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Rhodium(I) catalyzed three-component reaction for the one pot synthesis of diarylmethylamines in
excellent yields were achieved by using aldehyde, boronic acid, and sulfonamides. The use of hyper-
valent bis(trifluoroacetoxy)iodobenzene as an additive plays a key role in the chemo selective formation
of amines instead of alcohols.

� 2014 Elsevier Ltd. All rights reserved.
Construction of carbon–carbon and carbon–nitrogen bonds is of
prime importance in organic synthesis1 due to their prevalence in
wide array of pharmaceuticals,2 biologically active compounds,3

natural products,4 agrochemicals, fine chemicals, and materials.5

The synthesis of diarylmethylamines is important because these
amines are subunits of biologically significant compounds.2 Variety
of methods were reported for the synthesis of diarylmethylamines
such as addition of organometallic reagent to an imine,6

substitution of a hydroxyl group using amine nucleophiles,7 and
direct benzylic C–H amination via dehydrogenative coupling.8

Recently, Renhua et al. reported amination of sp3 C–H bonds via
C–H activation using sulfonamides9 and Kaneda et al. reported
C–N bond formations catalyzed by a proton-exchanged
montmorillonite as a heterogeneous catalyst.10 Herein, we report
rhodium-(I)-phosphine complex catalyzed three-component
reaction between aryl aldehyde, boronic acid, and sulfonamide
for the synthesis of diarylmethylamines.

The initial optimization studies for the one pot synthesis of dia-
rylmethylamine were conducted by using 4-nitrobenzaldehyde,
phenylboronic acid, and p-toluenesulfonamide as the model
substrates. Various reaction parameters such as rhodium catalysts,
additives, phosphorus ligands, and solvents were altered to find
the best conditions. Rhodium based catalysts like bis(1,5-cycloocta-
diene)rhodium(I)tetrafluoroborate (catalyst 1) and chloro(1,5-
cyclooctadiene)rhodium (catalyst 2), in conjunction with phosphine
ligands, 1,5-bis(diphenylphosphino)pentane (L1) and 1,2-bis[bis(-
penta-fluorophenylphosphino)ethane (L2) (see Fig. 1) were tested
for the reaction in the presence of additives that include silver oxide,
silver carbonate, copper(II) acetate, hypervalent iodine reagent
[bis(trifluoroacetoxy)iodo]benzene and [bis(acetoxy)iodo]benzene.

The reaction performed using catalyst 1 and L1 in the presence
of silver oxide in toluene afforded the desired product diarylmeth-
ylamine in very poor yields (10%) (Table 1; entry 1). Moreover, the
reaction failed when catalyst 2 was employed under similar reac-
tion conditions (Table 1; entry 2). The use of hypervalent iodine
based [bis(trifluoroacetoxy)iodo]benzene as additive along with
catalyst 1 and L1 improved the yield to 25% (Table 1; entry 3). In
contrast, the reaction performed with catalyst 2 under similar
reaction conditions failed to furnish the desired products (Table 1;
entry 4). Notably, when the reaction was conducted using L2
instead of L1, excellent yield of the desired product was obtained
(Table 1; entry 5). Remarkably, when the reaction was performed
in the absence of bis(trifluoro-acetoxy)iodo]benzene additive, the
formation of diarylmethyl alcohol in significant amount was
observed [(Table 1; entry 6). The use of acetonitrile as solvent
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Table 1
Optimization of one-pot synthesis of diaryl methylamine through a three component
reaction of aldehyde, boronic acid, and sulfonamidea

NO2

B (OH)2
O

S
OO
NH2 HN

S

O2N

O

ORhCatalyst
Addit ive

Ligand, Toluene,
110C, 12h

+ +

Entry Catalyst Additive Ligand Yieldb (%)

1 Catalyst 1 Ag2O L1 10
2 Catalyst 2 Ag2O L1 n.d.
3 Catalyst 1 PhI(OCOCF3)2 L1 25
4 Catalyst 2 PhI(OCOCF3)2 L1 n.d.
5 Catalyst 1 PhI(OCOCF3)2 L2 95
6 Catalyst 1 — L2 10c

