Inorganica Chimica Acta 376 (2011) 238-244

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Syntheses, crystal structure and theoretical investigation of novel heteroleptic complexes of nickel(II) with *N*-R-sulfonyldithiocarbimate and phosphine ligands

Marcelo Ribeiro Leite Oliveira^{a,*}, Eduardo de Faria Franca^b, Celice Novais^b, Silvana Guilardi^b, Iterlandes Machado Jr.^a, Javier Ellena^c, Jorge Amim Jr.^a, Vito Modesto De Bellis^d, Mayura Marques Magalhães Rubinger^a

^a Departamento de Química, Universidade Federal de Viçosa, Viçosa MG, CEP 36571-000, Brazil

^b Instituto de Química, Universidade Federal de Uberlândia, Uberlândia MG, CEP 38408-100, Brazil

^c Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos SP, CEP 13500-970, Brazil

^d Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte MG, CEP 31270-901, Brazil

ARTICLE INFO

Article history: Received 4 March 2011 Received in revised form 6 June 2011 Accepted 10 June 2011 Available online 16 June 2011

Keywords: Dithiocarbimates Phosphines Nickel complexes Crystal structures

ABSTRACT

Five new complexes of general formula: [Ni(RSO₂N=CS₂)(dppe)], where $R = C_6H_5$ (1), 4-ClC₆H₄ (2), 4-BrC₆H₄ (3), 4-IC₆H₄ (4) and dppe = 1,2-bis(diphenylphosphino)ethane and [Ni(4-IC₆H₄SO₂N=CS₂)(PPh₃)₂] (5), where PPh₃ = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium *N*-R-sulfonyldithiocarbimate $K_2(RSO_2N=CS_2)$ and dppe or PPh₃ with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, ¹H NMR, ¹³C NMR and ³¹P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted *cis*-NiS₂P₂ square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H…Ni intramolecular short contact interactions were observed in the complexes **1–5**.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The interest in the syntheses and characterization of dithiocarbimate metal complexes is related to their similarities with the dithiocarbamate compounds, which have a wide range of applications. For example, dithiocarbamates are used in the rubber vulcanization process [1,2] as well as several dithiocarbamates salts and complexes have been used as fungicides [2,3]. In fact, recently it was demonstrated that dithiocarbimates are also fungicides and vulcanization accelerators [4,5]. Additionally, heteroleptic group 10 metal complexes with sulfonyldithiocarbimate and phosphines have shown interesting molecular electrical conducting and photoluminescent properties. Besides, their structures present rare C-H···M intramolecular short contact interactions [6,7].

Less than ten nickel(II) complexes of this class are structurally characterized: $[Ni(RSO_2N=CS_2)(PPh_3)_2]$ (R = 2-CH₃C₆H₄, 4-CH₃C₆ H₄, 4-BrC₆H₄, and 2,5-Cl₂C₆H₃) [8,9], $[Ni(RSO_2N=CS_2)dppe]$ (R = CH₃, CH₃CH₂, 2-CH₃C₆H₄ and 4-CH₃C₆H₄) [6,10]. Considering the need to increase the knowledge on the physical and chemical properties of this group of complexes, we have prepared five new compounds: $[Ni(RSO_2N=CS_2)(dppe)]$ R = C₆H₅ (1), 4-ClC₆H₄ (2), 4-BrC₆H₄ (**3**), 4-IC₆H₄ (**4**), and [Ni(4-IC₆H₄SO₂N=CS₂)(PPh₃)₂] (**5**). The complexes were obtained in the crystalline form by the reaction of NiCl₂·6H₂O with PPh₃ or dppe and the dithiocarbimate anions derived from sulfonamides. These complexes were characterized by IR, ¹H, ¹³C and ³¹P NMR, elemental analyses, single crystal X-ray diffraction techniques, and semiempirical quantum chemical calculations.

2. Experimental

2.1. Material and reagents

The solvents, carbon disulfide and potassium hydroxide were purchased from Vetec and used without further purification. The benzenesulfonamide, 4-chlorobenzenesulfonamide, 4-bromophe nylsulfonyl chloride, 4-iodophenylsulfonyl chloride, nickel(II) chloride hexahydrate, triphenylphosphine and 1,2-bis(diphenylphosphino)ethane were purchased from Aldrich. The 4-iodobenzenesu lphonamide and the 4-bromobenzenesulphonamide were prepared from the appropriate sulfonyl chloride as described elsewhere [11]. The *N*-R-sulfonyldithiocarbimate potassium salts dih ydrate were prepared in dimethylformamide from the sulfonamid es analogously as described in the literature [12,13]. Melting points were determined with a Mettler FP5 equipment. Microanalyses for

C, H and N were obtained from a Perkin–Elmer 2400 CHN. Nickel was analyzed by atomic absorption with a Hitachi Z-8200 Atomic Absorption Spectrophotometer. The IR spectra were recorded with a Perkin–Elmer 283 B infrared spectrophotometer using CsI pellets. The ¹H (400 MHz), ¹³C (100 MHz) and ³¹P (162 MHz) NMR spectra of the complexes were recorded at 300 K on a Bruker Advance RX-400 spectrophotometer in CDCl₃ with TMS (H₃PO₄ for ³¹P NMR spectra) as internal standard.

