Note

Subscriber access provided by - Access paid by the | UCSB Libraries

Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst- and Base-Free Reaction with Organohalides

Bin Feng, Yang Li, Huan Li, Xu Zhang, Huamei Xie, Hongen Cao, Lei Yu, and Qing Xu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00787 • Publication Date (Web): 16 May 2018 Downloaded from http://pubs.acs.org on May 16, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst- and Base-Free Reaction with Organohalides

Bin Feng,[†] Yang Li,[†] Huan Li,[†] Xu Zhang,[‡] Huamei Xie,[†] Hongen Cao,[‡] Lei Yu,[‡] and Qing $Xu^{\dagger,\ddagger,\ast}$

[†] College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China

[‡] Institute of Pesticide of School of Chemistry and Chemical Engineering and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract: A specific N-alkylation of 2-hydroxypyridines is achieved by reacting with organohalides under catalyst- and base-free conditions. The observed HX-facilitated conversion of pyridyl ether intermediates to 2-pyridone products may account for the success and specific N-alkylation of the reaction under the unexpectedly simple conditions. This new reaction may provide a useful alternative for the synthesis of 2-pyridones and analogous structures due to its >99% N-selectivity, relatively broad scopes of both substrates, and no mandatory use of catalysts and bases.

N-Substituted 2-pyridones and analogous pyridone structures not only present frequently in biologically and pharmacologically active molecules¹ as well as natural products having potent antitumor and antivirus activities,² they are also versatile reagents in synthesis³ such as in Diels-Alder reactions⁴ and material sciences.⁵ Therefore, much attention has been focused on the synthesis of N-substituted pyridones over the past decades. Conventionally, N-alkyl 2-pyridones have been prepared by reacting 2-hydroxypyridines with alkyl halides under basic conditions (Scheme 1A).⁶ The use of a base is required in these methods, but this can generate inorganic salts as waste. Meanwhile, formation of the competing O-alkylated byproducts is also inevitable due to the inherent ambident nature of the intermediate anions derived from the 2-hydroxypyridine and 2-pyridone tautomers (Scheme 1A).⁷ In some cases, O-alkylation can

even become the dominant reaction.^{6e} Therefore, N-selectivity is always an issue to be addressed. Hence, various modified methods were developed to enhance the selectivity of the target N-alkylation reaction. For example, CsF,⁸ LiBr,⁹ NaI,¹⁰ and TBAX (tetrabutylammonium halides)¹¹ were reported as effective additives. Alternative reaction conditions like ionic liquid¹² and microwave irradiation,¹³ and the Mitsunobu method¹⁴ were also reported. Moreover, mechanistic aspects of the reaction were also investigated to understand the nature of N- and O-alkylation reactions.¹⁵ More recently, Ren and co-workers reported that Tween 20 (2% w/w) could also be used as an effective additive to improve the N-selectivity of the conventional basic reaction.¹⁶ Even though, generation of the O-alkylated byproducts could not be avoided completely by these modifications.

Scheme 1. Methods for N-Substituted 2-Pyridone Synthesis.

On the other hand, since 2-pyridyl ethers can be obtained by basic reaction of 2-halopyridines with alcohols,^{17,18} intramolecular O to N migratory rearrangement reactions of 2-pyridyl ethers have also been developed recently to achieve N-substituted 2-pyridones and analogous pyridone structures (Scheme 1B).¹⁸⁻²¹ For example, the Anderson group developed a transition-metal-free LiI-mediated method;¹⁸ Dong and co-workers disclosed the first efficient catalytic migration reaction using Ru catalyst;¹⁹ Shibata and co-workers reported an Ir-catalyzed rearrangement method for 2-pyridyl ethers bearing secondary O-alkyl groups.²⁰ Other transition metal catalysts such as Pt, Ag, Au, and Pd were also found to be active catalysts for similar transformations.²¹ More recently, You and co-workers developed an elegant Ir-catalyzed asymmetric allylic amination of 2-hydroxypyridines with allylic methyl carbonates for enantioselective synthesis of N-substituted 2-pyridones.²² Although these methods generally gave high selectivities of the N-substituted 2-pyridones, these reactions are in effect two-step

procedures because the 2-pyridyl ether substrates have to be prepared first.^{17,18} Additionally, these methods are limited by high loadings of the additives and the use of expensive noble metal catalysts. Therefore, an efficient, practical, and highly N-selective one-step transition metal-free method is still highly desirable in the field. Recently, a few transition-metal-catalyzed additions of hydroxypyridines to unsaturated compounds have been developed to address some of the above issues.²³ Herein we report another advance in the research, that is, the anticipated specific N-alkylation reaction of 2-hydroxypyridines can be achieved by reacting 2-hydroxypyridines with organohalides under catalyst- and base-free conditions (Scheme 1C). In comparison with the known methods, this new reaction may provide a useful alternative for the synthesis of 2-pyridones and analogous structures due to its >99% N-selectivity, the relatively broad scopes of both the hydroxyheterocycle and organohalide substrates, and no mandatory use of bases.

We serendipitously encountered this new reaction during our ongoing studies on N-, C-, O-, and S-alkylation reactions²⁴ and the need to obtain pyridyl ethers.^{17d} As shown in Table 1, initially, 2-hydroxypyridine **1a** and PhCH₂Br (**2a**-Br) were directly heated under the air atmosphere without solvent and base (entry 1). Under these conditions we originally reasoned that no reaction would occur. To our surprise, the reaction afforded a considerable yield of a new product, which was later determined to be N-benzyl 2-pyridone **3a**. Realizing that a selective N-alkylation reaction might have occurred with possible formation of the O-alkylated ether **4a**,^{6,8-16} we repeated the reaction to determine the N/O selectivity. To our surprise again, **4a** could not be observed at all by TLC and GC-MS analysis (entry 1, **3a**/**4a** >99/1, **3a** and **4a**¹⁷ can be easily distinguished²⁵). This result suggested that *this is a specific N-alkylation reaction of 2-hydroxypyridine realized by only one step under the catalyst- and base-free conditions!* Realizing that this new finding may serve as a good alternative for synthesis of the N-substituted 2-pyridones and analogous pyridone structures,^{6,8-16,18-21} we further optimized the reaction conditions.

