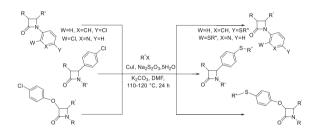
ORIGINAL PAPER

Copper-catalyzed thioarylation or thioalkylation of halogenated 2-azetidinones using a thiol precursor


Maryam Ravandeh Ghotbabadi¹ · Maaroof Zarei¹

Received: 9 December 2017 / Accepted: 18 February 2018 © Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract

The paper describes the synthesis and characterization data of new 2-azetidinones containing sulfide groups. Halogenated 2-azetidinones were synthesized by the reaction of ketenes, generated in situ from various carboxylic acid in the presence of Vilsmeier reagent, with different Schiff bases. These compounds on further reaction with several aryl or alkyl halide using copper(I) iodide and sodium thiosulfate produced novel 2-azetidinones including sulfide substituents in N-1 or C-3 or C-4 position. The compounds have been characterized by elemental analysis and spectral (IR, ¹H and ¹³C NMR) data.

Graphical abstract

Keywords β -Lactam · 2-Azetidinone · Thioarylation · Thioalkylation · Copper-catalyzed

Introduction

 β -Lactam antibiotics comprises penicillins, cephalosporins, cephamycins, monobactams, carbacephems, and carbapenems and are so named since they all contain the β -lactam (2-azetidinone) moiety [1]. These miracle antibacterial drugs have served an important and highly successful role in medicine and in pharmaceutical industry [2–4]. Ezetimibe has 2-azetidinone ring in its structure and is used clinically as a cholesterol absorption inhibitor [5]. In addition, 2-azetidinones possess various other biological

the β sulfur-containing organic molecules are a very important motif; particularly, aryl sulfides and their derivatives are imperative molecules having biological, pharmaceutical, and material interest [21, 22]. Many synthetic methods

the 2-azetidinone ring [12-20].

have been developed for the synthesis of aryl sulfides [21–24]. The development of transition-metal-catalyzed synthesis of aryl sulfides using a thiol precursor is also reported [21, 25–30].

activities [6-8] and are also used as synthon for the synthesis of several organic compounds [9-11]. Several synthesis

thetic methods have been reported for the preparation of

In the past few decades, synthesis of heterocyclic compounds containing nitrogen and sulfur has been of great interest for researchers, due to their potential use in the pharmaceutical and medicinal applications [31].

Maaroof Zarei mzarei@hormozgan.ac.ir; maaroof1357@yahoo.com

¹ Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran

Some of β -lactam antibiotics such as penicillins, cephalosporins, and monobactams containing thioether group in their structure [1]. N-Thiolated β -lactams (β -lactam compounds have a sulfur substituent on the nitrogen center) have been synthesized which have been represented a broad family of bioactive molecules and the thiol-substituent was effective at biological activities [32, 33]. Also, series of *N*sulfonyl monocyclic [34] and 3-thiolated β -lactams [35] have been prepared and evaluated for their in vitro antibacterial and antifungal activities against pathogenic strains.

Hence, according to the above facts, the novel 2-azetidinones having thioether moieties were synthesized using copper-catalyzed thioetherification of 2-azetidinones with thiol precursor.

Results and discussion

We started our studies by synthesis of *cis* 2-azetidinones containing aryl chloride substituents in N-1 or C-3 or C-4 position (Table 1). Previously application of Vilsmeier reagent in the preparation of 2-azetidinones via keteneimine cycloaddition has been reported [36, 37].

Schiff base 1 on reaction with substituted acetic acid 2 in the presence of Vilsmeier reagent and triethylamine at room temperature afforded cis 2-azetidinones **3a–3f**.

¹H NMR spectra of compound **3a–3f** displayed two signals about 5.2 and 5.5 ppm for H-4 and H-3, respectively, with the coupling constant about 4.7 Hz, this clearly indicated the *cis* stereochemistry for 2-azetidinones **3a–3f** (the coupling constant H-3 and H-4 ($J_{3,4} > 4.0$ Hz) for the *cis* stereoisomer and ($J_{3,4} \le 3.0$ Hz) for the *trans* stereoisomer) [38, 39].

Compound **3a**, treated with iodobenzene in the presence of CuI and S_8 at 110 °C, afforded 2-azetidinone containing

thioether 5a, which was characterized by spectral data and elemental analysis. To improve the yield and find the optimum condition for the synthesis of 2-azetidinone 5a, next, condition of reaction was investigated. All reactions were monitored by TLC (Table 2).

According to Table 2, reaction of 2-azetidinone **3a** and iodobenzene in the presence of CuI as a catalyst, Na_2S_2 $O_3 \cdot 5H_2O$ as a sulfur source and K_2CO_3 as a base in dimethylformamide at 110–120 °C is the best condition with the highest yield. The reaction was not performed at room temperature.