2.2. Syntheses

The syntheses were performed according to the Scheme 1. A solution of *N*-R-sulfonyldithiocarbimate dihydrate (1.0 mmol) in water (10 mL) was added to a suspension of the appropriate phosphine (2.0 mmol for PPh₃ and 1.0 mmol for dppe) in ethanol (40 mL). Nickel(II) chloride hexahydrate (1.0 mmol) was added to the suspension and the reaction mixture was stirred for six hours at room temperature. The color of the suspension changed from green to pink/red. The solid product was filtered, washed with distilled water and ethanol, and dried under reduced pressure for one day. The yield was *ca.* 80%. Suitable crystals for X-ray structure analysis were obtained after slow evaporation of solutions of the compounds in dichloromethane/methanol and few drops of water.

2.2.1. $[Ni(C_6H_5SO_2N=CS_2)dppe]$ (1)

Anal. Calc. C, 57.57; H, 4.25; N, 2.05; Ni, 8.53. Found: C, 57.19; H, 4.38; N, 2.04; Ni, 8.16%. Mp with decomposition (°C): 201.5–202.5. IR (most important bands) (cm⁻¹): 1436 *v*(C=N); 1310 *v*_{ass}(SO₂); 1151 *v*_{sym}(SO₂); 917 *v*_{ass}(CS₂) and 360 *v*(NiS). ¹H NMR (δ), *J*(Hz): 7.98–7.95 (m, 2H, H2 and H6 of the aromatic ring of the dithiocarbimato); 7.76–7.65 (m, 8H, H2 and H6 of the aromatic rings of dppe); 7.66–7.33 (m, 15H, H3, H4 and H5 of the aromatic rings of the dithiocarbimato and dppe); 2.34 (d, 4H *J*_{HP} = 17, CH₂CH₂). ¹³C{¹H} NMR (δ): 199.32 (N=CS₂); 142.46 (C1); 131.62 (C4); 128.16 (C3 and C5); 127.44 (C2 and C6). dppe signals: 132.88 (t, *J*_{CP} = 5.3, C2 and C6); 131.79 (s, C4); 129.35 (t, *J*_{CP} = 5.2, C3 and C5); 128.23 (t, *J*_{CP} = 22, C1); 26.01 (t, *J*_{CP} = 23, CH₂CH₂). ³¹*P NMR* (δ): 56.92 (s).

2.2.2. $[Ni(4-ClC_6H_4SO_2N=CS_2)dppe]$ (2)

Anal. Calc. C, 54.83; H, 3.90; N, 1.94; Ni, 8.12. Found: C, 54.69; H, 3.74; N, 1.83; Ni, 8.00%. Mp with decomposition (°C): 220.0–221.1. *IR* (most important bands) (cm⁻¹): 1443 *v*(C=N); 1308 *v*_{ass}(SO₂); 1147 *v*_{sym}(SO₂); 922 *v*_{ass}(CS₂) and 355 *v*(NiS). ¹H NMR (δ), *J*(Hz): 7,92–7,88 (m, 2H, H2 and H6 of the aromatic ring of the dithiocarbimato); 7.75–7.67 (m, 8H, H2 and H6 of the aromatic rings of dppe); 7.53–7.30 (m, 14H, H3, H4 and H5 of the aromatic rings of the dppe and H3 and H5 of the aromatic ring of the dithiocarbimato); 2.35 (d, 4H *J*_{HP} = 17, CH₂CH₂). ¹³C{¹H} NMR (δ): 200.25 (N=CS₂); 141.04 (C1); 137.84 (C4); 128.36 (C3 and C5); 129.08 (C2 and C6). dppe signals: 132.88 (t, *J*_{CP} = 5.3, C2 and C6); 131.88 (s, C4); 129.39 (t, *J*_{CP} = 5.2, C3 and C5); 128.20 (t, *J*_{CP} = 22, C1); 26.06 (t, *J*_{CP} = 23, CH₂CH₂). ³¹P NMR (δ): 57.23 (s).

2.2.3. $[Ni(4-BrC_6H_4SO_2N=CS_2)dppe]$ (3)

Anal. Calc. C, 51.65; H, 3.68; N, 1.83; Ni, 7.65. Found: C, 51.40; H, 3.55; N, 1.80; Ni, 7.90%. Mp with decomposition (°C): 206.5–208.5. IR (most important bands) (cm⁻¹): 1443 *v*(C=N); 1308 *v*_{ass}(SO₂); 1150 *v*_{sym}(SO₂); 922 *v*_{ass}(CS₂) and 358 *v*(NiS). ¹H NMR (δ), *J*(Hz): 7.85–7.81 (m, 2H, H2 and H6 of the aromatic ring of the dithiocarbimato); 7.71–7.67 (m, 8H, H2 and H6 of the aromatic rings of dppe); 7.51–7.45 (m, 14H, H3, H4 and H5 of the aromatic rings of the dppe and H3 and H5 of the aromatic ring of the dithiocarbimato); 2.35 (d, 4H *J*_{HP} = 17, CH₂CH₂). ¹³C{¹H} NMR (δ): 200.92 (N=CS₂); 141.58 (C1); 133.04 (C4); 131.45 (C3 and C5); 126.51 (C2 and C6). dppe signals: 132.88 (t, *J*_{CP} = 5.3, C2 and C6); 132.00 (s, C4); 128.52 (t, *J*_{CP} = 5.2, C3 and C5); 128.30 (t, *J*_{CP} = 22, C1); 26.57 (t, *J*_{CP} = 23, CH₂CH₂). ³¹P NMR (δ): 57.19 (s).