	$ \begin{array}{c c} $	ir N CH ₂ I O 3a	Ph OCH ₂ Ph 4a not observed at all !	
entry	PhCH ₂ X (equiv.)	Т	3a/4a ^b	3a % ^c
1	PhCH ₂ Br (1.2)	60 °C	>99/1	60
2	PhCH ₂ Br (1.2)	80 °C	>99/1	71
3	PhCH ₂ Br (1.2)	100 °C	>99/1	79
4	PhCH ₂ Br (1.2)	120 °C	>99/1	76
5	PhCH ₂ Br (1.0)	100 °C	>99/1	75
6	<i>PhCH</i> ₂ <i>Br</i> (1.5)	100 °C	> 99 /1	<i>84</i>
7	PhCH ₂ Br (2.0)	100 °C	>99/1	83
8	PhCH ₂ Cl (2.0)	100 °C	>99/1	56
9^d	PhCH ₂ Br (1.5)	100 °C	>99/1	77
10 ^e	PhCH ₂ Br (1.5)	100 °C	>99/1	13~82
11^{f}	PhCH ₂ Br (1.5)	100 °C	>99/1	87

Table 1. Conditions Screening and Optimization.^a

^a Unless otherwise noted, the neat mixture of 2-hydroxypyridine **1a** (2 mmol) and benzyl halide 2a sealed under air in a 10 mL Schlenk tube was directly heated for 24 h.^b Ratios determined by GC-MS analysis. ^c Yields based on 1a. ^d 12 h. ^e Normal solvents like toluene, EtOH, DMF, 1,4-dioxane, THF, MeOH, DCE, DCM, CH₃CN (1 mL) were investigated. ^f Under N₂.

As shown in Table 1, temperature screening showed that 100 °C is optimal (entries 1-4). Screening of PhCH₂Br loading (entries 3, 5-7) showed that 1.5 equiv. is the best (entry 6). No improvement of the product yield was observed even with more PhCH₂Br (entry 7). Using PhCH₂Cl instead of PhCH₂Br gave a decreased yield of **3a** (entry 8), showing that the bromide is more reactive than the chloride. Screening of reaction time showed that 24 h is necessary (entry 9). The effect of solvent was also investigated but only lower yields were obtained with the normal solvents tested (entry 10). When the reaction was performed under nitrogen, a slightly higher yield of **3a** was obtained (entry 11), which suggests that this reaction is insensitive to air. Therefore, entry 6 was chosen as the optimal conditions as the operation of the reaction can be greatly simplified by performing the reaction under air. It should also be pointed out that no 4a was observed in all these reactions.

The optimized conditions (Table 1, entry 6) were then extended to various organohalides to

test the scope of this new method. As shown in Table 2, similar to PhCH₂Br (entry 1), most electron-rich and –deficient benzylic bromides including the sterically-hindered ones (entries 2 and 8) and the one with a very reactive nitro group (entry 11) could also afford the target N-substituted 2-pyridones in good to high yields (entries 2-4, 7-11). In the reaction of *p*-MeOC₆H₄CH₂Br, the yield of the product **3e** was very low, which may be attributed to the observed instability of the bromide in the reaction (entry 5). Alternatively, when the more stable chloride *p*-MeOC₆H₄CH₂Cl was used instead, the reaction gave a much higher yield of **3e** (50%) under N₂, which could be enhanced further to 70% by performing the reaction at a higher temperature of 120 °C (entry 6). Using allyl bromide as the alkylating reagent also afforded the N-allyl 2-pyridone **3k** in an acceptable yield (entry 12). Possibly due to the more unstable and reactive nature of the allyl bromide, the reaction was performed better at a lower temperature, giving a higher yield of **3k** (entry 12, the result in parenthesis). This is especially the case with the reaction of cinnamyl bromide, which was even less effective under the standard conditions (entry 13). Thus, an acceptable yield of the product was obtained at an even lower temperature of 60 °C (entry 13, the result in parenthesis).

This method could also be extended to less reactive alkyl bromides, but the yields were generally lower (entry 14-17). Nevertheless, we found that the yields of the products could be improved by running the reactions at a higher temperature (entry 14), using the corresponding more reactive alkyl iodide (entry 16), or by adding TBAI (tetrabutylammonium iodide) as the additive (entries 15-17). Similarly, the reactions of the sterically more bulky secondary alkyl bromides were also ineffective under the standard conditions, thus requiring a higher reaction temperature or additive TBAI to obtain moderate to high yields of the products (entries 18-20). Due to the higher melting points of the substrates and high viscosity of the reaction mixture, the reaction of 9-bromofluorene was better carried out by using DMF as the solvent (entry 20). Moreover, functionalized bromides could also be used as the alkylating reagents in this specific N-alkylation reaction. Thus, the reaction of bromoacetophenone afforded a moderate 64% yield of the target **3s** (entry 21), while the more bulky phenyl-substituted bromoacetophenone and 2-bromopentan-3-one only afforded lower yields of **3t** and **3u** (entries 22-23). Surprisingly, the similarly bulky secondary bromide, ethyl 2-bromopropanoate, showed very high reactivity in the reaction, giving a much higher yield of the product (entry 24) than the preceding secondary

bromides (entries 22-23).

Table 2. Scope of the Organohalides.^a

^{*a*} Unless otherwise noted, the corresponding RBr was used. See entry 6 of Table 1 for detailed conditions. Yields based on **1a**. ^{*b*} The corresponding RCl was used instead under N₂. ^{*c*} 120 °C. ^{*d*} N₂, 80 °C. ^{*e*} N₂, 60 °C. ^{*f*} N₂, 130 °C. ^{*g*} N₂, 1.0 equiv. TBAI added. ^{*h*} The corresponding RI was used instead under N₂. ^{*i*} 0.5 equiv. TBAI added. ^{*j*} DMF (0.5 mL) added.

The scope of the hydroxyheterocycles (5) was our next concern. Substituted 2-hydroxypyridines were firstly investigated. As shown in Table 3, 2-hydroxypyridines with electron-donating or -withdrawing groups at the 3-, 4-, 5-, 6-positions all afforded the target products **6a-g** in moderate to high yields under the standard or modified conditions (entries 1-7). The yields of the products of 3- and 6-methyl 2-hydroxypyridines were relatively lower under the standard conditions most possibly due to the steric hindrance derived from the adjacent methyl groups (entries 1 and 4). Similar to the case of 9-bromofluorene (Table 2, entry 20), the reaction of 5-nitro-2-hydroxypyridine also required the addition of DMF as the solvent, and a high yield of the product **6g** was obtained (Table 3, entry 7).

^{*a*} Unless otherwise noted, see entry 6 of Table 1 for detailed conditions. Yields based on **5**. ^{*b*} 48 h. ^{*c*} DMF (1 mL) added. ^{*d*} N₂, 1.0 equiv. TBAI. ^{*e*} 130 °C.

We then investigated 3- and 4-hydroxypyridines. In the case of 3-hydroxypyridine, no product was observed at all; whereas, 4-hydroxypyridine could afford a high yield of the target N-benzyl 4-pyridone **6i** in DMF (Table 3, entry 8). This is clearly due to the mismatched positions of the N and OH moieties in 3-hydroxypyridine that can not fulfill the dearomatization of the hydroxypyridine structure to the pyridone structure. In addition, other hydroxyheterocycles such as 2-hydroxyquinoline, 3-hydroxypyridazine, and 2-hydroxy pyrimidine could also react with benzyl bromide to give moderate to high yields of the products in the presence of TBAI (entries 9-11).

