ARTICLE IN PRESS

Tetrahedron Letters xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A one-pot three-component reaction providing tricyclic 1,4-benzoxazepine derivatives

Mehdi Ghandi^{a,*}, Tayebeh Momeni^a, Mohammad Taghi Nazeri^a, Nahid Zarezadeh^a, Maciej Kubicki^b

^a School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
^b Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznan, Poland

ARTICLE INFO

Article history: Received 30 January 2013 Revised 14 March 2013 Accepted 28 March 2013 Available online xxxx

Keywords: 1,4-Benzoxazepine Enamines Dimedone 2-Aminophenol

ABSTRACT

A new one-pot, three-component reaction of aromatic aldehydes, 2-aminophenol, and dimedone for the synthesis of tricyclic 1,4-benzoxazepine derivatives in moderate to good yields is described. © 2013 Elsevier Ltd. All rights reserved.

Multicomponent reactions (MCRs) are processes in which at least three different simple substrates react in one-pot to give the target materials.¹ These reactions, which have gained significant attention during the past years, do not occur through a single-step procedure, but rather via several sequential steps involving cascades or domino reactions.² Simplicity, greater efficiency, and atom economy with generation of molecular complexity and diversity in one-pot transformations are some advantages of these reactions.³

Benzo-fused seven-membered heterocycles containing two heteroatoms at positions 1 and 4 are used in medicinal chemistry due to their wide spectrum of biological activities.⁴ Examples include 1,4-benzodioxepine, 1,4-benzodithiepine, 1,4-benzoxazepine, 1,4-benzoxathiepine, 1,4-benzothiazepine, and 1,4-benzodiazepine.⁵ Benzodiazepines and benzoxazepines are known as non-peptide vasopressin V2 receptor agonists.⁵ Benzoxazepine derivatives form an important class of compounds with various biological activities.⁶ Among compounds containing this fragment are psychotropic and neurotropic agents,⁷ a non-nucleoside HIV-1 reverse transcriptase inhibitor,⁸ calcium antagonists,⁹ antidepressants,¹⁰ and analgesics.¹¹

Herein, we report a one-pot, three-component synthesis of 1,4-benzoxazepine derivatives via the multicomponent reaction of commercially available 2-aminophenol, dimedone, and various aromatic aldehydes. To our delight, the reaction of preheated 2-aminophenol and dimedone in DCE with benzaldehyde

proceeded smoothly to completion within 24 h in the presence of trifluoroacetic acid (TFA) (20 mol %), affording the tricyclic 1,4benzoxazepine **2a** in 68% yield (Scheme 1).¹² The analytical and spectroscopic data of **2a** were in agreement with the proposed structure.¹³ For example, the ¹H NMR spectrum of **2a** contained characteristic singlets at δ 1.06, 1.09, 2.65, 6.53, and 9.21 due to the two methyl groups, CH₂CO, CHPh, and NH protons, respectively, together with an AB quartet at δ 2.18 for the CH₂C=C group. The ¹³C NMR spectrum of **2a** exhibited 21 distinct signals including one at δ 192.6 due to the C=O group.

We next examined the substrate scope by reacting 2-aminophenol and dimedone with different aldehydes in DCE (Scheme 2). As indicated in Table 1, reactions of various aldehydes **1a–l** afforded the corresponding 1,4-benzoxazepine derivatives **2a–l**. Gratifyingly, aldehydes with electron-donating or electron-withdrawing groups underwent this multicomponent sequence (Table 1).¹⁴

Scheme 1. Synthesis of 1,4-benzoxazepine 2a.

Please cite this article in press as: Ghandi, M.; et al. Tetrahedron Lett. (2013), http://dx.doi.org/10.1016/j.tetlet.2013.03.131

^{*} Corresponding author. Tel.: +98 21 61112250; fax: +98 21 66495291. *E-mail address:* ghandi@khayam.ut.ac.ir (M. Ghandi).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.03.131

ARTICLE IN PRESS

M. Ghandi et al./Tetrahedron Letters xxx (2013) xxx-xxx

Scheme 2. Synthesis of 1,4-benzoxazepine derivatives 2a-l.

Isolated	vields	of 1 4-	henzoxaze	nines	2a-1
isolateu	yicius .	ог 1, т	DCIIZOAdZC	princs	2u 1

Figure 1. X-ray crystal structure of compound 2a.

ARTICLE IN PRESS

M. Ghandi et al./Tetrahedron Letters xxx (2013) xxx-xxx

Scheme 3. Suggested mechanism for the formation of 2a.

Unambiguous evidence for the structure of **2a** was obtained by single-crystal X-ray-diffraction analysis (Fig. 1).¹⁵

Mechanistically, the reaction presumably proceeds via the initial formation of the enamine **I**, produced from condensation of 2-aminophenol with dimedone. Subsequent trapping with aldehyde **1a** via either the intermediate imine **II**¹⁶ or oxonium ion **III**,¹⁷ and intramolecular cyclization finally afford **2a** (Scheme 3).