2.2.4. [Ni(4-IC₆H₄SO₂N=CS₂)dppe] (**4**)

Anal. Calc. C, 48.67; H, 3.47; N, 1.72; Ni, 7.21. Found: C, 48.40; H, 3.32; N, 1.92; Ni, 6.89%. Mp with decomposition (°C): 203.5–207.3. IR (most important bands) (cm⁻¹): 1463 v(C=N); 1301 v_{ass} (SO₂); 1120 v_{sym} (SO₂); 920 v_{ass} (CS₂) and 335 v(NiS). ¹H NMR (δ), *J*(Hz): 7,72–7,65 (m, 10H, H2 and H6 of the aromatic ring of the dithiocarbimato and dppe); 7.52–7.41 (m, 14H, H3, H4 and H5 of the aromatic rings of the dppe and H3 and H5 of the aromatic ring of the dithiocarbimato); 2.35 (d, 4H J_{HP} = 17, CH₂CH₂). ¹³C{¹H} NMR (δ): 200.58 (N=CS₂); 142.30 (C1); 137.31 (C3 and C5); 129.18 (C2 and C6); 98.79 (C4). dppe signals: 132.87 (t, J_{CP} = 5.3, C2 and C6); 131.87 (s, C4); 129.40 (t, J_{CP} = 5.2, C3 and C5); 128.25 (t, J_{CP} = 22 C1); 26.13 (t, J_{CP} = 23, CH₂CH₂). ³¹P NMR (δ): 58.46 (s).

2.2.5. $[Ni(4-IC_6H_4SO_2N=CS_2)(PPh_3)_2]$ (5)

Anal. Calc. C, 54.91; H, 3.64; N, 1.49; Ni, 6.24. Found: C, 54.85; H, 3.58; N, 1.43; Ni, 6.10%. Mp with decomposition (°C): 192.9–194.3. IR (most important bands) (cm⁻¹): 1451 ν (C=N); 1315 ν _{ass}(SO₂); 1151 ν _{sym}(SO₂); 933 ν _{ass}(CS₂) and 341 ν (*NiS*). ¹H NMR (δ): 7,75–7,26 (m, 34H, aromatic rings). ¹³C{¹H} NMR (δ): 141.99 (C1); 137.16 (C3 and C5); 128.57 (C2 and C6); 98.75 (C4) triphenylphosphine signals: 134.30 (C2 and C6); 130.75 (C4); 129.57 (C1); 128.37 (C3 and C5). ³¹P NMR (δ): 33.68 (s).

2.3. X-ray diffraction studies

Diffraction data for all crystals were collected on an Enraf–Nonius Kappa-CCD diffractometer using a graphite monochromator with Mo K α radiation (0.71073 Å), at room temperature for the complexes **1**, **4** and **5** and at lower temperature for the complexes **2** and **3**. Data collections were made using the collect program [14] up to 50° in 2 θ with redundancy of four. Final unit cell parameters were based on all reflections. Integration and scaling of the reflections, correction for Lorentz and polarization effects were performed with the HKL DENZO-SCALEPACK system of programs [15]. Multi-scan absorption corrections were applied for the complexes **1**, **2** and **4** and numerical absorption corrections (GAUSSIAN) were applied for the complexes **3** and **2** using the program SORTAV [16].

1 (R = C₆H₅), 2 (R = 4-ClC₆H₄), 3 (R = 4-BrC₆H₄), 4 and 5 (R = 4-IC₆H₄)

Structures were solved by direct methods (SHELXS-97) and refined (SHELXL-97) by full-matrix least-squares on all F^2 data [17]. All the hydrogen atoms were placed in geometrically idealized positions [17]. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. For **2**, the phenyl rings C14–C19 and C20–C25 of the dppe ligand were disordered over two different orientations with occupancy of 50%. In complex **3**, the phenyl ring C8–C13 of the dppe ligand was disordered over two sites with occupancy factors of 60% and 40%. In complex **5**, the phenyl ring C2–C7 and iodine atom of the dithiocarbimato ligand were disordered over two sites with occupancies 70% and 30%. For all disordered rings the bond lengths C_{ar}–C_{ar} and angles C_{ar}–C_{ar} were fixed in 1.39 Å and 120.0°, respectively.

The absolute configuration of the compounds **1** and **4** were established by evaluation of the anomalous dispersion effects [18]. Structural diagrams were drawn using ORTEP3 [19] and the program WINGX 1.70.01 [20] was used to prepare materials for publication. Crystal data and details on data collection and refinement are summarized in Table 1. Selected bond and angles are given in Table 2.

2.4. Theoretical calculations

The structures of the metal complexes **1–5** as determined by X-ray crystallography analysis were fully optimized with the PM6 semiempirical Hamiltonian [21] implemented in the MOPAC2009 software package [22]. The calculations were performed for the isolated complexes and their ligands using a SCF criterion of 0.0001 kcal/mol. For all complexes, the geometry and charge drifts were evaluated before and after the complex formation.

3. Results and discussion

The complexes 1-5 were prepared as shown in Scheme 1. They are quite stable at the ambient conditions. The dppe complexes

Table 1

Crystallographic data and structure refinement summary for complexes 1-5.