Preliminary mechanistic studies revealed that the O-alkylated pyridyl ether **4** was most likely generated as the initial product, being the key intermediate of this specific N-alkylation reaction (Scheme 2, step i), because **4a** was observed as the major product in the reaction of **1a** and **2a** at a lower temperature of 30 °C (eq. 1). **4a** could then be effectively converted into **3a** in >99% selectivity upon heating in the presence of another byproduct HX (Scheme 2, step ii), as this was also confirmed by the reaction of **4a** with the *in situ* generated HBr from NaBr and H₃PO₄ (eq. 2, entry 1).²⁶ In contrast, no reaction occurred at all in the absence of HBr with recovery of 87% **4a** (eq. 2, entry 2),²⁷ revealing the key role of HBr in the conversion of pyridyl ether intermediate **4** to product **3**. These interesting results (eq. 2) and complete production of **3a** at higher temperatures (Table 1) can account for why the present reaction can undergo a specific

N-alkylation reaction to effectively afford 2-pyridone products under the unexpectedly simple catalyst- and base-free conditions.

Scheme 2. Possible Reaction Paths.

1) NaBr/H₃PO₄ (1.0 equiv.), **3a**: 68% yield, >99% sel 2) blank, *no reaction*, **4a**: 87% recovered

In conclusion, we serendipitously discovered and then developed a specific N-alkylation method for one-step and efficient synthesis of the useful N-substituted 2-pyridones and analogous pyridone structures, which can be easily achieved by reacting hydroxyheterocycles with organohalides under catalyst- and base-free conditions. In comparison with known methods, this new reaction may be a good advance in the field and a useful alternative for the synthesis of 2-pyridones and analogous structures due to its >99% N-selectivity, the relatively broad scopes of both the hydroxyheterocycle and organohalide substrates, and no mandatory use of bases. Preliminary mechanistic studies revealed that byproduct HX may work to facilitate the complete conversion of the pyridyl ether intermediates to the pyridone products, which can well explain why no base is needed in this new method. Deeper mechanistic studies of this interesting reaction is our next concern as it may help to further enhance the reaction efficiency of some less reactive and bulky substrates and broaden the scope of the substrates.

Experimental Section

General. Unless otherwise noted, the chemicals were purchased from Energy Chemical,

Alfa Aesar, TCI, and other chemical companies and used without further purification. 2-Bromo-1,2-diphenylethan-1-one and 2-bromopentan-3-one (used in entries 22-23 in Table 2) were prepared by the literature method.²⁸ Unless otherwise specified, all reactions were carried out in sealed Schlenk tubes (10 mL) under the air atmosphere and monitored by TLC and/or GC-MS. Products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. ¹H and ¹³C NMR spectra were measured on a Bruker Avance-III 500 instrument (500 MHz for ¹H and 125.4 MHz for ¹³C NMR spectroscopy) using CDCl₃ as the solvent. Chemical shifts for ¹H and ¹³C NMR were referred to internal Me₄Si (0 ppm) as the standard. Mass spectra were measured on a Shimadzu GC-MS-QP2010 Plus spectrometer (EI). HRMS (ESI) analysis was measured on a Bruker micrOTOF-Q II instrument. Melting points were measured on microcomputer melting point apparatuses WRS-1C (Shanghai Shenguang) and X-4 (Beijing Taike).

Typical Procedure for N-Alkylation of 2-Hydroxypyridines with Organohalides. To a 10 mL Schlenk tube was add 2-hydroxypyridine **1a** (190 mg, 2.0 mmol) and benzyl bromide **2a**-Br (356 μ L, 3.0 mmol, 1.5 equiv.) under air. The mixture was then sealed and directly heated for 24 h. The reaction was monitored by TLC and GC-MS. The reaction mixture was purified by flash column chromatography using hexane/EtOAc (2/1) as eluent to give 1-benzylpyridin-2(1H)-one **3a** (313 mg, 84%) as a white solid.

1-Benzylpyridin-2(1H)-one (*3a*).¹⁹ White solid (313 mg, 84%). Mp 72.3-72.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.28 (m, 7H), 6.63 (d, *J* = 9.5 Hz, 1H), 6.15 (t, *J* = 6.5 Hz, 1H), 5.14 (s, 1H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.7, 139.5, 137.3, 136.4, 128.9, 128.1, 128.0, 121.1, 106.3, 51.9. MS (EI): *m/z* (%) 186 (7), 185 (52), 184 (33), 92 (9), 91 (100), 89 (7), 80 (7), 79 (25), 51 (7).

1-(2-Methylbenzyl)pyridin-2(1H)-one *(3b)*.^{18a} White solid (290.6 mg, 73%). Mp 85.2-85.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.30 (m, 1H), 7.23-7.16 (m, 3H), 7.07 (m, 1H), 7.02 (m, 1H), 6.62 (m, 1H), 6.14-6.11 (m, 1H), 5.12 (s, 2H), 2.26 (s, 3H). ¹³C {1H}NMR (125.4 MHz, CDCl₃): δ 162.8, 139.4, 136.8, 136.7, 133.8, 130.8, 128.8, 128.3, 126.5, 120.8, 106.3, 49.6, 19.1. MS (EI): *m/z* (%) 199 (16), 198 (13), 197 (45), 196 (14), 182 (10), 181 (18), 105 (64), 104 (100), 103 (24), 79 (10).

1-(3-Methylbenzyl)pyridin-2(1H)-one (3c).^{18a} Colorless oil (346.2 mg, 87%). ¹H NMR (500

MHz, CDCl₃): δ 7.21-7.19 (m, 2H), 7.15-7.11 (m, 1H), 7.02-7.0 (m, 3H), 6.54-6.50 (m, 1H), 6.07-6.04 (m, 1H), 5.03-5.00 (m, 2H), 2.25-2.22 (m, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 139.4, 138.5, 137. 5, 136.4, 128.8, 128.7, 125.1, 120.9, 106.1, 51.7, 21.3. MS (EI): *m/z* (%) 199 (26), 198 (31), 197 (90), 196 (57), 106 (10), 105 (100), 103 (13), 98 (10), 79 (20, 77 (10).

1-(4-Methylbenzyl)pyridin-2(1H)-one (*3d*).^{18a} White solid (350.2 mg, 88%). Mp 73.1-73.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.37 (ddd, $J_1 = 9.0$ Hz, $J_2 = 6.5$ Hz, $J_3 = 2.0$ Hz, 1H), 7.30 (dd, $J_1 = 7.0$ Hz, $J_2 = 2.0$ Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 7.5 Hz, 2H), 6.78 (d, J = 9.5 Hz, 1H), 6.22 (t, J = 6.5 Hz, 1H), 5.13 (s, 2H), 2.33 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 139.9, 138.1, 137.2, 132.9, 129.6, 128.3, 120.8, 107.2, 52.1, 21.1. MS (EI): *m/z* (%) 199 (18), 198 (20), 197 (61), 196 (26), 106 (9), 105 (100), 104 (14), 103 (10), 79 (11), 77 (7).

