in 0.20 mL of hot water. The solution was allowed to cool down to $26^{\circ} \mathrm{C}$, whereupon crystals appeared which were then separated from the mother liquor after 30 min of crystallization. The results are shown in Table 1.

The recrystallization of the enantiomeric mixtures of 2-chloromandelic acid CMA or 3-(aminomethyl)-5-methylhexanoic acid PREG was accomplished according to the procedure described for mandelic acid MA.

In the case of CMA, 0.20 g (1.1 mmol) of the given enantiomeric mixture of CMA obtained by mixing racemic and enantiopure $(R)-(-)$-CMA was recrystallized from 0.05 mL of water. The results are shown in Table 1.

In the case of PREG, $0.40 \mathrm{~g}(2.5 \mathrm{mmol})$ of the given enantiomeric mixture obtained by mixing racemic and enantiopure $(R)-(-)$-PREG was recrystallized from a mixture of 2.0 mL of water and 1.2 mL of 25% aqueous ammonia. The results are shown in Table 1.

4.3. The resolution of mandelic acid MA with (R)-(-)-3-(amino-methyl)-5-methylhexanoic acid (R)-PREG (representative procedure)

A mixture of $1.52 \mathrm{~g}(10 \mathrm{mmol})$ racemic mandelic acid MA, $0.27 \mathrm{~g}(2.5 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and $0.80 \mathrm{~g}(5.0 \mathrm{mmol})$ of $(R)-(-)-3-$ (aminomethyl)-5-methylhexanoic acid (R)-PREG was dissolved in 6.1 mL of hot water. The crystalline diastereomeric salt appeared by gradually cooling down the solution to $26^{\circ} \mathrm{C}$ and was then separated from the mother liquor by filtration after 15 min . In order to decompose the diastereomer, a mixture of 1.9 mL of 25% aqueous
ammonia and 2.0 mL of water was added to the crystals. Next, $0.70 \mathrm{~g}(4.4 \mathrm{mmol})$ of crystalline (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (R)-PREG was filtered off after 3 h of crystallization time, after which 1.5 mL of 37% hydrochloric acid was added to the mother liquor to afford $0.43 \mathrm{~g}(56 \%)$ of $(R)-(-)$-mandelic acid (R)-MA with an ee_{D} of 80% that was separated from the mother liquor after 2 h of crystallization (Table 2, entry 1). $[\alpha]_{D}^{25}=-121.6$ (c 1, water); ee: 80%.

The resolution of mandelic acid MA was also accomplished with (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (R)-PREG in a similar manner, allowing the corresponding diastereomer (R)-MA (R)-PREG to crystallize for 168 h to afford $(R)-(-)$-mandelic acid $[(R)-M A]$ with an ee_{D} of 62% in a yield of 50% (Table 2 , entry 2).

4.4. The resolution of 2 -chloromandelic acid CMA with (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (R)-PREG

Racemic 2-chloro-mandelic acid CMA was resolved with (R)-(-)-3-(aminomethyl)-5-methylhexanoic acid (R)-PREG according to the representative procedure described in Section 4.3 with 15 min or 168 h of crystallization time to afford $(R)-(-)-2$-chloromandelic acid (R)-CMA with an ee ${ }_{\text {D }}$ of 92% in a yield of 53% or with an ee_{D} of 29% and in a yield of 124%, respectively, (Table 2, Entries 3 and 4). $[\alpha]_{D}^{25}=-111.3$ (c 1, water); ee: 92%.

Acknowledgements

The above project was supported by the Hungarian Scientific and Research Fund (OTKA K104769) and by the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The authors are grateful for the support of a Richter Gedeon PhD Scholarship.