With the optimized conditions in hand, the reactions of different 2-azetidinones **3** with various aryl or alkyl halides **4** were examined to explore the scopes of the reaction (Scheme 1). The results were shown in Table 3.

The purity of the compounds was checked by TLC and elemental analysis. Spectral data (IR, ¹H NMR, and ¹³C NMR) of all the compounds were in full agreement with the proposed structures. IR spectra of β -lactams **5a**–**5p** showed sharp peaks at 1731–1765 cm⁻¹ due to β -lactam carbonyl group. Also signal for aldehyde carbonyl group of products **5a**, **5e**, **5h**, **5k**, and **5o** were observed at 1723–1732 cm⁻¹. Their ¹H NMR spectra showed well-separated doublet of doublet for H-4 and H-3 protons of cis β -lactams **5a**–**5p**. The signals appeared at 9.85–10.08 ppm for the carbonyl of CHO group in compounds **5a**, **5e**, **5h**, **5k**, and **5o**. Peaks at 161.8–164.4 ppm were attributed to the 2-azetidinone carbonyl and 190.2–192.4 ppm was referred to the aldehyde carbonyl confirmed by ¹³C NMR.

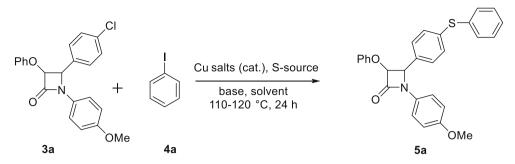

According to a reported mechanism for the thioarylation or thioalkylation using sodium thiosulfate as a thiol precursor [10, 30], it is suggested that the reaction performed via formation of aryl or alkyl thiosulfate and organo-copper intermediates (Scheme 2).

Table 1	Synthesis of	2-azetidinones	containing	aryl	chloride substituents

	R ³ CH₂COOH -	$\begin{array}{c} H_3C \bigoplus H \\ N = & CI \\ H_3C & CI \end{array}$	
1	2	CH ₂ Cl _{2,} Et ₃ N, rt	0 R ¹ 3a-3f

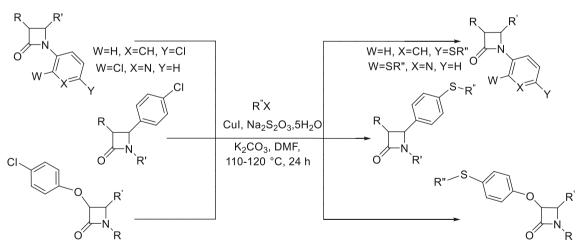
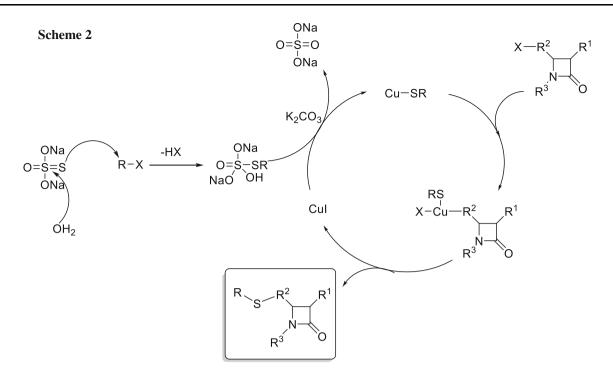

Comp.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Yield/%
3a	4-MeOC ₆ H ₄	$4-ClC_6H_4$	PhO	95
3b	$4-MeOC_6H_4$	$4-ClC_6H_4$	2-NaphthO	74
3c	$4-ClC_6H_4$	C ₆ H ₅	PhO	82
3d	$4-ClC_6H_4$	C ₆ H ₅	2-NaphthO	40
3e	$4-MeOC_6H_4$	C ₆ H ₅	$4-ClC_6H_4O$	82
3f	2-Cl-3-pyridyl	$4-NO_2C_6H_4$	PhO	88

Table 2 Reaction condition in the synthesis of 2-azetidinone 5a

Entry	Cu source	S source	Base	Solvent	Yield/%
1	CuI	S ₈ /KF	K ₂ CO ₃	DMF	70
2	Cu(OAc) ₂	S ₈ /KF	K ₂ CO ₃	DMSO	_
3	Cu(OAc) ₂	S ₈ /KF	K ₂ CO ₃	PEG400	_
4	Cu(OAc) ₂	S ₈ /KF	K ₂ CO ₃	DMF	78
5	CuI	S ₈ /KF	Cs ₂ CO ₃	DMF	70
6	Cu(OAc) ₂	S ₈ /KF	Cs ₂ CO ₃	DMF	60
7	CuI	$Na_2S_2O_3 \cdot 5H_2O$	K ₂ CO ₃	DMF	81
8	Cu(OAc) ₂	$Na_2S_2O_3 \cdot 5H_2O$	K ₂ CO ₃	DMF	65
9	CuI	$Na_2S_2O_3 \cdot 5H_2O$	Cs ₂ CO ₃	DMF	_
10	Cu(OAc) ₂	$Na_2S_2O_3 \cdot 5H_2O$	Cs ₂ CO ₃	DMF	36
11	CuI	Thiourea	K ₂ CO ₃	DMF	34
12	Cu(OAc) ₂	Thiourea	K ₂ CO ₃	DMF	72
13	CuI	Thiourea	Cs ₂ CO ₃	DMF	_
14	Cu(OAc) ₂	Thiourea	Cs ₂ CO ₃	DMF	-