1-(4-Methoxybenzyl)pyridin-2(1H)-one (*3e*).^{*18a*} White solid (301 mg, 70%). Mp 75.3-75.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.31 (ddd, $J_1 = 15.5$ Hz, $J_2 = 6.5$ Hz, $J_3 = 2.0$ Hz, 1H), 7.26 (dd, $J_1 = 7.0$ Hz, $J_2 = 2.0$ Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 1H), 6.14 (t, J = 6.5 Hz, 1H), 5.10 (s, 2H), 2.33 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.7, 139.4, 137.8, 137.1, 133.3, 129.6, 128.2, 121.1, 106.3, 51.7, 21.1. MS (EI): *m/z* (%) 215 (6), 214 (6), 213 (24), 212 (5), 122 (12), 121 (100), 120 (18), 91 (5), 78(3), 77 (4), 51 (1).

1-(4-Fluorobenzyl)pyridin-2(1H)-one (*3f*).¹⁹ White solid (328.6 mg, 81%). Mp 84.5-85.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.27 (m, 4H), 7.01 (t, *J* = 8.5 Hz, 2H), 6.65 (d, *J* = 9.0 Hz, 1H), 6.18 (t, *J* = 6.5 Hz, 1H), 5.10 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 163.5, 162.6, 161.6, 139.8, 137.1, 132.0 (*J* = 3.8 Hz), 130.0 (*J* = 8.8 Hz), 121.1, 115.8 (*J* = 21.3Hz),106.9 ,51.6. MS (EI): *m/z* (%) 203 (13), 202 (16), 201 (54), 200 (21), 110 (9), 109 (100), 108 (13), 107 (6), 83 (9), 79 (10).

1-(2-Chlorobenzyl)pyridin-2(1H)-one (*3g*).^{18a} White solid (346 mg, 79%). Mp 71.8-72.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.28 (m, 6H), 6.61 (t, *J* = 8.5 Hz, 1H), 6.7-6.13 (m, 1H), 5.23 (d, *J* = 5.5 Hz, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.7 139.7, 137.6, 133.7, 133.4, 130.0, 129.6, 129.3, 127.3, 121.1, 106.3, 49.6. MS (EI): *m/z* (%) 184 (46), 183 (100), 182 (24), 155 (6), 127 (11), 89 (8).

1-(3-Chlorobenzyl)pyridin-2(1H)-one (3h).¹⁹ White solid (337.2 mg, 77%). Mp 73.0-73.2

 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (ddd, *J*₁ = 9.0 Hz, *J*₂ = 6.5 Hz , *J*₃ = 2.0 Hz, 1H), 7.29-7.27 (m, 4H), 7.19-7.18 (m, 1H), 6.66 (d, *J* = 9.0 Hz, 1H), 6.20 (td, *J*₁ = 6.5 Hz, *J*₂ = 1.5, 1H), 5.11(s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.5, 139.7, 138.3137.2, 134.8, 130.2, 128.2, 128.1, 126.2, 121.3, 106.7, 51.6. MS (EI): *m/z* (%) 219 (45), 218 (48), 217 (92), 216 (65), 126 (17), 125 (100), 124 (19), 89 (20), 79 (29).

1-(4-Chlorobenzyl)pyridin-2(1H)-one (*3i*).¹⁹ White solid (332.8 mg, 76%). Mp 83.4-84.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.24 (m, 6H), 6.70 (d, *J* = 9.0 Hz, 1H), 6.21 (t, *J* = 6.5 Hz, 1H), 5.12 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 139.8, 137.2, 134.9, 133.9, 129.5, 129.0, 121.2, 106.7, 51.5. MS (EI): *m/z* (%) 219 (27), 218 (22), 217 (55), 216 (25), 127 (36), 126 (16), 125 (100), 124 (16), 89 (14), 79 (16).

1-(4-Nitrobenzyl)pyridin-2(1H)-one (*3j*). White solid (405.4 mg, 89%). Mp 141.5-141.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.38-7.35 (m, 1H), 7.31 (d, *J* = 6.5 Hz, 1H), 6.62 (d, *J* = 9.5 Hz, 1H), 6.22 (t, *J* = 8.0 Hz, 1H), 5.21 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.4, 147.7, 143.6, 140.1, 137.3, 128.6, 124.0, 121.5, 107.0, 51.9. MS (EI): *m/z* (%) 230 (18), 229 (31), 228 (72), 227 (100), 226 (47), 182 (25), 106 (26), 89 (34), 79 (28), 78 (20). HRMS Calcd for C₁₂H₁₁N₂O₃ (M+H): 231.0764; found: 231.0829.

1-Allylpyridin-2(1H)-one (*3k*).¹⁰ Colorless oil (186.4 mg, 69%). ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.32 (m, 1H), 7.28-7.26 (m, 1H), 6.60 (m, 1H), 6.22-6.18 (m, 1H), 6.00-5.91 (m, 1H), 5.28-5.25 (m, 1H), 5.21-5.16 (m, 1H), 4.59-5.57 (m, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.4, 139.5, 137.1, 132.5, 121.0, 118.4, 106.2, 51.0. MS (EI): *m/z* (%) 211 (22), 210 (42), 209 (9), 120 (36), 118 (10), 117 (100), 116 (66), 115 (99), 96 (46), 91 (21).

1-Cinnamylpyridin-2(1H)-one (*3l*).^{21f} Colorless oil (249 mg, 59%). ¹H NMR (500 MHz, CDCl₃: δ 7.36-7.21 (m, 7H), 6.60-6.54 (m, 2H), 6.32-6.27 (m, 1H), 6.17-6.15 (m, 1H), 4.70 (d, *J* = 6.5 Hz, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.5, 139.6, 137.2, 136.0, 134.0, 128.6, 128.1, 126.6, 123.6, 120.9, 106.3, 50.7. MS (EI): *m/z* (%) 211 (12), 210 (30), 118 (10), 117 (100), 116 (64), 115 (96), 114 (8), 96 (45), 78 (6), 51 (5).

1-Phenethylpyridin-2(1H)-one (*3m*).¹⁹ White solid (179.2 mg, 45%). Mp 86.7-87.1 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.26 (m, 3H), 7.24-7.21 (m, 1H), 7.14 (d, *J* = 7.5 Hz, 2H), 6.90 (dd, *J*₁ = 7.0 Hz, *J*₂ = 1.5 Hz, 1H), 6.63 (d, *J* = 9.0 Hz, 1H), 6.02 (t, *J* = 6.5 Hz, 1H), 4.15 (t, *J* =

7.0 Hz, 2H), 3.06 (t, J = 7.0 Hz, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.5, 139.6, 137.9, 128.7, 126.7, 120.8, 105.7, 52.0, 35.0. MS (EI): m/z (%) 199 (11), 105 (11), 104 (100), 103 (7), 80 (13), 79 (4), 78 (15), 77 (7), 53 (9), 51 (5).