Table 2

Selected geometrical	parameters (,).
----------------------	-----------------

	1	2	3	4	5
Bond length	(Å)				
Ni-S1	2.1870(6)	2.1884(5)	2.1889(8)	2.191(1)	2.184(1)
Ni-S2	2.2083(7)	2.2078(5)	2.2035(8)	2.1969(1)	2.2203(9)
Ni-P1	2.1659(7)	2.1754(4)	2.1681(7)	2.153(1)	2.2203(9)
Ni-P2	2.1650(7)	2.1728(4)	2.1703(8)	2.163(1)	2.2269(9)
C1-S1	1.744(2)	1.739(2)	1.7373(3)	1.724(4)	1.738(3)
C1-S2	1.746(3)	1.740(2)	1.735(3)	1.739(4)	1.735(3)
C1-N	1.290(3)	1.299(2)	1.303(3)	1.317(5)	1.295(4)
Bond angle(°)				
S1-Ni-S2	79.24(3)	79.02(2)	79.17(3)	79.79(4)	78.16(3)
P1-Ni-P2	86.57(3)	87.93(2)	88.00(3)	87.90(4)	98.87(3)
P1-Ni-S1	97.67(3)	94.693(7)	95.68(3)	94.64(4)	91.21(4)
P2-Ni-S2	96.53(3)	98.66(2)	97.52(3)	97.69(4)	92.53(4)
S1-C1-S2	106.7(1)	107.02(9)	107.5(1)	108.7(2)	106.2(2)
S1-C1-N	132.3(2)	131.1(1)	130.6(2)	131.6(3)	131.4(3)
S2-C1-N	120.8(2)	121.7(1)	121.9(2)	119.7(3)	122.4(3)
C1-N-S3	125.3(2)	120.6(1)	120.6(2)	122.4(3)	121.6(2)

1–4 are soluble in acetonitrile, dimethylformamide, dimethylsulfoxide, chloroform and dichloromethane, and insoluble in water, methanol and ethanol. The complex **5** showed very little solubility in chloroform and dichloromethane and is insoluble in the other above mentioned solvents.

There are no strong or medium bands in the 1400–1600 cm⁻¹ region in the IR spectra of the potassium dithiocarbimates related to the complexes **1–5**, and their *v*CN band was observed around 1260 cm⁻¹ [23,24]. This low value indicates a great contribution of the canonical forms (a) and (b) for the resonance hybrid (Scheme 2). A strong band observed around 1455 cm⁻¹ in the spectra of the complexes **1–5** was assigned to the *v*CN. The *v*_{asym}CS₂ was observed at higher frequency in the spectra of the potassium salts of dithiocarbimates (*ca.* 955 cm⁻¹) [23,24] than in the spectra of

Complex	1	2	3	4	5
Formula	C33H29NNiO2P2S3	C33H28CINNiO2P2S3	C33H28BrNNiO2P2S3	C33H28INNiO2P2S3	C43H34INNiO2P2S3
Formula weight	688.40	722.84	767.30	814.29	940.44
Crystal system	orthorhombic	monoclinic	monoclinic	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	P2 ₁ /c	P21/c	$P2_{1}2_{1}2_{1}$	Pbca
T (K)	293(2)	210(2)	210(2)	293(2)	293(2)
Crystal size (mm)	$0.20 \times 0.20 \times 0.20$	$0.353 \times 0.328 \times 0.274$	$0.417 \times 0.132 \times 0.108$	$\textbf{0.40} \times \textbf{0.40} \times \textbf{0.40}$	$0.244\times0.128\times0.064$
Unit cell dimensions (Å)	a = 12.3795(2)	a = 10.8105(2)	a = 10.77 81(2)	a = 10.1544(2)	a = 16.5156(2)
	b = 12.4137(2)	b = 27.6195(6)	b = 27.2057(6)	b = 15.1327(3)	b = 18.6092(3)
	c = 19.7795(4)	c = 10.9922(2)	c = 11.4335(3)	c = 21.9260(5)	c = 25.5899(5)
β (°)		95.354(1)°	95.389(1)°		
V (Å ³)	3039.62(9)	3267.74(11)	3337.78(13)	3369.23(12)	7864.9(2)
Ζ	4	4	4	4	8
D_{calc} (g cm ⁻³)	1.504	1.469	1.527	1.605	1.588
μ (Mo K $lpha$) (mm $^{-1}$)	0.983	0.997	2.093	1.804	1.558
F(0 0 0)	1424	1488	1560	1632	3792
Transmission factors: minimum, maximum	0.8279, 0.9116	0.994, 1.008	0.59, 0.856	0.982, 1.021	0.752, 0.904
θ Range for data collection (°)	3.11-27.48	1.47-27.48	2.91-26.373	3.05-27.48	2.94-26.03
Index range	$-16 \leqslant h \leqslant 16$	$-13 \leqslant h \leqslant 14$	$-11 \leqslant h \leqslant 22$	$-12 \leqslant h \leqslant 13$	$-15 \leqslant h \leqslant 20$
	$-16 \leqslant k \leqslant 11$	$-35 \leqslant k \leqslant 33$	$-32 \leqslant k \leqslant 34$	$-18 \leqslant k \leqslant 19$	$-22\leqslant k\leqslant 14$
	$-25 \leqslant l \leqslant 25$	$-14 \leqslant l \leqslant 14$	$-13 \leqslant l \leqslant 14$	$-28 \leqslant l \leqslant 28$	$-31 \leqslant l \leqslant 31$
Reflections collected	20659	26826	35481	21929	40896
Independent reflections (R_{int})	6940 (0.0533)	7372 (0.0450)	6789 (0.0672)	7707 (0.0556)	7736 (0.0726)
Reflections $l > 2\sigma(l)$	5913	6731	4837	6201	5208
Number of parameters refined	379	376	382	388	481
Final R for $I > 2\sigma(I)^a$	$R_1 = 0.0336$	$R_1 = 0.0309$	$R_1 = 0.0380$	$R_1 = 0.0379$	$R_1 = 0.0402$
	$wR_2 = 0.0664$	$wR_2 = 0.0726$	$wR_2 = 0.0940$	$wR_2 = 0.0740$	$wR_2 = 0.1031$
R Indices (all data) ^a	$R_1 = 0.0477$	$R_1 = 0.0351$	$R_1 = 0.0662$	$R_1 = 0.0596$	$R_1 = 0.0757$
	$wR_2 = 0.0705$	$wR_2 = 0.0750$	$wR_2 = 0.1080$	$wR_2 = 0.0824$	$wR_2 = 0.1233$
Absolute structure parameter	-0.001(9)	-	-	-0.012(13)	-
Goodness-of-fit (GOF) on F^2	1.030	1.070	1.049	1.031	1.068
Residual electron density (e $Å^{-3}$)	0.340 and -0.411	0.359 and -0.339	0.606 and -0.648	0.414 and -0.787	0.698 and -0.775

