

Tetrahedron Letters 41 (2000) 6769-6773

TETRAHEDRON LETTERS

Synthesis of picropodophyllin homolactone

Emmanuel Roulland,^a Emmanuel Bertounesque,^{a,*} Christiane Huel^b and Claude Monneret^{a,*}

^aUMR 176 CNRS-Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France ^bU 350 INSERM-Institut Curie, Bâtiment 110, Université Paris XI, F-91405 Orsay Cedex, France

Received 24 May 2000; accepted 5 July 2000

Abstract

Based on a Wittig olefination strategy, the first synthesis of picropodophyllin homolactone 2 is described in nine steps and 30% overall yield from podophyllotoxine 1. The relative configuration of 2 was unambiguously determined using 2D NOESY NMR and a Monte Carlo search protocol. This work corrects the literature on the synthesis of 2. © 2000 Elsevier Science Ltd. All rights reserved.

We have been engaged in activities¹ in the area of podophyllotoxin $1,^2$ a natural product endowed with potent antimitotic activity. The *trans*-fused lactone moiety is being considered as an important factor for displaying significant cytotoxic activity,³ the *cis* analogues being less potent. Less is known concerning six-membered ring lactone analogues. In 1985, Anjanamurthy and Lokanatha Rai⁴ reported the synthesis of picropodophyllin homolactone **2**. However, it appeared to us that the IR absorption at 1760 cm⁻¹ was not consistent with a δ -lactone functionality. In this communication, we describe the first synthesis of picropodophyllin homolactone **2** via a route which would accomodate a good degree of flexibility with respect to the size and nature of the D-ring.

The synthesis of picropodophyllin homolactone **2** began with podophyllotoxin **1**, which was transformed into 3^5 (97%) through silylation (TBSOTf, 2,6-lutidine, CH₂Cl₂, 0°C) of the benzylic

^{*} Corresponding authors. Tel: +33-(0)1-42-34-66-55; fax: +33-(0)1-42-34-66-31; e-mail: claude.monneret@curie.fr

alcohol (Scheme 1). Subsequent hydrolysis of the γ -lactone (2N NaOH, THF, 0°C) afforded the resulting hydroxy-acid 4 (quantitative yield) with epimerization at the C₂ stereocenter. Oxidation of 4 to the low soluble lactols 5 (Dess–Martin periodinane, CH₂Cl₂, 25°C) followed by esterification (CH₃I, K₂CO₃, acetone, 25°C) provided the desired aldehyde 6 (87% yield for the two steps). Similar lactol compounds have been used in the asymmetrical total synthesis of (–)-podophyllotoxin reported by Bush and Jones.⁶ Alternatively, according to earlier observations,⁷ transesterification of 3 under equilibrating conditions (K₂CO₃ cat., MeOH, 25°C) resulted in a mixture of picropodophyllin derivative 7⁵ (43%) and methyl picropodophyllate derivative 8 (57%). Usefully, the overall yield of 8 was improved to 86%, since it was possible to recycle (three cycles) the undesired lactone 7 by conversion into the methyl ester 8 using the same procedure. A Swern oxidation of the resulting alcohol also afforded the subgoal 6. The one-carbon homologation and the completion of the synthesis were then addressed (Scheme 2).

Scheme 1. (a) TBSOTf, 2,6-lutidine, CH_2Cl_2 , 0°C. (b) NaOH, THF/H₂O, 0°C. (c) Dess–Martin periodinane, CH_2Cl_2 , 25°C. (d) CH_3I , K_2CO_3 , acetone, 25°C. (e) K_2CO_3 cat., MeOH, 25°C. (f) (ClCO)₂, DMSO, Et₃N, CH_2Cl_2 , -78 to 25°C

Scheme 2. (a) Ph₃P+CH₂OCH₃ Cl⁻, *n*-BuLi, THF, -40 to 25°C. (b) 30% HClO₄/H₂O, Et₂O, 25°C. (c) NaBH₄, MeOH, 25°C. (d) SiO₂, MeOH, reflux