1-Pentylpyridin-2(1H)-one (*3n*).¹³ Colorless oil (165 mg, 50%). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.31 (ddd, $J_1 = 9.0$ Hz, $J_2 = 7.0$ Hz, $J_3 = 2.0$ Hz, 1H), 7.28 (d, J = 6.0 Hz, 1H), 6.62 (d, J = 9.0 Hz, 1H), 6.18 (t, J = 6.5 Hz, 1H), 3.93 (t, J = 7.5 Hz, 2H), 1.78-1.72 (m, 2H), 1.38-1.32 (m, 4H), 0.90 (m, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 139.4, 137.5, 121.0, 106.1, 50.0, 29.0, 28.8, 22.3, 13.9. MS (EI): m/z (%) 164 (36), 147 (35), 147 (35), 135 (22), 122 (20), 96 (50), 78 (30), 67 (33), 55 (8), 53 (14).

1-Heptylpyridin-2(1H)-one (*3o*).¹³ Colorless oil (347.2 mg, 63%). ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.30 (m, 1H), 7.28-7.27 (m, 1H), 6.58 (d, *J* = 9.5 Hz, 1H), 6.17 (t, *J* = 7.0 Hz, 1H), 3.92 (t, *J* = 7.5 Hz,2H), 1.77-1.71 (m, 2H), 1.33-1.27 (m, 8H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 139.2, 137.5, 121.0, 105.8, 49.9, 31.6, 29.3, 28.9, 26.6, 22.5, 14.0. MS (EI): *m/z* (%) 193 (27), 192 (69), 191 (41), 176 (46), 175 (69), 136 (39), 122 (35), 109 (100), 96 (51), 95 (56), 78 (12), 53 (3).

1-(1-Phenylethyl)pyridin-2(1H)-one (*3p*).^{18a} White solid (207 mg, 52%). Mp 79.4-80.3 °C. ¹H NMR (500 MHz, CDCl3): δ 7.38-7.31 (m, 6H), 7.14 (d, *J* = 6.0 Hz, 1H), 6.76 (d, *J* = 9.0 Hz, 1H), 6.46 (q, *J* = 7.0 Hz, 1H), 6.19 (t, *J* = 6.5 Hz, 1H), 1.73 (d, *J* = 7.0 Hz, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.4, 139.8, 139.3, 134.4, 128.9, 128.1, 127.5, 120.4, 107.3, 53.1, 19.0. MS (EI): *m/z* (%) 199 (19), 198 (19), 197 (12), 105 (100), 95 (19), 79 (13), 78 (11), 77 (15), 51 (2).

1-Benzhydrylpyridin-2(1H)-one (3q).^{15a} White solid (438.4 mg, 84%). Mp 240.1 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.51 (s, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.38-7.32 (m, 6H), 7.21 (d, J = 7.0 Hz, 1H), 7.13 (d, J = 7.0 Hz, 4H), 6.87 (d, J = 9.0 Hz, 1H), 6.25 (t, J = 7.0 Hz, 1H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.5, 139.9, 138.2, 136.1, 128.9, 128.8, 128.2, 120.3, 107.2, 62.7. MS (EI): m/z (%) 261 (7), 260 (9), 259 (31), 258 (12), 167 (45), 166 (100), 165 (57), 164 (50), 163 (25), 152 (18), 151 (11), 115 (2), 77 (0.5), 51 (0.2).

1-(9H-fluoren-9-yl)pyridin-2(1H)-one (*3r*). White solid (424.7 mg, 82%). Mp 221.7-222.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, J = 7.5 Hz, 2H), 7.46-7.42 (m, 4H), 7.33-7.29 (m, 4H), 6.77 (d, J = 9.0 Hz, 1H), 6.48 (dd, J_1 = 7.0 Hz, J_2 = 2.0 Hz, 1H), 5.97-5.94 (m, 1H).

¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 163.5, 143.2, 141.2, 139.5, 134.6, 129.2, 128.1, 125.3, 120.8, 120.3, 106.5, 59.3. MS (EI): m/z (%) 259 (8), 258 (10), 257 (37), 256 (15), 167 (6), 166 (53), 165 (100), 164 (79), 163 (20), 115 (3). HRMS Calcd for C₁₈H₁₄NO (M+H): 260.1070; found: 260.1083.

1-(2-Oxo-2-phenylethyl)pyridin-2(1H)-one (3s).²⁹ White solid (272.6 mg, 64%). Mp 150.4-151.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, J = 7.0 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (ddd, J_1 = 9.5 Hz , J_2 = 6.5 Hz, J_3 = 1.5 Hz ,1H), 7.23 (dd, J_1 = 6.5 Hz, J_2 = 2.0 Hz ,1H), 6.63 (d, J = 9.5 Hz, 1H), 6.24 (t, J = 6.5 Hz, 1H), 5.38 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 192.3, 162.4, 140.2, 138.4, 134.8, 134.0, 128.9, 128.2, 120.7, 106.3, 54.4. MS (EI): m/z (%) 212 (7), 211 (13), 184 (14), 118 (11), 106 (8), 105 (100), 104 (9), 80 (8), 77 (28),53 (6).

1-(3-Oxobutan-2-yl)pyridin-2(1H)-one (*3t*). White solid (110.1 mg, 19%). Mp 170.9-171.6 °C. ¹H NMR (500 MHz, CDCl3): δ 8.0 (d, J = 7.5 Hz, 2H), 7.75 (s, 1H), 7.55-7.52 (m, 1H), 7.43-7.34 (m, 8H), 7.07 (d, J = 7.0 Hz, 1H), 6.65 (d, J = 9.0 Hz, 1H), 6.15 (t, J = 7.0 Hz, 1H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 194.7, 162.5, 139.8, 136.4, 135.2, 133.7, 133.5, 130.2, 129.8, 129.5, 129.0, 128.8, 119.9, 105.8, 63.5. MS (EI): m/z (%) 289 (33), 287 (21), 286 (74), 285 (38), 278 (11), 269 (13), 205 (17), 184 (49), 183 (86), 166 (27), 165 (34), 164 (19), 105 (100), 78 (20), 77 (17). HRMS Calcd for C₁₉H₁₆NO₂ (M+H): 290.1181; found: 290.1204.

1-(3-Oxopentan-2-yl)pyridin-2(1H)-one (*3u*). Colorless oil (82.4 mg, 23%). ¹H NMR (500 MHz, CDCl₃): δ 7.35 (ddd, *J* ₁= 14.0 Hz, *J*₂ = 6.5 Hz, *J*₃= 2.0 Hz, 1H), 7.22 (dd, *J* ₁ = 7.0 Hz, *J* ₂ = 1.5 Hz, 1H), 6.59 (d, *J* = 9.0 Hz, 1H), 6.24 (td, *J* ₁ = 7.0 Hz, *J* ₂ = 1.5 Hz, 1H), 5.56 (q, *J* = 7.5 Hz, 1H), 2.53 (qd, *J* ₁ = 7.5 Hz, *J*₂ = 1.5 Hz, 2H), 1.54 (d, *J* = 7.0 Hz, 3H), 1.06 (t, *J* = 7.0 Hz, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 207.1, 162.2, 139.6, 134.5, 120.6, 106.5, 58.6, 33.0, 15.5, 7.5. MS (EI): *m/z* (%) 179 (14), 178 (18), 150 (41), 149 (23), 123 (59), 122 (100), 121 (45), 104 (14), 95 (31), 78 (29). HRMS Calcd for C₁₀H₁₄NO₂ (M+H): 180.1019; found: 180.1043.