^a $R_1 = \sum (||F_0| - |F_c||) / \sum |F_0|; wR_2 = [\sum w (|F_0^2| - |F_c^2|)^2 / \sum w |F_0^2|^2]^{1/2}.$

Scheme 2. Three canonical forms for N-R-sulfonyldithiocarbimate anion.

Fig. 1. X-ray molecular structure of 1. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2. X-ray molecular structure of **2**. Displacement ellipsoids are shown at the 50% probability level.

the complexes (*ca*. 925 cm⁻¹). The shifts observed in the $v_{asym}CS_2$ and vCN in the spectra of the complexes when compared with the spectra of the ligands, are consistent with the increased importance of the canonical form (*c*) after complexation (Scheme 2). The spectra of the complexes also show the expected medium band in

Fig. 3. X-ray molecular structure of 3. Displacement ellipsoids are shown at the 50% probability level.

Fig. 4. X-ray molecular structure of 4. Displacement ellipsoids are shown at the 50% probability level.

the 300–400 cm⁻¹ range assigned to the NiS vibrations [25]. The vNiP band was not observed above 200 cm^{-1} .

The NMR spectra of **1–5** were typical for diamagnetic species. The ¹H NMR spectra of the complexes showed the signals for the hydrogen atoms of the 1,2-bis(diphenilphosphino)ethane (1-4) and the triphenylphosphine (5) groups. The aromatic ¹H NMR signals of the dithiocarbimate anions were superimposed by the phosphine ligands. The integration curves of the PCH₂CH₂P signals on the ¹H NMR spectra of **1–4**, compared to the areas of the aromatic rings signals (dppe plus XC₆H₄) were consistent with a 1:1 proportion between the 1,2-bis(diphenylphosphino)ethane ligand and the dithiocarbimate anions. The ¹³C NMR spectra of compounds 1-4 showed all the expected signals. Due the very low solubility of **5**, the N=CS₂ (C1) signal was not observed in its 13 C NMR spectrum. Considering that the canonical form (c) (Scheme 2) is more important for the complexes than for the ligands, then the C1 carbon atom should be more shielded in the complexes. As expected, in the ¹³C NMR spectra of compounds **1–4** the (C1) signal was shifted to higher field if compared with the spectra of the ligands.

Fig. 5. X-ray molecular structure of 5. Displacement ellipsoids are shown at the 50% probability level.

The ³¹P NMR spectra obtained at 300 K exhibited only one signal at *ca*. 56 δ for the complexes **1–4** and at *ca*. 33 δ for the triphenylphosphine complex **5**. These chemical shifts are in accordance to those observed for analogous complexes: [Ni(RSO₂N=CS₂)(dppe)] (R = CH₃, CH₃CH₂ and 2-CH₃C₆H₄) [10] and [Ni(PPh₃)₂ (RSO₂N=CS₂)] (R = 2-CH₃C₆H₄, 4-CH₃C₆H₄ and 4-BrC₆H₄) [8]. Although the phosphorus atoms are not equivalent, no split was observed at 300 K as observed for analogous complexes at 240 K [10].

The X-ray molecular structures of the complexes here studied are illustrated in Figs. 1–5. The complexes crystallize in monoclinic or orthorhombic system in $P_{1/c}$ (complexes **2** and **3**), $P_{21}_{21}_{21}$ (complexes **1** and **4**) or *Pbca* (complex **5**) space groups. In all complexes, the nickel atom is coordinated by two sulfur atoms of the dithiocarbimato ligand and by two phosphorus atoms of the phosphines. The *cis*-NiS₂P₂ fragment have a distorted square planar geometry due to the small angle S1–Ni–S2 (*ca*. 79°) associated with the bidentate chelation of the dithiocarbimato moiety.