The enol ether functionality of **9** was stereoselectivity incorporated (84% overall yield, *E:Z* ratio = 60:40 by ¹H NMR analysis) by treating **6** with methoxymethylenetriphenylphosphonium chloride and *n*-BuLi.⁸ A subsequent hydrolysis of **9** (30% HClO₄/H₂O, Et₂O, 25°C) afforded an inseparable 1:5 mixture of the stable γ -lactols **10** (55%). This transformation accomplished not only the two deprotection operations, but also the unwanted epimerization at C₄. Attempts to avoid the acidic removal of the TBS ether protecting group by the method of Yamamoto⁹ (TBAF, BF₃-Et₂O) also led to **10**, but in low yield. Sequential reduction (NaBH₄, MeOH, 25°C) of **10** and acidic treatment of the resultant diol gave a mixture of the anticipated¹⁰ γ -lactone **11** (83%), encompassing a neopodophyllotoxin-like structure,¹¹ and hydroxy-ester **12** (9%). The utility of **11**¹² as a viable intermediate in the synthesis of **2** was not examined. Consequently, we chose to subject aldehyde **6** to a Wittig methylenation (76%) in order to suppress the problematic acidic hydrolysis of the enol ether **9** (Scheme 3).

Scheme 3. (a) $Ph_3P^+CH_3 I^-$, *n*-BuLi, THF, -78°C. (b) TBAF, THF, 25°C. (c) 9-BBN, THF then 30% H_2O_2/H_2O , phosphate buffer, pH 7, MeOH, 25°C. (d) NaOH, THF/H₂O, 0°C. (e) DCC, 4-DMAP, THF, 25°C

Attempted direct alkene hydroboration of 13 by means of conventional reagents (9-BBN, BH₃/SMe₂) failed to provide the desired TBS ether analogue of 15. However, diol 15 was conveniently prepared in 56% overall yield by deprotection of the sterically hindered TBS ether and subsequent hydroboration (9-BBN, THF, 25°C) of the olefin 14. The coupling constants of 15 $(J_{1,2}=8.9, J_{2,3}=3.5 \text{ and } J_{3,4}=4.4 \text{ Hz})$ were similar to those found for methyl picropodophyllate.¹³

The synthesis was then completed by saponification of **15**, giving the crude δ -hydroxy-acid, which was immediately treated with DCC and 4-DMAP to afford the desired δ -lactone **2**¹⁴ in 84% overall yield. The structure of **2** was established unambiguously on the basis of a spectroscopic analysis (¹H NMR (400 MHz), 1D, 2D NOESY; ¹³C NMR (100 MHz); IR) and molecular modeling. This product was clearly different from that described earlier⁴ by comparison of their melting points and spectroscopic data (¹H NMR, IR). The IR absorption at 1741 cm⁻¹ indicated the presence of a δ -lactone functionality. A Monte Carlo search (SYBYL 6.5/Tripos force field) gave the lowest energy conformations as **A** and **B** respectively, for the *cis*-lactone **2** and the *trans*-isomer **16** (Fig. 1). The vicinal coupling constants (H-1, H-2, H-3, H-4) and the observed NOESY (absence of H-2/H-4 and H-3/H-12a interactions, strong H-2/H-12a NOESY) confirm structure **2** for the synthesized lactone, in good agreement with a conformation such as **A**. These data allow us to exclude structure **16**.

Compounds 10, 11 and 2 displayed low activities in vitro against L1210 (IC₅₀ values in μ M: 10, 23.5; 11, 21; 2, 1.3; 1, 0.007).

In summary, the first synthesis of 2 has been achieved from podophyllotoxin 1 in nine steps and 30% overall yield. Moreover, our route should allow the construction of podophyllotoxin analogues including D-rings of various sizes and degrees of substitution, from the key intermediate 6. Such an approach is currently under investigation.

Acknowledgements

This work was financially supported by the Centre National de la Recherche Scientifique and the Institut Curie. We also thank the Laboratoires Servier, France, for biological evaluations.