Ethyl-2-(2-oxopyridin-1(2H)-yl)propanoate (3ν) .^{14c,15b} Colorless oil (253.6 mg, 65%). ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.30 (m, 2H), 6.58 (d, J = 9.0 Hz, 1H), 6.23 (t, J = 6.5 Hz, 1H), 5.54 (q, J = 7.5 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 1.62 (d, J = 7.0 Hz, 3H), 1.24 (t, J = 7.0 Hz, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 170.6, 162.2, 139.6, 134.9, 120.6, 106.4, 61.8, 53.7, 16.7, 14.1. MS (EI): m/z (%) 195 (16), 194 (48), 149 (68), 148 (50), 123 (20), 122 (100), 121

(20), 95 (29), 78 (19).

1-Benzyl-3-methylpyridin-2(1H)-one *(6a)*.¹⁹ White solid (199 mg, 50%). Mp 65.7-66.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.24 (m, 4H), 7.15 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 9.5 Hz, 1H), 6.04 (d, J = 6.5 Hz, 1H), 5.35 (s, 2H), 2.26 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 164.0, 146.7, 139.2, 136.4, 128.8, 127.3, 126.5, 117.8, 107.0, 47.2, 20.6. MS (EI): m/z (%) 200 (8), 199 (53), 198 (26), 182 (3), 122 (5), 93 (20), 91 (100, 65 (16), 53 (3).

1-Benzyl-4-methylpyridin-2(1H)-one (*6b*).¹⁹ White solid (306.4 mg, 77%). Mp 64.5-64.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.26 (m, 5H), 7.15 (d, J = 7.0 Hz, 1H), 6.47 (s, 1H), 6.02-6.0 (m, 1H), 5.1 (s, 2H), 2.17 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.6, 151.3, 136.5, 136.2, 128.9, 128.1, 127.9, 119.4, 109.1, 51.5, 21.2. MS (EI): *m/z* (%) 200 (9), 199 (28), 198 (37), 197 (100), 196 (79), 122 (11), 93 (36), 91 (88), 65 (10).

1-Benzyl-5-methylpyridin-2(1H)-one (*6c*).¹⁹ White solid (374.2 mg, 94%). Mp 67.6-67.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.20-7.17 (m, 5H), 7.05-7.03 (m, 1H), 6.97 (s, 1H), 6.44 (d, J =9.5 Hz, 1H), 4.99 (s, 2H), 1.89 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 161.8, 142.2, 136.7, 134.9, 128.7, 127.9, 127.7, 120.4, 51.6, 16.9. MS (EI): *m/z* (%) 199 (24), 198 (31), 197 (86), 196 (60), 195 (9), 122 (13), 93 (26), 92 (10), 91 (100), 65 (10).

1-Benzyl-6-methylpyridin-2(1H)-one (6d).^{18a} White solid (238.8 mg, 60%). Mp 103.1-103.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 731-7.24 (m, 4H), 7.15 (d, J = 7.5 Hz , 2H), 6.56 (d, J = 9.0 Hz, 1H), 6.04 (d, J = 6.5 Hz , 1H), 5.35 (s, 2H), 2.26 (s, 3H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 163.0, 136.71, 136.67, 134.7, 130.1, 128.8, 128.1, 127.9, 105.9, 52.2, 17.4. MS (EI): m/z (%) 199 (14), 198 (31), 197 (100), 196 (52), 184 (8), 183 (18), 122 (16), 93 (20), 92 (9), 91 (91), 65 (8), 51 (0.5).

1-Benzyl-5-fluoropyridin-2(1H)-one *(6e)*. White solid (349.2 mg, 86%). Mp 121.4 -122.0 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.24 (m, 6H), 7.17 (m, 1H), 6.63-6.60 (dd, $J_1 = 10.0$ Hz , $J_2 = 5.5$ Hz, 1H), 5.10 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 160.8, 148.4 (J = 231.3 Hz), 135.6, 131.39 (J = 23.8 Hz), 129.1, 128.38, 128.36, 122.4 (J = 36.4 Hz), 121.7 (J = 6.3 Hz), 52.2. MS (EI): m/z 203 (10), 202 (19), 201 (66), 200 (31), 91 (100), 65 (8), 51 (1). HRMS Calcd for C₁₂H₁₁FNO (M+H): 204.0819; found: 204.0835.

1-Benzyl-5-chloropyridin-2(1H)-one (*6f*).¹⁹ White solid (346 mg, 79%). Mp 89.2-89.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.25 (m, 7H), 6.61 (d, J = 9.5 Hz, 1H), 5.10 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 161.1, 140.5, 135.6, 134.7, 129.1, 128.4, 128.3, 121.9, 112.7, 52.2. MS (EI): *m/z* (%) 221 (9), 220 (8), 219 (27), 218 (12), 184 (1), 92 (8), 91 (100), 89 (4), 65 (13), 51 (3).

1-Benzyl-5-nitropyridin-2(1H)-one (*6g*).³⁰ White solid (427.5 mg, 93%). Mp 99.8-101.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.58 (d, J = 3.0 Hz, 1H), 8.07 (dd, J_1 = 10.0 Hz, J_2 = 3.0 Hz, 1H), 7.42-7.34 (m, 5H), 6.60 (d, J = 10.0 Hz, 1H), 5.19 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 161.5, 138.9, 134.3, 133.1, 130.9, 129.4, 129.0, 128.6, 119.8, 53.2. MS (EI): *m/z* (%) 230 (7), 229 (8), 228 (34), 227 (9), 182 (5), 153 (2), 124 (4), 91 (100), 65 (7), 51 (1).

1-Benzylpyridin-4(1H)-one (*6h*).³¹ White solid (336.8 mg, 91%). Mp 108.7-109.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.48 (d, J = 7.5 Hz, 2H), 7.35-7.31 (m, 3H), 7.18 (d, J = 6.5 Hz, 2H), 6.43 (d, J = 7.5 Hz, 2H), 5.02 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 178.4, 140.6, 134.7, 129.3, 129.0, 127.6, 118.5, 60.3. MS (EI): m/z (%) 185 (5), 184 (22), 92 (8), 91 (100), 90 (8), 89 (2), 77 (2), 65 (14), 51 (2).

1-Benzylquinolin-2(1H)-one (*6i*).³² Colorless oil (380.8 mg, 81%). ¹H NMR (500 MHz, CDCl₃): δ 7.73 (d, J = 9.5Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.30-7.16 (m, 7H), 6.80 (d, J = 9.5 Hz, 1H), 5.55 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 162.5, 139.5, 136.4, 130.6, 128.82, 128.78, 127.3, 126.6, 122.2, 121.7, 121.0, 115.0, 45.9. MS (EI): m/z (%) 235 (18), 234 (29), 233 (100), 232 (67), 214 (8), 158 (20), 157 (10), 130 (23), 129 (96), 128 (42), 91 (79).