The Ni–P distances (Table 2) are symmetric in the complexes 1– 5 (the difference between Ni–P1 and Ni–P2 is less than 0.01 Å), as reported for similar compounds [10]. The P–Ni–P angles in 1–4 (*ca.* 87.5°) are shorter than in 5 (98.87°) due to the steric repulsion

Table 4	
Intra and intermolecular interactions parameters ^a (Å, °) for 1-5	i .

Donor-WAcceptor	D-W	WA	D…A	DWA
1				
C7-H701	0.93	2.48	2.874(4)	106
C9-H9S1	0.93	2.77	3.301(3)	117
C28-H28…O1 ⁱ	0.93	2.59	3.401(4)	147
C15-H15…Ni	0.93	2.83	3.396(3)	120
2				
C9-H9S1	0.93	2.73	3.296(2)	120
C32-H32b…O2 ⁱ	0.97	2.40	3.350(2)	168
C18'…Cl ⁱⁱ	-	-	3.244(1)	-
*C15-H15Ni	0.93	2.71	3.28(1)	120
*C15'-H15'Ni	0.93	2.83	3.36(1)	118
3				
C3_H301	0.93	2 57	2 937(4)	104
C9_H9S1	0.93	2.57	3 29(2)	126
C12-H1202 ⁱ	0.93	2.55	3.29(1)	147
C32-H32bO2 ⁱⁱ	0.97	2.44	3 397(4)	168
C5-BrCg ⁱⁱⁱ	1 895(3)	3 4895(17)	5.019(4)	1354(1)
C15-H15Ni	0.93	2.68	3.259(4)	121
4				
4 C2 U2 O1	0.02	2.56	2 014(5)	102
	0.95	2.50	2.914(5)	105
$C4 = \Pi 4 \ U1$	0.95	2.59	2,270(6)	139
$C17 = H17 \cdots O2$ $C21 = H21 = O2^{iii}$	0.93	2.55	2.279(0)	150
$C_{22} \sqcup_{222} N^{iii}$	0.93	2.55	2.432(3)	121
C22 U225 S2 ⁱⁱⁱ	0.97	2.55	2.209(3)	116
C5 L 01 ^{iv}	0.97 2.102(4)	2.03	5.394(3) 5.164(4)	172 0(2)
	2.105(4)	3.070(4)	2.104(4)	175.0(2)
C13-H13INI	0.95	2.85	5.405(5)	120
5			0.00(4)	
C3-H3-01	0.93	2.51	2.90(1)	105
C29-H2901	0.93	2.46	3.320(4)	154
C5–I…Cg"	2.05(1)	3.720(3)	5.58(1)	148.7(3)
C5'-I'Cg"	2.15(3)	3.682(6)	5.47(3)	137.4(7)
C15-H15Ni	0.93	2.73	3.339(4)	124
C33-H33-Ni	0.93	2.81	3.384(3)	121

Cg: centroid generated by the aromatic ring C26–C31; *disordered atom. ^a Symmetry codes for **1**: (i) x - 1/2, 5/2 - y, 2 - z; for **2**: (i) 1 + x, y, z; (ii) x, 1/2 - y, z - 1/2; for **3**: (i) 1 + x, 3/2 - y, z - 1/2; (ii) 1 + x, y, z; (iii) x, 1/2 - y, -1/2 + z; for **4**: (i) 1/2 + x, 1/2 - y, 1 - z; (ii) -1/2 + x, 1/2 - y, 1 - z; (iii) 1 - x, 1/2 + y, 1/2 - z; (iv) -1 + x, y, z; for **5**: (i) -1/2 + x, y, 1/2 - z; (ii) 1/2 - x, -y, 1/2 + z.

Table 5

Root mean square deviation (Å) of crystallographic and theoretical structures after fitting the second structure on the first one.

Complex	All structure fitting	Fitting between planar fragment NCS_2NiP_2
1	0.359	0.053
2	0.480	0.083
3	0.770	0.088
4	0.457	0.068
5	0.384	0.078

Table 3

Comparison between selected crystallographic and spectroscopic data for the CN bond in the complexes 1-5 and related compounds.

Compounds	CN length (Å)	vCN (cm ⁻¹)	¹³ C NMR (NCS ₂) (ppm)	Charge on C(1)
$K_2 (C_6H_5SO_2N=CS_2) \cdot 2H_2O^{a,b}$	1.342(9)	1267	223.19	0.639
$[Ni(C_6H_5SO_2N=CS_2)(dppe)]$ (1)	1.290(3)	1452	199.32	0.397
K_2 (4-ClC ₆ H ₄ SO ₂ N=CS ₂)·2H ₂ O ^{a,b}	1.354(5)	1261*	225.72	0.654
$[Ni(4-ClC_6H_4SO_2N=CS_2)(dppe)]$ (2)	1.299(2)	1430	200.25	0.395
K_2 (4-BrC ₆ H ₄ SO ₂ N=CS ₂)·2H ₂ O ^a	_	1261*	225.74	0.651
$[Ni(4-BrC_6H_4SO_2N=CS_2)(dppe)]$ (3)	1.303(3)	1443	200.92	0.394
$K_2 [4-IC_6H_4SO_2N=CS_2] \cdot 2H_2O^c$	_	1280	225.62	0.648
$[Ni(4-IC_6H_4SO_2N=CS_2)(dppe)]$ (4)	1.317(5)	1463	200.58	0.396
$[Ni(4-IC_6H_4SO_2N=CS_2)(PPh_3)_2]$ (5)	1.295(4)	1451	not observed	0.392

This work.