7 Catalyst 1 PhI(OCOCF3)2 L2 70d

8 Catalyst 1 PhI(OCOCF3)2 PPh3 n.d.
9e RhCl3 PhI(OCOCF3)2 L2 n.d.
10 Catalyst 1 Ag2CO3 L2 n.d.
11 Catalyst 1 Cu(OAC)2 L2 n.d.
12 Catalyst 1 — L2 n.d.f

13 — PhI(OCOCF3)2 L2 n.d.g

14 Catalyst 1 PhI(OCOCH3)2 L2 35
15 Catalyst 1 PhI(OCOCF3)2 L2 n.d.h

16i Rh(acac)3 PhI(OCOCF3)2 L2 n.d.

a Reaction conditions: 1.0 mmol of aldehyde, 2.0 mmol of boronic acid, 1.0 mmol
of sulfonamide, 2.0 mol % of catalyst, 25.0 mol % of additive, 3.0 mol % of ligand and
2 mL of toluene.

b Isolated yields.
c Diarylmethyl alcohol was isolated.
d Acetonitrile was used instead of toluene.
e 5 mol % of rhodium trichloride was used as catalyst.
f Molecular oxygen used as an additive.
g Imine was isolated.
h 1 mmol of imine and 2 mmol of boronic acid were used.
i 2 mol % of Rh(acac)3 was used as catalyst.
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Figure 1. Phosphine based ligands.
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considerably reduced the product yield (Table 1; entry 7). When
the reaction was performed using triphenylphosphine as ligand,
no desired product was observed (Table 1; entry 8). In a similar
way, the reaction also failed when conducted in the presence of
either RhCl3 or Rh(acac)3 catalysts under similar reaction condi-
tions (Table 1; entries 9 and 16). Moreover, the use of additives like
silver carbonate and copper(II) acetate in the reaction failed to give
the desired diarylmethylamine product (Table 1; entries 10 and
11). Besides, the reaction carried out by molecular oxygen as an
additive did not proceed to furnish the desired product, (Table 1;
entry 12).

When the reaction was performed by using [bis(trifluoroacet-
oxy)iodo]benzene as additive in the absence of catalyst,
considerable amount of imine was isolated (Table 1; entry 13).
However, the reaction carried out in the presence of [bis(acet-
oxy)iodo]benzene under similar reaction conditions, afforded the
desired amine in moderate yields (Table 1; entry 14). Notably, no
Please cite this article in press as: Satyanarayana, P.; et al. Tetrahedron
product was observed when the reaction was carried out with
imine and boronic acid as substrates under standard reaction con-
ditions (Table 1; entry 15). Therefore, among various optimization
studies listed in Table 1 the most promising result was shown to be
Table 1; entry 5.