References

- 1. Bertounesque, E.; Imbert, T.; Monneret, C. *Tetrahedron* 1996, 52, 14235–14246. Daley, L.; Meresse, P.; Bertounesque, E.; Monneret, C. *Tetrahedron Lett.* 1997, 38, 2673–2676.
- Damayanthi, Y.; Lown, J. W. Curr. Med. Chem. 1998, 5, 205–252. Zhang, Y.; Lee, K.-H. Chin. Pharm. J. 1994, 46, 319–369.
- 3. Sackett, D. L. Pharmac. Ther. 1993, 59, 163-228.
- 4. Anjanamurthy, C.; Lokanatha Rai, K. M. Indian J. Chem. 1985, 24B, 502-504.
- Andrews, R. C.; Teague, S. J.; Meyers, A. I. J. Am. Chem. Soc. 1988, 110, 7854–7858. Kende, A. S.; King, M. L.; Curran, D. P. J. Org. Chem. 1981, 46, 2826–2828.
- 6. Bush, E. J.; Jones, D. W. J. Chem. Soc., Perkin Trans. 1 1996, 151-155.
- 7. Gensler, W. Y.; Gatsonis, C. D. J. Org. Chem. 1966, 31, 3224-3227.
- Wittig, G.; Schlosser, M. Chem. Ber. 1961, 94, 1373–1383. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
- 9. Gevorgyan, V.; Yamamoto, Y. Tetrahedron Lett. 1995, 36, 7765-7766.
- Brown, J. M.; Conn, A. D.; Pilcher, G.; Leitão, M. L. P.; Meng-Yan, Y. J. Chem. Soc., Chem. Commun. 1989, 1817–1819.
- Forsey, S. P.; Rajapaksa, D.; Taylor, N. J.; Rodrigo, R. J. Org. Chem. 1989, 54, 4280–4290. Renz, J.; Kuhn, M.; von Wartburg, A. Liebigs Ann. Chem. 1965, 681, 207–224. Charlton, J. L.; Koh, K. J. Org. Chem. 1992, 57, 1514– 1516.
- 12. Analytical data for compound **11**. Mp: 88–90°C; [α]_D²⁵ +42 (*c* 0.4; CHCl₃); IR (CDCl₃) 3628, 2938, 1769 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.43 (t, 1H, *J*=4.7 Hz, OH), 1.62 (m, 1H, H-11a), 1.81 (m, 1H, H-11b), 2.78 (d, 1H,

J=1.1 Hz, H-2), 2.86 (t, 1H, J=7.3 Hz, H-3), 3.72 (m, 2H, H-12a, H-12b), 3.78 (s, 6H, OMe), 3.84 (s, 3H, OMe), 4.41 (d, 1H, J=1.1 Hz, H-1), 5.10 (d, 1H, J=1.0 Hz, H-4), 5.94 (d, 1H, J=1.2 Hz, OCH₂O), 5.99 (d, 1H, J=1.2 Hz, OCH₂O), 6.31 (s, 2H, H-2', H-6'), 6.49 (s, 1H, H-8), 6.75 (s, 1H, H-5); MS (DCI/NH₃) m/z 429 [M+H]⁺, 446 [M+NH₄]⁺.

- Gordaliza, M.; Castro, M. A.; Miguel del Corral, J. M.; López-Vázquez, M. L.; García, P. A.; San Feliciano, A.; García-Grávalos, M. D.; Broughton, H. *Tetrahedron* 1997, 53, 15743–15760.
- 14. Analytical data for compound 2. Mp: 197–198°C (hexane/EtOAc), lit.:⁴ 144–146°C; [α]_D²⁵ –114 (*c* 0.1; CHCl₃); IR (CDCl₃) 3800–3400, 2932, 1741, 1591 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.09–2.19 (m, 2H, H-11a, H-11b), 2.43 (bs, 1H, OH), 2.53 (m, 1H, H-3), 3.01 (dd, 1H, *J* = 6.4, 2.9 Hz, H-2), 3.79 (s, 6H, OMe), 3.84 (s, 3H, OMe), 4.26–4.35 (m, 1H, H-12a), 4.38 (d, 1H, *J* = 9.6 Hz, H-4), 4.43–4.51 (m, 1H, H-12b), 4.64 (d, 1H, *J* = 2.9 Hz, H-1), 5.91–5.94 (degenerated m, 2H, OCH₂O), 6.30 (s, 2H, H-2', H-6'), 6.43 (s, 1H, H-8), 7.00 (s, 1H, H-5); ¹³C NMR (100 MHz, CDCl₃) quaternary carbons not specifically assigned δ 24.9 (C-11), 34.2 (C-3), 43.6 (C-1), 46 (C-2), 56 (2C, OMe), 60.7 (1C, OMe), 66 (C-12), 71.4 (C-4), 101 (OCH₂O), 105.8 (C-5), 105.9 (2C, C-2', C-6'), 109.4 (C-8), 128, 131.5, 137, 136.8 (quaternary carbons C-1', C-4', C-4a, C-8a), 146.9, 147.4 (quaternary carbons C-6, C-7), 153.2 (2C, C-3', C-5'), 173 (C=O); MS (DCI/NH₃) *m/z* 446 [M+NH₄]⁺.