^a Ref. [24].

^b Ref. [13].

^c Ref. [23].

Table 6
Atomic charges on the atoms of the fragment $N=CS_2$ of the dithiocarbimate moiety.

Complex	Before complexation			After comple	omplexation			
	S1	S2	C1	N	S1	S2	C1	N
1	-0.988	-0.848	0.639	-0.926	-0.560	-0.429	0.397	-0.819
2	-0.975	-0.841	0.654	-0.945	-0.540	-0.442	0.395	-0.825
3	-0.974	-0.838	0.651	-0.942	-0.543	-0.442	0.394	-0.824
4	-0.960	-0.841	0.648	-0.944	-0.552	-0.442	0.396	-0.824
5	-0.960	-0.841	0.648	-0.944	-0.547	-0.432	0.392	-0.818

between the phenyl rings of the PPh₃. This effect is also responsible for the greater Ni–P distances in bis(triphenylphosphine) complex **5** (*ca.* 2.22 Å) than in the diphosphine complexes **1–4** (*ca.* 2.17 Å). The Ni–S bonds in complexes **1–5** are in the same range of analogous compounds [10].

In all complexes the C–S bond lengths, of the NCS₂ fragment, are nearly equal and are slightly shorter than typical C–S single bonds (*ca.* 1.81 Å) due to partial π -delocalization in the S–C–S group. The spectroscopic data and X-ray experiments showed that the C–N bond have a greater double bond character and are shorter than in the free ligands for **1** and **2** [13] (Table 3). Similar behavior is observed for others nickel complexes with dithiocarbimato ligands [10].

The S1–C1–N angles are significantly greater than S2–C1–N due to the repulsive interaction between the RSO₂ group and S1 atom, which are in *cis* position in relation to the C1–N bond. The torsion angles of C1–N–S3–C2 describing the conformation of the dithiocarbimato ligand are almost equal in the compounds **2**, **3** and **4** bearing halogen atoms in the RSO₂ group $[-70.0(2)^\circ, -68.4(3)^\circ$ and $-70.5(4)^\circ$, respectively]. The complex **1** (with no substituent in the phenyl ring) has similar conformation with a dihedral angle of $-38.3(3)^\circ$. This angle in the complex **5** [64.2(5)° for the most occupied position] agrees, in modulus, with observed values in other analogous complexes [8].

The intra and intermolecular contacts are shown in Table 4. All complexes exhibit intramolecular interactions and C–H···O intermolecular contacts. The complexes which have $4-XC_6H_4$ fragments show intermolecular interactions involving the halogen atoms in [0 0 1] (compounds **2**, **3** and **5**) or [1 0 0] (compound **4**) directions. The monoclinic compounds (**2** and **3**) present a weak C_{sp3} –H···O intermolecular interaction involving the same atoms (C32–H32···O2). Only compound **4** have intermolecular interactions C–H···N and C–H···S.

C15–H···Ni intramolecular interactions with distances between 2.68 and 2.85 Å (angles 117.9–123.8°) were observed in compounds **1–5**. These are rare cases of short contact interactions in planar d⁸ systems [6,7,26]. Interactions characterized by M···H distances between 2.3 and 2.9 Å might be important for catalytic applications [26]. Compound **3** presented the shorter CH···Ni distance (2.68 Å) as shown in Table 4.

The semiempirical quantum chemical calculations reproduced correctly the crystallographic structure, showing a small root mean square deviation (RMSD) as displayed in Table 5. Dihedral angles analysis showed that complexes conformations are affected by the presence of the halogen, independently of the physical state of theses compounds. The complexes **2** and **3** (crystallized in the monoclinic system) presented greater RMSD. These high correlations between theoretical and experimental results suggest that the quantum chemical calculations can be used to describe the electronic structure of the studied complexes.

We have related the decrease of the distance of the C=N bond of dithiocarbimate metal complexes when compared to free ligands to the raise in the importance of the canonical form (c) upon complexation (Scheme 2) [8–10]. The shift of the signal of C1 to higher fields in the ¹³C NMR, and the increase of the wavenumber of the

*v*C=N band in the IR spectra of the complexes have been explained in the same terms. The quantum chemical calculations for compounds **1–5** are in accord with these assumptions. Before the complexation there was a negative charge density concentrated around N, S1 and S2 atoms of the *N*-R-sulfonyldithiocarbimate ligands, correlated to the canonical forms (a) and (b) (Scheme 2). After the complexation, a large drift of electrons from the SO₂NCS₂ fragment to the Ni atom was observed. The major charge variation occurs on the sulfur atoms bonded to the Ni atom, as shown on Table 6. It is interesting to note that the charge in the carbon atom of the N=CS₂ group change from *ca*. 0.65–0.39. This fact is in accord with the ¹³C NMR data (Table 3) for an increase of the shielding in this atom leads to a shift in the signal of the dithiocarbimate carbon from *ca*. δ 225 in the spectra of the ligands to *ca*. δ 200 in the spectra of the complexes.