Using the optimized reaction conditions in hand the scope of
the reaction was evaluated for various types of substrates and
the results from these studies are presented in Table 2. Among var-
ious sulfonamide substrates that were studied, we have found that
the reaction proceeded smoothly, and excellent yields were
obtained with various structurally diverse aldehydes and boronic
acids substrates. At first, the reaction of 4-nitrobenzaldehyde with
phenylboronic acid and 4-methylbenzenesulfonamide was
executed in the presence of 2.0 mol % of Rh(I) catalyst
bis(1,5-cyclooctadiene)rhodium(I)tetrafluoroborate (catalyst 1),
25.0 mol % of hypervalent iodine based additive, PhI(OCOCF3)2,
and 3.0 mol % of phosphorous ligand 1,2-bis[bis(penta-fluor-
ophenylphosphino)ethane (L2) in toluene at 110 �C for 12 h. This
reaction gave the corresponding diarylmethylamine product in
yields as high as 95% in 12 h (Table 2; entry 1). Similarly, the reac-
tion of 4-nitrobenzaldehyde has also gave good yields (86%) for the
desired product in the reaction with 4-methoxyphenylboronic acid
and 4-methylbenzenesulfonamide (Table 2; entry 2). As was the
case earlier, 4-nitrobenzaldehyde also smoothly reacts with p-tol-
ylboronic acid, and benzenesulfonamide, and gave corresponding
diarylmethylamine product in good yields of 78% (Table 2; entry
3). When the reaction was carried out using 4-nitrobenzaldehyde,
phenylboronic acid, and benzenesulfonamide as substrates under
optimized reaction conditions, the corresponding diarylmethyl-
amine was obtained in good yields of 86% (Table 2; entry 4). When
the reaction was carried out using 4-cyano-benzaldehyde, 4-meth-
oxyphenylboronic acid, and 4-methylbenzenesulfonamide, an
excellent yield of 93% was obtained for the corresponding diarylm-
ethylamine product (Table 2; entry 5). For the reaction between
4-cyanobenzaldehyde, 4-methoxyphenylboronic acid, and benzene
sulfonamide, an excellent yield of 89% was obtained for the
corresponding diarylmethylamine product (Table 2; entry 6). The
reaction between 4-cyanobenzaldehyde, 4-methoxyphenylboronic
acid, and 4-nitrobenzenesulfonamide also proceeded smoothly,
and gave excellent yield of 93% for the corresponding
diarylmethylamine product (Table 2; entry 7). Similarly, when
4-cyanobenzaldehyde was treated with phenylboronic acid and
4-methoxysulfonamide, desired diarylmethylamine product was
isolated in yields as high as 95% (Table 2; entry 8). When 4-chloro-
benzaldehyde was reacted with 4-methoxyphenylboronic acid and
4-methylbenzene-sulfonamide, the corresponding diarylmethyl-
amine product was isolated in 91% yield (Table 2; entry 9). When
6-methoxy naphthaldehyde was treated with p-tolyl boronic acid
and benzenesulfonamide, the desired diarylmethylamine was
obtained in 89% yield (Table 2; entry 10). As was the case above,
1-naphthaldehyde also smoothly reacted with phenyl boronic acid
and 4-methylbenzenesulfonamide and gave good yield of corre-
sponding product in 86% yield (Table 2; entry 11).

A plausible mechanism11 is explained for the synthesis of dia-
rylmethylamines in Scheme 1. In the first step, a reactive imine
5, is formed by the condensation between amine and the aldehyde
promoted by hyper-valent iodine. Then, an in situ formed Bronsted
acid could protonate the imine 5 to give an even more reactive
iminium ion 6. Simultaneously, the bis(phosphine) complex of rho-
dium(I)tetrafluoroborate could react with the arylboronic acid to
form a more nucleophilic aryl rhodium(I) complex 7. Finally, imine
and aryl rhodium(I) species can subsequently react with each other
to form the desired product 4.

In summary we have developed a general protocol for the one
pot synthesis of diaryl methylamines utilizing Rh(I)/bis(phos-
phine) catalyzed three-component reaction of aldehyde, boronic
Lett. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.08.003
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Table 2
Rh(I) catalyzed one-pot synthesis of diarylmethylamine using various aldehydes with boronic acid and sulfonamide substratesa

X Y

B(OH)2
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O
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O

O
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Rh(COD)2BF4
PhI(OCOCF3)2
Ligand2, Toluene,
110C, 12h

X=NO2
CN, Cl,

Y=H,Me,
OMe

Z=H,Me,
Ome, NO2

Yield75% - 95%

+ +

Entry Aldehyde Boronic acid Sulfonamide Diaryl amine Yieldb (%)

1
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S
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O
95
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O
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O

O
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(continued on next page)
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Table 2 (continued)

Entry Aldehyde Boronic acid Sulfonamide Diaryl amine Yieldb (%)

9

Cl

O

O

B(OH)2
S

OO

NH2
HN

S

Cl O

O

O
91

10

O

O

B(OH)2
S

OO

NH2
HN

S

O

O

O

89

11

O B(OH)2
S

OO

NH2
HN

S

O

O 86

a Reaction condition: arylaldehyde (1.0 mmol), boronic acid (2.0 mmol), sulfonamide (1.0 mmol), Rh(COD)2BF4 (2.0 mol %), PhI(OCOCF3)2 (25.0 mol %), and ligand 2
(3.0 mol %), 2 mL toluene used as solvent.

b Isolated yield.
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Scheme 1. A plausible mechanism for one pot synthesis of diarylmethylamine.
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acid, and sulfonamide in the presence of hyper-valent based iodine
reagent, PhI(OCOCF3)2. The protocol is applicable to a diverse range
of substrate combinations with wide functional group tolerance.
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