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Abstract A novel iodine-mediated reaction of 2,6-dimethylquinoline
with Knoevenagel condensation products of malononitrile with benzal-
dehydes, leading to a facile, one-pot synthesis of 2-aryl-3-(6-meth-
ylquinolin-2-yl)cyclopropane-1,1-dicarbonitriles, in moderate to good
yields, is described.
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Cyclopropane and its derivatives are versatile molecules
with numerous applications in organic synthesis.1 Because
of their rigid structure and inherent reactivity, cyclopro-
pane rings can constitute key components in the synthesis
of complex molecules.2 Functionalized arylcyclopropylni-
triles have found utility in organic synthesis as precursors
for a wide variety of natural products,3 bioactive com-
pounds,4 and general synthetic targets.5 Moreover, consid-
erable research efforts have been devoted to the stereose-
lective construction of three-membered carbocyclic rings
over the last few decades.6 The most common methods for
the synthesis of functionalized cyclopropanes are metal-
catalyzed decomposition of α-diazocarbonyl compounds in
the presence of alkenes7 and reaction of electron-deficient
olefins with sulfur ylides.8

As part of our current studies on the development of
new routes to carbocyclic and heterocyclic systems,9 we re-
port herein a transition-metal-free protocol in which a ni-
trogen ylide generated in situ combines with the Knoevena-
gel condensation products of malononitrile with benzalde-
hydes to afford 2-aryl-3-(6-methylquinolin-2-yl)cyclo-
propane-1,1-dicarbonitriles.10

Initially, the reaction between 2,6-dimethylquinoline
(1), 4-bromobenzaldehyde (2a), malononitrile (3), and pyri-
dine in the presence of N,N-diisopropylethylamine was
studied as a model reaction; the results are shown in Table
1. In all cases, the zwitterionic intermediates, generated
from 1, Lewis acids, and pyridine were reacted with

arylidene malononitrile, generated from condensation of 3
and 2a, in the presence of N,N-diisopropylethylamine at
room temperature in different solvents.

As shown in Table 1 (entries 1–7), copper salts such as
CuBr, CuI, Cu(OAc)2, and AgOAc were found to be less effec-
tive catalysts for this transformation. Lewis acids such as
AlCl3 and BF3·Et2O did not promote the desired reaction.
Furthermore, the presence of CuBr and CuI in combination
with 1,10-phenanthroline promoted the reaction only
slightly (< 10%).

Iodine (30 mol%), was found to be an effective catalyst,
affording 2-(4-bromophenyl)-3-(6-methylquinolin-2-yl)cy-
clopropane-1,1-dicarbonitrile (4a) in 15% yield (Table 1,
entry 10). The use of THF or MeCN as solvent, led to im-
proved yields (Table 1, entries 11 and 12). These results en-
couraged us to optimize the reaction conditions with io-
dine. The conversion proceeded in better yield (46%) with
50 mol% iodine. In the presence of stoichiometric amounts
of iodine, the reaction was complete after 12 h with up to
60% yield of isolated material (Table 1, entries 13 and 14).

With the optimized reaction conditions in hand, we
prepared a range of 2-(6-methylquinolin-2-yl)-3-arylcyclo-
propane-1,1-dicarbonitriles 4 from 1, pyridine, benzalde-
hydes 2, and malononitrile in the presence of iodine as
Lewis acid and N,N-diisopropylethylamine as Lewis base
(Table 2). Both electron-donating and electron-withdraw-
ing substituents on the benzaldehyde ring were well-toler-
ated, affording the desired products in 52 to 73% yields (Ta-
ble 2).

Figure 1  ORTEP diagram of 4a
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Unambiguous evidence for the structure and stereo-
chemistry of 4a was obtained from single-crystal X-ray
analysis. An ORTEP11 diagram of 4a is shown in Figure 1.
The structure deduced from the crystallographic experi-
ment, can be applied by analogy to the other products on
account of their similar NMR spectra.

The 1H NMR spectrum of product 4a exhibited two
sharp doublets (δ = 4.50 and 3.76 ppm, 3JH–H = 8.2 Hz) for
the methine protons of the cyclopropane. The 1H-decou-
pled 13C NMR spectrum of 4a showed 19 distinct resonanc-

es, in agreement with the proposed structure. The 1H and
13C NMR spectra of products 4b–l were similar to those of
4a, except for the aryl moieties, which exhibited character-
istic signals with appropriate chemical shifts.

A mechanistic rationalization for the formation of prod-
ucts 4 is given in Scheme 1. Presumably, the initial event is
activation of 2-methylquinoline by coordination to iodine,
which leads to 1,2-dihydro-1-iodo-2-methylenequinoline
intermediate 5. This intermediate is attacked by pyridine to
afford alkylpyridinium salt 6, which is converted into nitro-

Table 1  Optimization of the Reaction Conditions for the Preparation of 2-(4-Bromophenyl)-3-(6-methylquinolin-2-yl)cyclopropane-1,1-dicarbonitrile 
(4a)a

Entry Cat. (30 mol%) Ligand (10 mol%) Solvent Yield [%]b

1 CuBr none DMF no reaction

2 CuBr 1,10-phenanthroline DMF < 10

3 CuI none DMF no reaction

4 CuI 1,10-phenanthroline DMF < 10

5 Cu(OAc)2 none DMF no reaction

6 Cu(OAc)2 1,10-phenanthroline DMF no reaction

7 AgOAc none DMF no reaction

8 AlCl3 none DMF no reaction

9 BF3·Et2O none DMF no reaction

10 I2 none DMF 15

11 I2 none THF 23

12 I2 none MeCN 38

13 I2 (50 mol%) none MeCN 46

14 I2 (100 mol%) none MeCN 60

15 I2 (120 mol%) none MeCN 56
a Reaction conditions: (i) 1 (0.157 g, 1.0 mmol), pyridine (0.158 g, 2.0 mmol), Lewis acid, 50 °C, 1 h; (ii) arylidene malononitrlile, produced from 2a (0.106 g, 1.0 
mmol) and 3 (0.066 g, 1.0 mmol), solvent (3.0 mL), (i-Pr)2NEt (0.284 g, 2.2 mmol).
b Isolated yield after column chromatography.
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gen ylide 7 by N,N-diisopropylethylamine. Conjugate attack
of ylide 7 with arylidene malononitrile derivatives generat-
ed in situ, affords intermediate 8, which undergoes cycliza-
tion via intermediate 9 to generate 4.

In summary, we have described a novel synthesis of 2-
aryl-3-(6-methylquinolin-2-yl)cyclopropane-1,1-dicarbo-
nitriles from the reaction of pyridinium ylides, generated
from iodine-mediated reaction of 2,6-dimethylquinoline
and pyridine, with Knoevenagel condensation products of
benzaldehydes with malononitrile, in moderate to good
yields.

Supporting Information

Supporting information for this article is available online at
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Scheme 1  Mechanistic rationalization for the formation of product 4
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