Inspection of the results revealed that whereas an unsubstituted aldehyde afforded **2a** in moderate yield (entry 1 Table 1), those bearing electron-withdrawing groups produced the corresponding products in higher yields (entries 2, 3, 5, 7, and 10, Table 1). On the other hand, lower yields of 1,4-benzoxazepines were obtained by introducing electron-donating groups on the aromatic aldehyde (entries 4, 6, and 8, Table 1). This behavior supports the suggested mechanism since the introduction of an electron-withdrawing group on the phenyl ring accelerates the rate of formation or consumption of either intermediates **II** or **III**.

In conclusion, a range of 1,4-benzoxazepines **2a–I** has been synthesized in moderate to high yields via the one-pot, three-component reaction of 2-aminophenol, dimedone, and aldehydes **1a–I**. These new compounds broaden the scope of MCRs and may be of potential interest in drug discovery.

Acknowledgment

The authors acknowledge the University of Tehran for the financial support of this research.

References and notes

- (a) Liang, B.; Kalidindi, S.; Porco, J. A., Jr.; Stephenson, C. R. J. Org. Lett. 2010, 12, 572–575; (b) Ganem, B. Acc. Chem. Res. 2009, 42, 463–472; (c) Cui, S. L.; Lin, X. F.; Wang, Y. G. Org. Lett. 2006, 8, 4517–4520.
- Kriis, K.; Ausmees, K.; Pehk, T.; Lopp, M.; Kanger, T. Org. Lett. 2010, 12, 2230– 2233.
- (a) Dömling, A. Chem. Rev. 2006, 106, 17–89; (b) Banfi, L.; Riva, R. Org. React. 2005, 65, 1–140; (c) Ramón, D. J.; Yus, M. Angew. Chem. 2005, 117, 1628–1661.

Angew. Chem., Int. Ed. 2005, 44, 1602–1634; (d) Zhu, J. Eur. J. Org. Chem. 2003, 1133–1144.