An electron drift from the halogen atoms is also observed, but there are no significant charge transfer involving the phenyl rings. The only significant electron drift on the dppe and PPh₃ ligands occurs from the phosphorus atoms to the metal. The calculated charges on the phosphorus atoms of the dppe and PPh₃ are *ca.* 0.39 and 0.38, respectively. These values raise to *ca.* 0.84 for dppe and 0.83 for PPh₃ after the complexation.

4. Conclusion

The five new complexes obtained in this work showed interesting relation between spectroscopic and crystallographic data. For all of the complexes it was observed an increase in the shielding of the carbon of the dithiocarbimate group $(S_2C=N)$ in the ¹³C NMR spectra, the increase of the wavenumber of the vC=N in the IR spectra and the shortening of the N=C bond with respect to the corresponding data for the free ligands. Semiempirical quantum chemical calculation confirmed the charge distribution and the bond characteristics initially suggested by the spectroscopic experiments. The charge distribution in S₂C=N group before and after the complexation are in accord with the spectroscopic and crystallographic data and confirm the increase of the importance of the canonical structure (c) in complexes 1-5 when compared to the parent potassium dithiocarbimates. The complexes showed interesting inter and intramolecular interactions. Especially rare cases of C-H...Ni short contact interactions were observed in 1-5 complexes involving one of the ortho-hydrogen atoms of the aromatic rings of the phosphines 1-4 and two ortho-hydrogens in the compound 5. Compound **3** presented the shorter CH...Ni distance (2.68 Å).

Acknowledgements

The authors gratefully acknowledges financial support from CNPq and FAPEMIG.

Appendix A. Supplementary material

CCDC 812069, 812070, 812071, 812072 and 812073 contain the supplementary crystallographic data for complexes 1, 2, 3, 4 and 5,

respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2011. 06.025.

References

- [1] P.J. Nieuwenhuizen, A.W. Ehlers, J.G. Haasnoot, S.R. Janse, J. Reedijk, E.J. Baerends, J. Am. Chem. Soc. 121 (1999) 163.
- [2] D. Hogarth, Prog. Inorg. Chem. 53 (2005) 71.
- [3] A.K. Malik, W. Faubel, Pestic. Sci. 55 (1999) 965.
- [4] L.C. Alves, M.M.M. Rubinger, R.H. Lindemann, G.J. Perpétuo, J. Janczak, L.D.L. Miranda, L. Zambolim, M.R.L. Oliveira, J. Inorg. Biochem. 103 (2009) 1045.
- [5] L.M.G. Cunha, M.M.M. Rubinger, J.R. Sabino, L.L.Y. Visconte, M.R.L. Oliveira, Polyhedron 29 (2010) 2278.
- [6] N. Singh, B. Singh, K. Thapliyal, M.G.B. Drew, Inorg. Chim. Acta 363 (2010) 3589.
- [7] N. Singh, B. Singh, S.K. Singh, M.G.B. Drew, Inorg. Chem. Commun. 13 (2010) 1451.
- [8] M.R.L. Oliveira, H.P. Vieira, G.J. Perpétuo, J. Janczak, V.M. De Bellis, Polyhedron 21 (2002) 2243.
- [9] C. Novais, S. Guilardi, I. Machado Jr., M.R.L. Oliveira, Acta Crystallogr., Sect. E 63 (2007) m1981.

- [10] M.R.L. Oliveira, J. Amim Jr., I.A. Soares, V.M. De Bellis, C.A. Simone, C. Novais, S. Guilardi, Polyhedron 27 (2008) 253.
- A.I. Vogel, A Textbook of Practical Organic Chemistry Including Qualitative [11] Organic Analysis, third ed., Longmans, London, 1956, p. 543.
- K. Hartke, Archiv der Pharmazie 299 (1966) 164. [12]
- [13] H.U. Hummel, U.Z. Korn, Naturforsch B 44 (1989) 24.
- [14] Enraf-Nonius collect, Nonius BV, Delft, The Netherlands, 1997-2000.
- [15] Z. Otwinowski, W. Minor, in: C.W. Carter Jr., R.M. Sweet (Eds.), Methods in Enzymology, vol. 276, Academic Press, New York, 1997, p. 307.
- [16] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
- [17] G.M. Sheldrick, SHELXS-97, SHELXL-97, Programs for Crystal Structure Solution and Refinement, Göttingen University, Göttingen, Germany, 1997.
- [18] H.D. Flack, Acta Crystallogr., Sect. A 39 (1983) 876. [19] L.J. Farrugia, ORTEP-3 for Windows, J. Appl. Crystallogr. 30 (1997) 565.
- [20] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [21] J.J.P. Stewart, J. Mol. Model. 13 (2007) 1173.
- [22] J.J.P. Stewart, MOPAC2009, Stewart Computational Chemistry, Colorado Springs,
- CO, USA, 2008.
- [23] E.F. Franca, M.R.L. Oliveira, S. Guilardi, R.P. Andrade, R.H. Lindemann, J. Amim Jr., J. Ellena, V.M. De Bellis, M.M.M. Rubinger, Polyhedron 25 (2006) 2119.
- [24] M.R.L. Oliveira, V.M. De Bellis, Trans. Met. Chem. 24 (1999) 127 [25] K. Nakamoto, Infrared and Raman of Inorganic and Coordination Compounds,
- third ed., John Wiley and Sons, Inc., New York, 1978, p. 339. [26] H.V. Huynh, L.R. Wong, P.S. Ng, Organometallics 27 (2008) 2231.