Scheme 1


Conclusion

We have developed a protocol for the synthesis of new 2-azetidinones containing sulfide groups in N-1 or C-3 or C-4 position. Copper-catalyzed thioarylation or

thioalkylation of halogenated-2-azetidinones using CuI as a catalyst, $Na_2S_2O_3 \cdot 5H_2O$ as a sulfur sources and K_2CO_3 as a base gave desired products in moderate to excellent yields. Purification of products was simple and proceeded without the use of column chromatography.

Table 3 Scope	of the
thioarylation of	r thioalkylation
of halogenated	-2-azetidinones

Entry	2-Azetidinone	R"X	Product	Yield/%
1	3a		5a Pho S Sa	75
2	3a	CIO	$5b \xrightarrow{PhO}_{O} + N \xrightarrow{O}_{OMe} + N \xrightarrow$	88
3	3a	Br	5c Pho	89
4	3b	Br	5d (), , , , , , , , , , , , , , , , , , ,	н _а 90
5	3b	G	5e	53
6	3b		5f 5f 5f 5f 5f 5f 5f 5f	78
7	3c	Br	5g 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	70
8	3c	CI CI	5h Configuration of the state o	40
9	3c		5i Confe	50
10	3d	Br	5j Coro	51 Сн ₃
11	3d	CI CI	5k COSH	45
12	3d			48
13	3e	Br	5m	86 ^{Me}
14	3e		5n Charles Cha	70 Me
15	3e	CI	50 50 Solor	63 Me
16	3f		5p 5p 5p 5p 5p 5p 5p 5p	79

Experimental

All required chemicals were purchased from Merck, Fluka, or Acros chemical companies. The melting points were determined on an Electrothermal 9200 apparatus. IR spectra were measured on a Galaxy series FT-IR 5000 spectrometer. NMR spectra were recorded in DMSO- d_6 using a Bruker spectrophotometer (¹H NMR 300 MHz, ¹³C NMR 75 MHz) with tetramethylsilane as an internal standard and coupling constants were given in cycles per second (Hz). Elemental analyses were run on a Vario EL III elemental analyzer. Thin-layer chromatography was carried out on silica gel 254 analytical sheets obtained from Fluka. (Chloromethylene)dimethylammonium chloride (Vilsmeier reagent) 2 was obtained as a white solid by a reported procedure [40]. β-Lactams 3a-3f were prepared according to reported methods and spectral data for 3a, 3c, **3e**, and **3f** have been previously reported [41–44].

4-(4-Chlorophenyl)-1-(4-methoxyphenyl)-3-(naphthalen-2yloxy)azetidin-2-one (3b, C₂₆H₂₀ClNO₃) White solid; m.p.: 181–184 °C; IR (KBr): $\bar{v} = 1749$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.79$ (OMe, s, 3H), 5.34 (H-4, d, 1H, J = 5.1 Hz), 5.66 (H-3, d, 1H, J = 5.1 Hz), 6.89–6.95 (ArH, m, 3H), 7.10–7.23 (ArH, d, 2H), 7.30–7.33 (ArH, d, 2H), 7.58–7.61 (ArH, m, 4H), 7.67–7.70 (ArH, m, 4H) ppm; ¹³C NMR (75 MHz): $\delta = 56.3$ (OMe), 62.1 (C-4), 81.9 (C-3), 110.9, 114.1, 117.9, 120.9, 124.2, 126.0, 126.9, 127.9, 128.4, 129.0, 129.8, 130.9, 131.3, 132.5, 133.8, 135.7, 155.9, 156.6 (aromatic carbons), 162.4 (CO, β-lactam) ppm.

1-(4-Chlorophenyl)-3-(naphthalen-2-yloxy)-4-phenylazetidin-2-one (3d, C₂₅H₁₈ClNO₂) Cream color solid; m.p.: 233–237 °C; IR (KBr): $\bar{\nu} = 1753$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.09$ (H-4, d, 1H, J = 4.6 Hz), 5.44 (H-3, d, 1H, J = 4.6 Hz), 6.97–7.24 (ArH, d, 2H), 7.26–7.30 (ArH, m, 11H), 7.32–7.34 (ArH, m, 1H), 7.52–7.73 (ArH, m, 2H) ppm; ¹³C NMR (75 MHz): $\delta = 62.1$ (C-4), 82.9 (C-3), 111.7, 121.2, 124.2, 126.9, 127.9, 128.3, 128.5, 128.7, 128.9, 129.0, 129.7, 130.6, 131.7, 133.9, 135.9, 138.1, 155.9 (aromatic carbons), 161.9 (CO, β-lactam) ppm.