- Khaleghi, F.; Din, L. B.; Jantan, I.; Yaacob, W. A.; Khalilzadeh, M. A. Tetrahedron Lett. 2011, 52, 7182–7184.
- Yadav, D. B.; Morgans, G. L.; Aderibigbe, B. A.; Madeley, L. G.; Fernandes, M. A.; Michael, J. P.; de Koning, C. B.; van Otterlo, W. A. L. *Tetrahedron* 2011, 67, 2991– 2997.
- (a) Liégeois, F.; Deville, M.; Dilly, S.; Lamy, C.; Mangin, F.; Résimont, M.; Tarazi, F. I. J. Med. Chem. 2012, 55, 1572–1582; (b) Duncton, M. A. J.; Smith, L. M. I. I.; Burdzovic-Wizeman, S.; Burns, A.; Liu, H.; Mao, Y.; Wong, W. C.; Kiselyov, A. S. J. Org. Chem. 2005, 70, 9629–9963; (c) Bihel, F.; Kraus, J.-L. Org. Biomol. Chem. 2003, 1, 793–799; (d) Ellenbroek, B. A.; Liégeois, J.-F. Drug Rev. 2003, 9, 41–57; (e) Miki, T.; Kori, M.; Mabuchi, H.; Tozawa, R.; Nishimotos, T.; Sugiyama, Y.; Teshima, K.; Yukimasa, H. J. Med. Chem. 2002, 45, 4571–4580.
- (a) Nagarajan, K.; David, J.; Bhat, G. A. Indian J. Chem. **1985**, 24B, 840–844; (b) Jilek, J. O.; Pomykacek, J.; Metysova, J.; Metys, J.; Protiva, M. Collect. Czech. Chem. Commun. **1965**, 30, 363–371.
- (a) Xing, X. L.; Wu, J. L.; Luo, J. L.; Dai, W. Synlett **2006**, 2099–2103; (b) Klunder, J. M.; Hargrave, K. D.; West, M.; Cullen, E.; Pal, K.; Behnke, M. L.; Kapadia, S. R.; McNeil, D. W.; Wu, J. C.; Chow, G. C.; Adams, J. J. Med. Chem. **1992**, 35, 1887– 1897; (c) Merluzzi, V. J.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C.-K.; Eckner, K.; Hattox, S.; Adams, J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. Science **1990**, 250, 1411–1413.
- Li, R.; Farmer, P. S.; Wang, J.; Boyd, R. J.; Cameron, T. S.; Quilliam, M. A.; Walter, J. A.; Howlett, S. E. Drug Des. Discov. **1995**, *12*, 337–358.
- Nagarajan, K.; David, J.; Kulkarni, Y. S.; Hendi, S. B.; Shenoy, S. J.; Upadhyaya, P. Eur. J. Med. Chem. Chim. Ther. 1986, 21, 21–26.
- (a) Wu, J.; Jiang, Y.; Dai, W. M. Synlett **2009**, 1162–1166; (b) Hallinan, E. A.; Hagen, T. J.; Tsymbalov, S.; Stapelfeld, A.; Savage, M. A. Bioorg. Med. Chem. **2001**, 9, 1–6; (c) Hallinan, E. A.; Hagen, T. J.; Tsymbalov, S.; Husa, R. K.; Lee, A. C.; Stapelfeld, A.; Savage, M. A. J. Med. Chem. **1996**, 39, 609–613.
- 12. General procedure for the synthesis of 1,4-benzoxazepine **2a**. A stirred solution of 2-aminophenol (0.109 g, 1 mmol) and dimedone (0.168 g, 1.2 mmol) in DCE (5 mL) was heated at reflux for 4 h. After completion of this step as indicated by TLC, benzaldehyde (0.106 g, 1 mmol) and TFA (0.023 g, 0.2 mmol) were added and heating at reflux was continued for 24 h. After completion, aqueous NaHCO₃ (10 mL, 20%) was added and the organic phase was separated, washed with H₂O (10 mL), and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was recrystallized from 30% EtOAc in hexane.
- 13. 3,3-Dimethyl-11-phenyl-3,4,5,11-tetrahydrodibenzo[b,e][1,4]oxazepin-1(2H)-one (**2a**). White solid: (398 mg, 68%); mp: 269–271 °C; IR (KBr) v: 3344 (NH), 1739 (CO) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 1.06 (s, 3H, Me), 1.09 (s, 3H, Me), 2.18 (AB quartet, 2H, *J* = 16.0 Hz, C=CCH₂), 2.65 (s, 2H, CH₂CO), 6.53 (s, 1H, CHPh), 6.61 (d, 1H, *J* = 7.3 Hz, Ar), 6.70 (t, 1H, *J* = 7.3 Hz, Ar), 6.82 (dd, 1H, *J* = 7.5 Hz, Ar), 7.03 (d, 2H, *J* = 8.5 Hz, Ar), 7.42–7.47 (m, 3H, Ar), 7.57 (d, 1H, *J* = 6.3 Hz, Ar), 9.21 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆) δ 27.6, 28.2, 31.8, 43,7, 49.3, 78.5, 104.4, 145.8, 116.3, 118.0, 119.0, 123.4, 123.9, 128.0, 130.1, 132.2, 134.0, 138.7, 149.0, 154.9, 192.6 (CO); MS (EI) *m/z*: 319 (92, M⁺), 318 (100), 242 (30), 234 (14), 77 (23); Anal. Calcd for C₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39. Found: C, 78.54; H, 6.98; N, 4.45.
- 14. 11-([1.1'-Binhenvl]-4-vl)-3.3-dimethyl-3.4.5.11-
- tetrahydrodibenzo[b,e][1,4]oxazepin-1(2H)-one (**2f**). White solid: (395 mg, 65%); mp 277–279 °C; IR (KBr) v: 3324 (NH), 1741 (CO) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 1.10 (s, 3H, Me), 1.11 (s, 3H, Me), 2.21 (AB quartet, 2H, *J* = 15.9 Hz, C=CCH₂), 2.68 (s, 2H, CH₂CO), 6.62 (s, 1H, CHPh), 6.67 (d, 1H, *J* = 7.8 Hz, Ar), 6.76–6.83 (m, 2H, Ar), 7.04 (d, 1H, *J* = 7.7 Hz, Ar), 7.18 (d, 2H, *J* = 8.1 Hz, Ar), 7.29 (t, 1H, *J* = 7.1 Hz, Ar), 7.38 (t, 2H, *J* = 7.1 Hz, Ar), 7.47 (d, 2H, *J* = 8.1 Hz, Ar), 7.55 (d, 2H, *J* = 7.29 Hz, Ar), 9.19 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO-d₆) δ 27.5, 28.4, 31.9, 43.6, 49.4, 78.8, 109.4, 120.2, 122.8, 123.2, 123.9, 126.2, 126.5, 126.7, 127.2, 127.4, 128.8, 128.9, 129.0, 129.2, 134.0, 138.9, 139.1, 139.3, 146.0, 154.8, 192.6 (CO); MS (EI) *m*/*z*: 395 (81, M⁺), 394 (100), 318 (41), 242 (40), 234 (7); Anal. Calcd for C₂₇H₂₅NO₂: C, 82.00; H, 6.37; N, 3.54. Found: C, 82.27; H, 6.44: N, 3.41.
- CCDC-921136. Copies of these data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk).
- (a) Kashiwagi, T.; Kotani, S.; Sugiura, M.; Nakajima, M. Tetrahedron 2011, 67, 531–539;
 (b) Karthikeyan, S. V.; Perumal, S.; Balasubramanian, K. K. Tetrahedron Lett. 2007, 48, 6133–6136.
- (a) Saito, A.; Takayama, M.; Yamazaki, A.; Numaguchi, J.; Hanzawa, Y. Tetrahedron 2007, 63, 4039–4047; (b) Larghi, E. L.; Kaufman, T. S. Synthesis 2006, 187–220.