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Introduction of click chemistry to carotenoids
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We describe the synthesis of carotenoid derivatives via the azide–alkyne click reaction and optimize the
conditions for these sensitive molecules. After finding the mildest conditions possible for the reaction we
were able to use the click reaction for the synthesis of PEG–carotenoid conjugates starting from caroten-
oid pentynoates and PEG azides.
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Carotenoids are naturally occurring antioxidants and show var-
ious biological effects including anti-cancer and cardioprotective.
They have also been the subject of focus of food biochemists.1 As
the synthetic chemistry of carotenoids has been in decline, new
methods and modern reactions have rarely been introduced to
carotenoids.

We chose the azide–alkyne click reaction to synthesize caroten-
oid derivatives smoothly. This reaction is typically used as a mild
alternative for the coupling of a wide variety of bioactive molecules
or biomolecules such as sugars or proteins.2

Previously, we synthesized carotenoid trimers3 and PEG-
carotenoid derivatives via esterification.4 In this work our aim
was the synthesis of similar compounds using the azide–alkyne
click reaction.5 Generally two approximations are possible: the
carotenoid can bear the azide group, or an alkyne moiety can
somehow be attached to the carotenoid.

As this reaction was completely unknown in carotenoid chem-
istry the first task was to evaluate optimal, and if possible general,
reaction conditions which would result in relatively high yields
and conversions.

We chose the strategy that involved attachment of the alkyne
moiety to the carotenoid. The simplest way to achieve this would
have been the synthesis of propargyl esters or ethers from the cor-
responding carotenoid, but these reactions gave very low yields.
Further investigation revealed pent-4-ynoic acid to be the reagent
of choice: DCC-mediated coupling with the carotenols (Fig. 1, lu-
tein, zeaxanthin, b-cryptoxanthin and capsanthin were isolated
from natural sources, the others were synthesized from purchased
ll rights reserved.
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carotenoids) gave the expected esters in good yields (Scheme 1).
These were obtained in pure form by crystallization from a tolu-
ene/methanol/water mixture. Dihydroxy-carotenoids gave dipen-
tynoate esters; in these cases the amounts of the reagents were
doubled.

To find the optimum reaction conditions, 80-b-apocarotenol
pentynoate (1) was reacted under various conditions with benzylic
azide as model system (Table 1). The results showed that the
in situ generation of the copper(I) catalyst from copper sulfate
did not work well and delivered no products. The best combina-
Figure 1. Structures of the carotenoid starting materials: R = b, Q = a:
b-cryptoxanthin; R = b, Q = d: lutein; R = Q = b: zeaxanthin; R = Q = e: isozeaxan-
thin; R = c, Q = e: 40-hydroxy-echinenone; R = a, Q = CH2OH: 80-b-apocarotenol;
R = b, Q = f: capsanthin.
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tion, with respect to reaction time and temperature needed, was
found to be the use of copper(I) iodide as the catalyst with DMF
as the solvent. These conditions were then applied to all the carote-
noids. The application of a base (triethylamine) made no difference
to the yield or conversion. The conversions of the starting carote-
Table 1
Optimization of the conditions using benzyl azide model
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Catalyst Solvent

CuSO4+Na-ascorbate i-BuOH, acetone, H2O
CuI i-BuOH, acetone, H2O
CuI DMSO
CuI i-PrOH, H2O, toluene
CuI DMF
CuI DMF+Et3N
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Scheme 2. Click-reaction wit
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2 eq. DCC, 1.5 eq DMAP

3 eq. pent-4-ynoic acid

(1) Car

(2) Car

(3) Car
(4) Car

(5) Car

(6) Car

Car-OH
CH2Cl2, RT, overnight

Scheme 1. Synthesis of ca
noids were high, although in the case of longer reaction times, con-
siderable decomposition occurred.

Polyethyleneglycol (PEG) conjugates of a wide range of
biomolecules are known (especially for peptides).6,7 These
conjugates usually have better pharmacokinetic behavior, and
O
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Time (h) Temperature (�C) Yield

15 40 <5%, dec.
15 40 <5%
4 40–50 dec.
15–20 70 20%
4 40 40–45%
4 40 40–45%
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N

N

N
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8) Car: 8'-β-apocarotenol (41%)
9) Car: β-cryptoxanthin (47%)

10) Car: zeaxanthin (44%)

11) Car: isozeaxanthin (33%)
12) Car:capsanthin (33%)

13) Car: 4'-hydroxy-echinenone (<3%)

h mPEG-550 monoazide.

arO

O

: 8'-β-apocarotenol (75%, including reduction)

: β-cryptoxanthin (90%)

: zeaxanthin (53%)
: isozeaxanthin (61%)

: capsanthin (59%)

: 4'-hydroxy-echinenone (52%)

rotenoid pentynoates.
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water-solubility and, in general, are more efficient in drug
targeting. In our previous article, we described the synthesis of
PEG–carotenoid conjugates via esterification.4 After finding opti-
mal conditions, similar water-soluble PEG derivatives could be
synthesized by the way of the click reaction. Monofunctional
MeO-PEG550-OH (mPEG-550) was tosylated or mesylated and
then substitution with NaN3 in DMF delivered the PEG-azide over-
night. This azide was applied in excess in the cycloaddition reac-
tion with the mono- or dipentynoates (Scheme 2). The products
were purified by preparative TLC, and were characterized by
NMR, UV, HPLC and MALDI-TOF.8

In conclusion, as the click reaction proved to be an efficient
and mild tool for the synthesis of carotenoid derivatives we plan
to use it for the synthesis of other carotenoid–biomolecule
conjugates.
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