General procedure for the synthesis of 2-azetidinones 5a– 5p A one-necked flask was charged with CuI (0.3 mmol), potassium carbonate (5 mmol), $Na_2S_2O_3 \cdot 5H_2O$ (1.5 mmol), alkyl/aryl halide (1.25 mmol), 2-azetidinones 3a–3f (1.25 mmol), and 5 cm³ DMF. The mixture was stirred at 110–120 °C overnight. The reaction mixture was cooled to room temperature. Water (10 cm³) was added to the reaction mixture, and organics were extracted with EtOAc (3 × 10 cm³). Evaporation of the solvent followed by purification by crystallization from 95% ethanol provided the corresponding products.

1-(4-Methoxyphenyl)-3-phenoxy-4-[4-(phenylthio)phenyl]azetidin-2-one (5a, C₂₈H₂₃NO₃S) White solid; m.p.: 171– 174 °C; IR (KBr): $\bar{\nu} = 1755$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.83$ (s, 3H, OMe), 5.20 (d, 1H, J = 4.6 Hz, H-4), 5.62 (d, 1H, J = 4.6 Hz, H-3), 6.89–7.03 (m, 5H, ArH), 7.06–7.09 (m, 7H, ArH), 7.10–7.34 (m, 6H, ArH) ppm; ¹³C NMR (75 MHz): δ = 56.3 (OMe), 61.9 (C-4), 81.7 (C-3), 116.0, 120.4, 122.8, 127.6, 128.5, 128.9, 129.5, 130.8, 132.1, 134.1, 135.0, 135.7, 136.1, 146.1, 156.4, 157.8 (aromatic carbons), 162.1 (CO, β-lactam) ppm.

4-[[4-[1-(4-Methoxyphenyl)-4-oxo-3-phenoxyazetidin-2-yl]phenyl]thio]benzaldehyde (5b, C₂₉H₂₃NO₄S) White solid; m.p.: 173–175 °C; IR (KBr): $\bar{\nu} = 1731$ (CHO), 1754 (CO, β-lactam), 2715, 2804 (CH, aldehyde) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.70$ (s, 3H, OMe), 5.22 (d, 1H, J = 4.9 Hz, H-4), 5.71 (d, 1H, J = 4.9 Hz, H-3), 6.92–7.03 (m, 5H, ArH), 7.11–7.18 (m, 8H, ArH), 7.22–7.33 (d, 2H, ArH), 7.45–7.66 (d, 2H, ArH), 9.90 (s, 1H, CHO) ppm; ¹³C NMR (75 MHz): $\delta = 56.6$ (OMe), 62.0 (C-4), 83.8 (C-3), 114.3, 116.6, 120.5, 122.4, 128.0, 129.8, 130.1, 131.6, 131.6, 134.2, 142.7, 156.0, 157.8 (aromatic carbons), 163.3 (CO, β-lactam), 192.0 (CHO) ppm.

4-[4-(Hexylthio)phenyl]-1-(4-methoxyphenyl)-3-phenoxyazetidin-2-one (5c, C₂₈H₃₁NO₃S) White solid; m.p.: 178– 180 °C; IR (KBr): $\bar{\nu} = 1740$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 0.99$ (t, 3H, J = 6.5 Hz, Me), 1.31–1.40 (m, 6H, 3CH₂), 1.76–1.81 (m, 2H, SCH₂<u>CH₂</u>), 2.96 (t, 2H, J = 5.4 Hz, SCH₂), 3.82 (s, 3H, OMe), 5.28 (d, 1H, J = 4.4 Hz, H-4), 5.60 (d, 1H, J = 4.4 Hz, H-3), 6.92–7.01 (m, 5H, ArH), 7.13–7.16 (d, 2H, ArH), 7.23–7.33 (m, 6H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 14.0$ (Me), 22.9, 28.3, 29.0, 31.6 (CH₂), 34.2 (SCH₂), 55.9 (OMe), 61.8 (C-4), 84.2 (C-3), 113.9, 116.2, 121.1, 123.0, 129.2, 129.9, 130.9, 138.2, 146.1, 156.0, 158.1 (aromatic carbons), 162.5 (CO, β-lactam) ppm.