2-Benzylpyridazin-3(2H)-one *(6j)*.³³ White solid (197.1 mg, 53%). Mp 35-36 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.77-7.76 (m, 1H), 7.43 (d, *J* = 7.0 Hz, 2H), 7.34-7.28 (m, 3H), 7.16 (dd, *J* = 9.5 Hz, *J* ₂ = 4.0 Hz, 1H), 6.94 (d, *J* = 9.5Hz, 1H), 5.33 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl3): δ 160.4, 136.23, 136.19, 131.1, 130.2, 128.7, 128.6, 127.9, 55.2. MS (EI): *m/z* (%) 186 (45), 185 (100), 184 (22), 157 (16), 130 (14), 106 (21), 104 (13), 92 (13), 91 (53), 82 (45), 77 (6).

1-Benzylpyrimidin-2(1H)-one (*6k*).^{18a} White solid (327.3 mg, 88%). Mp 128.1-128.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.58-8.56 (m, 1H), 7.62-7.59 (d, J = 4.5 Hz, 1H), 7.39-7.32 (m, 5H), 6.28-6.26 (m, 1H), 5.10 (s, 2H). ¹³C{1H}NMR (125.4 MHz, CDCl₃): δ 165.8, 156.3, 147.3, 134.7, 129.2, 128.74, 104.2, 54.0. MS (EI): *m/z* (%) 186 (49), 185 (13), 157 (4), 92 (10), 91 (100), 89 (6), 81 (15), 80 (9), 65 (22), 77 (2).

AUTHOR INFORMATION

Corresponding Author

* Email: <u>qing-xu@wzu.edu.cn</u>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank NNSFC (21672163, 21502143) and Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars (LR14B020002) for financial support.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/xxxxxxxx.

Comparison data of product **3a** and byproduct **4a**, preliminary mechanistic studies, and copies of ¹H NMR and ¹³C{¹H}NMR spectra of the products.

REFERENCES

1. (a) Parlow, J. J.; Kurumbail, R. G.; Stegeman, R. A.; Stevens, A. M.; Stallings, W. C.; South, M. S., Design, Synthesis, and Crystal Structure of Selective 2-Pyridone Tissue Factor VIIa Inhibitors. *J. Med. Chem.* **2003**, *46*, 4696-4701. (b) Pfefferkorn, J. A.; Lou, J.; Minich, M. L.; Filipski, K. J.; He, M.; Zhou, R.; Ahmed, S.; Benbow, J.; Perez, A. G.; Tu, M.; Litchfield, J.; Sharma, R.; Metzler, K.; Bourbonais, F.; Huang, C.; Beebe, D. A.; Oates, P. J., Pyridones as Glucokinase Activators: Identification of A Unique Metabolic Liability of the 4-Sulfonyl-2-Pyridone Heterocycle. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3247-3252. (c) Martinez, C. A.; Yazbeck, D. R.; Tao, J., An Efficient Enzymatic Preparation of Rhinovirus Protease Inhibitor Intermediates. *Tetrahedron* **2004**, *60*, 759-764. (d) Parlow, J. J.; South, M. S., Synthesis of 2-Pyridones as Tissue Factor VIIa Inhibitors. *Tetrahedron* **2003**, *59*, 7695-7701. (e) Huffman, J. W.; Lu, J.; Hynd, G.; Wiley, J. L.; Martin, B. R., A Pyridone Analogue of Traditional Cannabinoids. A New Class of Selective Ligands for the CB₂ Receptor. *Bioorg. Med. Chem.*

2001, *9*, 2863-2870. (f) Neckles, C.; Pschibul, A.; Lai, C. T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.; Zou, J.; Liu, N.; Pan, P.; Shah, S.; Daryaee, F.; Bommineni, G. R.; Lai, C.; Simmerling, C.; Kisker, C.; Tonge, P. J., Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia Pestis FabV Enoyl-ACP Reductase. *Biochem.* **2016**, *55*, 2992-3006.

2. (a) Gray, D.; Gallagher, T., A Flexible Strategy for the Synthesis of Tri- and Tetracyclic Lupin Alkaloids: Synthesis of (+)-Cytisine, (±)-Anagyrine, and (±)-Thermopsine. *Angew. Chem. Int. Ed.* **2006**, *45*, 2419-2423. (b) Stead, D.; O'Brien, P.; Sanderson, A. J., Concise Synthesis of (+/-)-Cytisine via Lithiation of N-Boc-Bispidine. *Org. Lett.* **2005**, *7*, 4459-4462. (c) Lagoja, I. M., Pyrimidine as Constituent of Natural Biologically Active Compounds. *Chem. Biodiversity* **2005**, *2*, 1-50. (d) Rutkowski, B.; Slominska, E.; Szolkiewicz, M.; Smolenski, R. T.; Striley, C.; Rutkowski, P.; Swierczynski, J., N-Methyl-2-Pyridone-5-Carboxamide: a Novel Uremic Toxin? *Kidney Int. Suppl.* **2003**, 19-21. (e) Wall, M. E.; Wani, M. C., Camptothecin and Taxol: from Discovery to Clinic. *J. Ethnopharmacol.* **1996**, *51*, 239-254.

3. Torres, M.; Gil, S.; Parra, M., New Synthetic Methods to 2-Pyridone Rings. *Curr. Org. Chem.* **2005**, *9*, 1757-1779 and references cited therein.

4. Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H., Diels-Alder Cycloadditions of 2-Pyrones and 2-Pyridones. *Tetrahedron* **1992**, *48*, 9111-9171.

5. (a) Ueda, N.; Konda, K.; Kono, M.; Takemoto, K.; Imoto, M., Vinyl Polymerization. 217. Vinyl Compounds of Nucleic Acid Basis. I. Synthesis of N-Vinylthymine, and N-Vinyladenine. *Die Makromol. Chem.* **1968**, *120*, 13-20. (b) Pitha, J.; Ts'o, P. O. P., N-Vinyl Derivatives of Substituted Pyrimidines and Purines. *J. Org. Chem.* **1968**, *33*, 1341-1344. (c) Kaye, H., Nucleic Acid Analogs. The Syntheses of Poly-1-Vinyluracil and Poly-9-Vinyladenine. *J. Polymer Sci. Part B: Polymer Lett.* **1969**, *7*, 1-5.