References

1. Newman, P. In Optical Resolution Procedures for Chiral Compounds 1-3; Optical Resolutions Information Center: New York, 1978-1984.
2. Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions; Wiley: New York, 1981.
3. Sheldon, R. A. Chirotechnology; Marcel Dekker: New York, 1993.
4. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley \& Sons: New York, 1994.
5. Ács, M.; Fogassy, E.; Kassai, C.; Kozma, D.; Nógrádi, M. CRC Handbook of Optical Resolutions via Diastereomeric Salt Formation In Kozma, D., Ed.; CRC Press: Boca Raton, 2002.
6. Fogassy, E.; Nógrádi, M.; Pálovics, E.; Schindler, J. Synthesis 2005, 1555-1568.
7. Murakami, H. In Novel Optical Resolution Technologies; Sakai, K., Hirayama, N., Tamura, R., Eds.; Springer-Verlag: Berlin: Heidelberg, 2007; pp 273-299.
8. Siedlecka, R. Tetrahedron 2013, 69, 6331-6363.
9. Krstulović, A. M. Chiral Separations by High Performance Liquid Chromatography: Applications to Pharmaceutical Compounds; E. Horwood: New York, 1989.
10. Martens, J.; Bhushan, R. J. Liq. Chromatogr. 1992, 15, 1-27.
11. Girard, C.; Kagan, H. B. Angew. Chem., Int. Ed. 1998, 37, 2922-2959.
12. Klussmann, M.; Iwamura, H.; Mathew, S. P.; Wells, D. H.; Pandya, U.; Armstrong, A.; Blackmond, D. G. Nature 2006, 441, 621-623.
13. Pálovics, E.; Fogassy, E.; Schindler, J.; Nógrádi, M. Chirality 2007, 19, 1-4.
14. Markovits, I.; Egri, G.; Fogassy, E. Chirality 2002, 14, 674-676.
15. Soloshonok, V. A. Angew. Chem., Int. Ed. 2006, 45, 766-769.
16. Soloshonok, V. A.; Berbasov, D. O. J. Fluorine Chem. 2006, 127, 597-603.
17. Soloshonok, V. A.; Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton, D. A. J. Am. Chem. Soc. 2007, 129, 12112-12113.
18. Pasteur, L. C.R.S. Acad. Sci. 1848, 26, 535-538.
19. Roozeboom, H. W. B. Z. Physik. Chem. 1899, 28, 494.
20. Faigl, F.; Fogassy, E.; Nógradi, M.; Pálovics, E.; Schindler, J. Org. Biomol. Chem. 2010, 8, 947-959.
21. Pálovics, E.; Szeleczky, Z.; Faigl, F.; Fogassy, E. New Trends and Startegies in the Chemistry of Advanced Materials with Relevance in Biological Systems, Technique and Environmental Protection; XIIIth Timisoara's academic days: Timisoara, 2013.
22. Pálovics, E.; Faigl, F.; Fogassy, E. Separation of the Mixtures of Chiral Compounds by Crystallization InTech 2012, 3-38.
23. Fogassy, E.; Pálovics, E.; Faigl, F.; Szeleczky, Z.; Fődi, B. RSC Advances 2014, 4, 21254-21261.
24. Pope, W. J.; Peachey, S. J. J. Chem. Soc., Trans. 1899, 75, 1066-1093.
25. Pálovics, E.; Schindler, J.; Faigl, F.; Fogassy, E. In Comprehensive Chirality; Carreira, E. M., Yamamoto, H., Eds.; Elsevier: Amsterdam, 2012; pp 91-95.
26. Faigl, F.; Fogassy, E.; Nógrádi, M.; Pálovics, E.; Schindler, J. Tetrahedron: Asymmetry 2008, 19, 519-536.
27. Faigl, F.; Schinder, J.; Fogassy, E. In Novel Optical Resolution Technologies; Sakai, K., Hirayama, N., Tamura, R., Eds.; Springer-Verlag: Berlin, Heidelberg, 2007; pp 133-157.
28. Grote, T. M.; Huckabee, B. K.; Mulhern, T.; Sobieray, D. M.; Titus, R. D. WO 9640617 A1, 1996.
29. Neu, J.; Fogassy, E.; Szalma, N.; Kálvin, P.; Schinder, J.; Jakab, G.; Garadnay, S.; Pálovics, E. WO 124934 A1, 2010.

[^0]: * Corresponding author. Tel.: +36 1 4631883; fax: +36 14633648.

 E-mail address: efogassy@mail.bme.hu (E. Fogassy).