4-[4-(Hexylthio)phenyl]-1-(4-methoxyphenyl)-3-(naphthalen-2-yloxy)azetidin-2-one (5d, C₃₂H₃₃NO₃S) White solid; m.p.: 184–186 °C; IR (KBr): $\bar{\nu} = 1747$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 0.97$ (t, 3H, J = 6.0 Hz, Me), 1.29–1.43 (m, 6H, 3CH₂), 1.74–1.83 (m, 2H, SCH₂. <u>CH₂)</u>, 2.92 (t, 2H, J = 6.1 Hz, SCH₂), 3.80 (s, 3H, OMe), 5.36 (d, 1H, J = 4.8 Hz, H-4), 5.69 (d, 1H, J = 4.8 Hz, H-3), 6.86–7.10 (d, 2H, ArH), 7.12–7.30 (d, 2H, ArH), 7.32–7.36 (m, 7H, ArH), 7.54–7.61 (m, 2H, ArH), 7.66–7.80 (d, 2H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 13.7$ (Me), 23.1, 27.9, 29.1, 32.0 (CH₂), 34.9 (SCH₂), 55.8 (OMe), 61.5 (C-4), 83.2 (C-3), 111.7, 114.4, 119.0, 120.9, 123.6, 127.3, 127.5, 127.9, 128.6, 129.1, 129.5, 131.1, 131.4, 132.0, 135.8, 138.6, 156.6, 156.8 (aromatic carbons), 161.8 (CO, β-lactam) ppm.

4-[[4-[1-(4-Methoxyphenyl)-3-(naphthalen-2-yloxy)-4-oxoazetidin-2-yl]phenyl]thio]benzaldehyde (5e, $C_{33}H_{25}NO_4$ 5) White solid; m.p.: 131–135 °C; IR (KBr): $\bar{\nu} = 1723$ (CHO), 1744 (CO, β-lactam), 2703, 2792 (CH, aldehyde) cm⁻¹; ¹H NMR (300 MHz): δ = 3.65 (s, 3H, OMe), 5.16 (d, 1H, *J* = 4.6 Hz, H-4), 5.48 (d, 1H, *J* = 4.6 Hz, H-3), 6.87–7.10 (d, 2H, ArH), 7.10–7.12 (m, 4H, ArH), 7.28–7.33 (m, 5H, ArH), 7.34–7.55 (m, 6H, ArH), 7.60–7.66 (m, 1H, ArH), 10.08 (s, 1H, CHO) ppm; ¹³C NMR (75 MHz): δ = 55.6 (OMe), 60.8 (C-4), 80.9 (C-3), 110.9, 113.9, 118.7, 120.7, 123.9, 126.9, 127.6, 128.2, 128.7, 129.4, 129.9, 130.0, 131.1, 131.6, 133.5, 134.0, 135.1, 135.3, 136.1, 143.0, 152.7, 156.8 (aromatic carbons), 164.0 (CO, β-lactam), 192.4 (CHO) ppm.

1-(4-Methoxyphenyl)-3-(naphthalen-2-yloxy)-4-[4-(phenylthio)phenyl]azetidin-2-one (5f, C₃₂H₂₅NO₃S) Crème-color solid; m.p.: 172–175 °C; IR (KBr): $\bar{\nu} = 1758$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.72$ (s, 3H, OMe), 5.31 (d, 1H, J = 4.7 Hz, H-4), 5.63 (d, 1H, J = 4.7 Hz, H-3), 6.90–7.09 (m, 9H, ArH), 7.11–7.33 (m, 8H, ArH), 7.50–7.70 (m, 3H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 55.7$ (OMe), 61.6 (C-4), 81.8 (C-3), 111.7, 113.7, 118.1, 121.2, 123.5, 126.9, 127.0, 127.7, 127.9, 128.6, 129.3, 129.8, 131.2, 131.5, 133.8, 135.1, 135.3, 135.9, 136.2, 155.7, 156.2 (aromatic carbons), 162.2 (CO, β-lactam) ppm.

1-[4-(Hexylthio)phenyl]-3-phenoxy-4-phenylazetidin-2-one (5g, C₂₇H₂₉NO₂S) White solid; m.p.:193–196 °C; IR (KBr): $\bar{\nu} = 1765$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 0.99$ (t, 3H, J = 6.1 Hz, Me), 1.27–1.40 (m, 6H, 3CH₂), 1.66–1.77 (m, 2H, SCH₂CH₂), 2.88 (t, 2H, J = 8.0 Hz, SCH₂), 5.10 (d, 1H, J = 5.2 Hz, H-4), 5.54 (d, 1H, J = 5.2 Hz, H-3), 6.84–7.00 (m, 3H, ArH), 7.10–7.13 (d, 2H, ArH), 7.23–7.40 (m, 9H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 12.9$ (Me), 22.8, 28.7, 29.1, 32.0 (CH₂), 34.4 (SCH₂), 64.0 (C-4), 83.8 (C-3), 116.4, 122.8, 124.6, 126.7, 127.9, 128.3, 129.4, 133.9, 134.7, 136.0, 147.2, 159.2 (aromatic carbons), 164.4 (CO, β-lactam) ppm.

4-[[4-(2-Oxo-3-phenoxy-4-phenylazetidin-1-yl)phenyl]thio]benzaldehyde (5h, C₂₈H₂₁NO₃S) Cream solid; m.p.: 245– 249 °C; IR (KBr): $\bar{\nu} = 1724$ (CHO), 1757 (CO, β-lactam), 2709, 2811 (CH, aldehyde) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.24$ (d, 1H, J = 5.0 Hz, H-4), 5.50 (d, 1H, J = 5.0 Hz, H-3), 6.94–7.07 (m, 5H, ArH), 7.22–7.38 (m, 11H, ArH), 7.61–7.63 (d, 2H, ArH), 9.89 (s, 1H, CHO) ppm; ¹³C NMR (75 MHz): $\delta = 60.8$ (C-4), 83.6 (C-3), 113.7, 122.5, 122.6, 127.0, 127.9, 128.6, 129.4, 130.1, 131.1, 132.0, 133.3, 133.7, 134.6, 138.8, 143.3, 158.9 (aromatic carbons), 164.1 (CO, β-lactam), 190.2 (CHO) ppm.

3-Phenoxy-4-phenyl-1-[4-(phenylthio)phenyl]azetidin-2one (5i, C₂₇H₂₁NO₂S) White solid; m.p.: 240–244 °C; IR (KBr): $\bar{v} = 1746$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.26$ (d, 1H, J = 4.9 Hz, H-4), 5.57 (d, 1H, J = 4.9 Hz, H-3), 6.91–7.24 (m, 8H, ArH), 7.25–7.38 (m, 11H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 62.3$ (C-4), 82.2 (C-3), 109.3, 117.0, 122.8, 126.7, 127.8, 127.9, 128.6, 129.6, 129.9, 130.9, 131.6, 133.7, 134.5, 135.3, 138.0, 157.7, (aromatic carbons), 161.9 (CO, β-lactam) ppm.

1-[4-(Hexylthio)phenyl]-3-(naphthalen-2-yloxy)-4-phenylazetidin-2-one (5j, C₃₁H₃₁NO₂S) Cream solid; m.p.: 240–244 °C; IR (KBr): $\bar{\nu} = 1753$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 0.98$ (t, 3H, J = 6.0 Hz, Me), 1.26–1.40 (m, 6H, 3CH₂), 1.62–1.72 (m, 2H, SCH₂<u>CH</u>₂), 2.90 (t, 2H, J = 7.9 Hz, SCH₂), 5.26 (d, 1H, J = 4.5 Hz, H-4), 5.53 (d, 1H, J = 4.5 Hz, H-3), 7.04–7.20 (d, 2H, ArH), 7.22–7.35 (m, 10H, ArH), 7.50–7.72 (m, 4H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 15.3$ (Me), 21.9, 27.9, 28.8, 31.7 (CH₂), 35.2 (SCH₂), 62.4 (C-4), 81.7 (C-3), 111.7, 115.7, 123.9, 124.4, 126.8, 127.3, 127.5, 128.1, 128.4, 128.9, 131.5, 135.5, 136.1, 154.9, (aromatic carbons), 160.6 (CO, β-lactam) ppm.

4-[[4-[3-(Naphthalen-2-yloxy)-2-oxo-4-phenylazetidin-1-yl]phenyl]thio]benzaldehyde (5k, C₃₂H₂₃NO₃S) Cream solid; m.p.: 300–303 °C; IR (KBr): $\bar{\nu} = 1732$ (CHO), 1759 (CO, β-lactam), 2706, 2801 (CH, aldehyde) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.35$ (d, 1H, J = 4.7 Hz, H-4), 5.62 (d, 1H, J = 4.7 Hz, H-3), 6.98–7.21 (d, 2H, ArH), 7.22–7.34 (m, 12H, ArH), 7.36–7.68 (m, 5H, ArH), 9.85 (s, 1H, CHO) ppm; ¹³C NMR (75 MHz): $\delta = 61.5$ (C-4), 84.2 (C-3), 107.5, 110.9, 122.2, 124.2, 126.4, 127.5, 127.6, 128.8, 129.1, 129.9, 130.8, 131.1, 131.5, 133.8, 134.2, 135.3, 138.0, 156.3 (aromatic carbons), 162.2 (CO, β-lactam), 191.3 (CHO) ppm.

3-(Naphthalen-2-yloxy)-4-phenyl-1-[4-(phenylthio)phenyl]azetidin-2-one (5l, C₃₁H₂₃NO₂S) Pale-yellow solid; m.p.: 233–235 °C; IR (KBr): $\bar{\nu} = 1752$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.19$ (d, 1H, J = 4.5 Hz, H-4), 5.47 (d, 1H, J = 4.5 Hz, H-3), 6.95–7.15 (m, 5H, ArH), 7.16–7.20 (m, 13H, ArH), 7.22–7.33 (m, 1H, ArH), 7.39–51 (m, 1H, ArH), 7.52–7.70 (m, 1H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 60.3$ (C-4), 81.4 (C-3), 105.9, 107.7, 111.3, 121.9, 124.1, 126.7, 127.4, 127.6, 127.9, 128.3, 128.9, 129.4, 129.7, 131.6, 132.2, 133.6, 135.7, 138.9, 153.4, 157.1 (aromatic carbons), 164.3 (CO, β-lactam) ppm.

3-[4-(Hexylthio)phenoxy]-1-(4-methoxyphenyl)-4-phen-

ylazetidin-2-one (5m, C₂₈H₃₁NO₃S) Cream solid; m.p.: 187–189 °C; IR (KBr): $\bar{\nu} = 1741$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 1.00$ (t, 3H, J = 6.9 Hz, Me), 1.28–1.40 (m, 6H, 3CH₂), 1.66–1.77 (m, 2H, SCH₂<u>CH₂</u>), 2.88 (t, 2H, J = 8.0 Hz, SCH₂), 3.81 (s, 3H, OMe), 5.31 (d, 1H, J = 4.4 Hz, H-4), 5.76 (d, 1H, J = 4.4 Hz, H-3), 6.90–6.95 (m, 4H, ArH), 7.14–7.33 (m, 9H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 14.6$ (Me), 22.7, 28.5, 29.3, 31.4 (CH₂), 34.5 (SCH₂), 55.2 (OMe), 63.7 (C-4), 83.9 (C-3), 114.2, 119.1, 120.6, 126.7, 127.9, 128.6, 130.3, 131.4,

133.3, 134.5, 156.5, 157.9 (aromatic carbons), 162.6 (CO, β -lactam) ppm.

1-(4-Methoxyphenyl)-4-phenyl-3-[4-(phenylthio)phenoxy]azetidin-2-one (5n, C₂₈H₂₃NO₃S) Cream solid; m.p.: 164– 168 °C; IR (KBr): $\bar{\nu} = 1740$ (CO, β-lactam) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.78$ (s, 3H, OMe), 5.30 (d, 1H, J = 4.3 Hz, H-4), 5.74 (d, 1H, J = 4.3 Hz, H-3), 6.66–6.68 (d, 2H, ArH), 7.03–7.09 (m, 3H, ArH), 7.17–7.36 (m, 13H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 55.3$ (OMe), 63.5 (C-4), 84.2 (C-3), 114.7, 116.2, 121.3, 126.3, 127.9, 128.0, 128.7, 129.6, 130.9, 131.4, 131.9, 133.3, 134.7, 136.1, 155.2, 158.3 (aromatic carbons), 162.6 (CO, β-lactam) ppm.

4-[[4-[[1-(4-Methoxyphenyl)-2-oxo-4-phenylazetidin-3-yl]-oxy]phenyl]thio]benzaldehyde (50, C₂₉H₂₃NO₄S) White solid; m.p.: 185–188 °C; IR (KBr): $\bar{\nu} = 1728$ (CHO), 1754 (CO, β-lactam), 2717, 2808 (CH, aldehyde) cm⁻¹; ¹H NMR (300 MHz): $\delta = 3.83$ (s, 3H, OMe), 5.15 (d, 1H, J = 4.6 Hz, H-4), 5.51 (d, 1H, J = 4.6 Hz, H-3), 6.81–6.96 (d, 2H, ArH), 7.14–7.25 (d, 2H, ArH), 7.25–7.49 (m, 9H, ArH), 7.65–7.68 (d, 4H, ArH), 9.91 (s, 1H, CHO) ppm; ¹³C NMR (75 MHz): $\delta = 56.1$ (OMe), 61.8 (C-4), 81.1 (C-3), 113.8, 115.9, 120.4, 126.8, 127.9, 128.2, 130.1, 130.8, 131.1, 132.0, 133.8, 134.2, 143.5, 150.9, 156.4, 158.4 (aromatic carbons), 162.3 (CO, β-lactam), 192.2 (CHO) ppm.

4-(4-Nitrophenyl)-3-phenoxy-1-[2-(phenylthio)pyridin-3-yl]azetidin-2-one (5p, C₂₆H₁₉N₃O₄S) White solid; m.p.: 193– 195 °C; IR (KBr): $\bar{\nu} = 1324$, 1528 (NO₂), 1616 (C=N, pyridine ring), 1748 (CO) cm⁻¹; ¹H NMR (300 MHz): $\delta = 5.21$ (d, 1H, J = 5.0 Hz, H-4), 5.47 (d, 1H, J = 5.0 Hz, H-3), 6.88–6.91 (m, 4H, ArH), 7.10 (d, 2H, ArH), 7.22–7.28 (m, 4H, ArH), 7.74–7.79 (m, 4H, ArH), 8.02–8.04 (m, 3H, ArH) ppm; ¹³C NMR (75 MHz): $\delta = 64.6$ (C-4), 83.9 (C-3), 115.9, 118.1, 118.9, 122.0, 124.8, 125.1, 125.6, 127.3, 129.7, 131.0, 135.7, 136.4, 138.5, 142.1, 148.6, 152.4, 157.8 (aromatic carbons), 164.3 (CO, β-lactam) ppm.

Acknowledgements Financial support from University of Hormozgan Research Council is gratefully acknowledged.

References

- Cojocel C (2008) Beta-lactam antibiotics. In: De Broe ME, Porter GA, Bennett WM, Deray G (eds) Clinical nephrotoxins. Springer, Boston, p 293
- 2. Page EI (1992) The chemistry of β -lactams. Blackie Academic and Professional, New York
- 3. Hwu JR, Ethiraj SK, Hakimelahi GH (2003) Mini Rev Med Chem 3:305

- 4. Long TE, Turos E (2002) Curr Med Chem Antiinfect Agents 1:251
- 5. Burnett DA (2004) Curr Med Chem 11:1873
- Carr M, Greene LM, Knox AJS, Lloyd DG, Zisterer DM, Meegan MJ (2010) Eur J Med Chem 45:5752
- 7. Mehta PD, Sengar NPS, Pathak AK (2010) Eur J Med Chem 45:5541
- Basu S, Banik BK (2017) In: Banik BK (ed) Beta-lactams: novel synthetic pathways and applications. Springer, Cham, p 285
- 9. Alcaide B, Almendros P, Aragoncillo C (2007) Chem Rev 107:4437
- 10. Ojima I, Delaloge F (1997) Chem Soc Rev 26:377
- 11. Palomo C, Oiarbide M (2010) In: Banik BK (ed) Topics in heterocyclic chemistry, vol 22. Springer, Berlin, p 211
- 12. Fu N, Tidwell TT (2008) Tetrahedron 64:10465
- 13. Zarei M (2013) J Chem Res 37:25
- 14. Zarei M (2013) Monatsh Chem 144:1021
- 15. Brandi A, Cicchi S, Cordero FM (2008) Chem Rev 108:3988
- 16. Zarei M (2012) J Chem Res 36:118
- 17. Zarei M (2014) Tetrahedron Lett 55:5354
- 18. Nahmany M, Melman A (2006) J Org Chem 71:5804
- 19. Zarei M (2017) J Heterocycl Chem 54:1161
- Keri RS, Hosamani KM, Shingalapur RV, Reddy HRS (2009) Eur J Med Chem 44:5123
- 21. Prasad DJC, Sekar G (2011) Org Lett 13:1008
- 22. Feng M, Tang B, Liang SH, Jiang X (2016) Curr Top Med Chem 16:1200
- 23. Bierbeek AV, Gingras M (1998) Tetrahedron Lett 39:6283
- 24. Correa A, Carril M, Bolm C (2008) Angew Chem Int Ed 47:2880

- 25. Rostami A, Rostami A, Ghaderi A (2015) J Org Chem 80:8694
- 26. Park N, Park K, Jang M, Lee S (2011) J Org Chem 76:4371
- 27. Firouzabadi H, Iranpoor N, Samadi A (2014) Tetrahedron Lett 55:1212
- 28. Qiao Z, Wei J, Jiang X (2014) Org Lett 16:1212
- 29. Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X (2013) Org Lett 15:2594
- 30. Li Y, Pu J, Jiang X (2014) Org Lett 16:2692
- 31. Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Trends Microbiol 144:398
- Chen D, Falsetti SC, Frezza M, Milacic V, Kazi A, Cui QC, Long TE, Turos E, Dou PQ (2008) Cancer Lett 268:63
- O'Driscoll M, Greenhalgh K, Young A, Turos E, Dickey S, Lim DV (2008) Bioorg Med Chem 16:7832
- 34. Jarrahpour A, Zarei M (2006) Molecules 11:49
- 35. Zarei M, Mohamadzadeh M (2011) Tetrahedron 67:5832
- 36. Jarrahpour A, Fadavi A, Zarei M (2011) Bull Chem Soc Jpn 84:320
- 37. Jarrahpour A, Zarei M (2007) Tetrahedron Lett 48:8712
- 38. Georg GI (1993) The organic chemistry of β -lactams. Verlag Chemie, New York
- 39. Zarei M (2014) Monatsh Chem 145:1495
- 40. Jarrahpour A, Zarei M (2009) Tetrahedron 65:2927
- 41. Zarei M (2017) J Chem Res 41:246
- 42. Akkurt M, Karaca S, Jarrahpour A, Zarei M, Buyukgungor O (2005) Acta Crystallogr Sect E 61:776
- Zarei M, Jarrahpour A, Ebrahimi E, Aye M, Torabi Badrabady SA (2012) Tetrahedron 68:5505
- 44. Jarrahpour A, Zarei M (2010) Tetrahedron 66:5017