6. (a) Hopkins, G. C.; Jonak, J. P.; Minnemeyer, H. J.; Tieckelmann, H., Alkylations of Heterocyclic Ambident Anions II. Alkylation of 2-Pyridone Salts. *J. Org. Chem.* **1967**, *32*, 4040-4044. (b) Chung, N. M.; Tieckelmann, H., Alkylations of Heterocyclic Ambident Anions. IV. Alkylation of 5-Carbethoxy- and 5-Nitro-2-Pyridone Salts. *J. Org. Chem.* **1970**, *35*, 2517-2520. (c) Sugahara, M.; Moritani, Y.; Kuroda, T.; Kondo, K.; Shimadzu, H.; Ukita, T., An Efficient Synthesis of the Anti-Asthmatic Agent T-440: A Selective N-Alkylation of 2-Pyridone. *Chem. Pharm. Bull.* **2000**, *48*, 589-591. (d) Fang, Y. Q.; Bio, M. M.; Hansen, K. B.; Potter, M. S.;

Clausen, A., Magnesium Coordination-Directed N-Selective Stereospecific Alkylation of 2-Pyridones, Carbamates, and Amides Using Alpha-Halocarboxylic Acids. *J. Am. Chem. Soc.* **2010**, *132*, 15525-15527. (e) Nishiwaki, N.; Hisaki, M.; Ono, M.; Ariga, M., Synthesis of 2,6-Disubstituted Pyrido[2,3-b][1,4]Oxazines. *Tetrahedron* **2009**, *65*, 7403-7407.

7. (a) Beak, P., Energies and Alkylations of Tautomeric Heterocyclic Compounds: Old Problems-New Answers. *Acc. Chem. Res.* **1977**, *10*, 186-192. (b) Schlegel, H. B.; Gund, P.; Fluder, E. M., Tautomerization of Formamide, 2-Pyridone, and 4-Pyridone: An Ab Initio Study. *J. Am. Chem. Soc.* **1982**, *104*, 5347-5351. (c) Tsuchida, N.; Yamabe, S., Reaction Paths of Tautomerization Between Hydroxypyridines and Pyridones. *J. Phys. Chem. A* **2005**, *109*, 1974-1980.

8. Sato, T.; Yoshimatsu, K.; Otera, J., CsF in Organic Synthesis - Tuning of N-Alkykation or O-Alkykation of 2-Pyridone. *Synlett.* **1995**, 845-846.

9. Liu, H.; Ko, S. B.; Josien, H.; Curran, D. P., Selective N-Functionalization of 6-Substituted-2-Pyridones. *Tetrahedron Lett.* **1995**, *36*, 8917-8920.

10. Sośnicki, J. G.; Struk, Ł.; Idzik, T.; Maciejewska, G., Scope and Limitations of the Synthesis of Functionalized Quinolizidinones and Related Compounds by A Simple Precursor Approach via Addition of Lithium Allylmagnesates to 2-Pyridones and RCM as Key Steps. *Tetrahedron* **2014**, *70*, 8624-8635.

11. Conreaux, D.; Bossharth, E.; Monteiro, N.; Desbordes, P.; Balme, G., A Practical Procedure for the Selective N-Alkylation of 4-Alkoxy-2-Pyridones and Its Use in a Sulfone-Mediated Synthesis of N-Methyl-4-Methoxy-2-Pyridone. *Tetrahedron Lett.* **2005**, *46*, 7917-7920.

12. Vavilina, G.; Zicmanis, A.; Mekss, P.; Klavins, M., Alkylation of the 2-Hydroxypyridine Anion in Ionic Liquid Media. *Chem. Heterocycl. Comp.* **2008**, *44*, 549-558.

13. Iida, H.; Suda, M.; Nakajima, E.; Hakamatsuka, H.; Nagashima, Y.; Joho, K.; Amemiya, K.; Moromizato, T.; Matsumoto, K.; Murakami, Y.; Hamana, H., Microwave Assisted Rapid Preparation of N-Alkyl-2-Pyridones under Neutral Conditions by Hilbert-Johnson Reaction. *Heterocycles* **2010**, *81*, 2057-2062.

14. (a) Comins, D. L.; Gao, J. H., N-Alkylation Vs O-Alkylation in the Mitsunobu Reaction of
2-Pyridone. *Tetrahedron Lett.* 1994, *35*, 2819-2822. (b) E. Hartung, R.; C. Wall, M.; Lebreton, S.;
Smrcina, M.; Patek, M., Selectivity of N- Versus O-Alkylation in Mitsunobu Reactions with

Various Quinolinols and Isoquinolinols. *Heterocycles* 2017, *94*, 1305-1313. (c) Torhan, M. C.;
Peet, N. P.; Williams, J. D., A Comparison of N- Versus O-Alkylation of Substituted
2-Pyridones under Mitsunobu Conditions. *Tetrahedron Lett.* 2013, *54*, 3926-3928.

15. (a) Breugst, M.; Mayr, H., Ambident Reactivities of Pyridone Anions. J. Am. Chem. Soc.
2010, 132, 15380-15389. (b) Ref 14c.

16. Hao, X.; Xu, Z.; Lu, H.; Dai, X.; Yang, T.; Lin, X.; Ren, F., Mild and Regioselective N-Alkylation of 2-Pyridones in Water. *Org. Lett.* **2015**, *17*, 3382-3385.

17. (a) Ballesteros, P.; Claramunt, R. M.; Elguero, J., Study of the Catalytic Properties of Tris (3,6-Dioxaheptyl) Amine (TDA-1) in Heteroaromatic Nucleophilic Substitution of Chloropyridines and Their N-Oxides. *Tetrahedron* **1987**, *43*, 2557-2564. (b) Loupy, A.; Philippon, N.; Pigeon, P.; Galons, H., Easy and Efficient S_NAr Reactions on Halopyridines in Solvent Free Conditions. *Heterocycles* **1991**, *32*, 1947-1953. (c) Cherng, Y. J., Synthesis of Substituted Pyridines by the Reactions of Halopyridines with Sulfur, Oxygen and Carbon Nucleophiles under Focused Microwave Irradiation. *Tetrahedron* **2002**, *58*, 4931-4935. (d) Liu, Q.; Lu, Z.; Ren, W.; Shen, K.; Wang, Y.; Xu, Q., Efficient Synthesis of Unsymmetrical Heteroaryl Ethers by a Transition Metal-Free C-O Cross-Coupling Reaction of Activated and Unactivated Heteroaryl Chlorides with Alcohols and Phenols. *Chin. J. Chem.* **2013**, *31*, 764-772.

18. (a) Lanni, E. L.; Bosscher, M. A.; Ooms, B. D.; Shandro, C. A.; Ellsworth, B. A.; Anderson, C. E., Synthesis of Substituted N-Benzyl Pyridones via an O- to N-Alkyl Migration. *J. Org. Chem.* 2008, *73*, 6425-6428. (b) Tasker, S. Z.; Brandsen, B. M.; Ryu, K.-A.; Snapper, G. S.; Staples, R. J.; DeKock, R. L.; Anderson, C. E., Synthesis of a New Class of Beta-Iodo N-Alkenyl 2-Pyridones. *Org. Lett.* 2011, *13*, 6224-6227. (c) Tasker, S. Z.; Bosscher, M. A.; Shandro, C. A.; Lanni, E. L.; Ryu, K. A.; Snapper, G. S.; Utter, J. M.; Ellsworth, B. A.; Anderson, C. E., Preparation of N-Alkyl 2-Pyridones via a Lithium Iodide Promoted O- to N-Alkyl Migration: Scope and Mechanism. *J. Org. Chem.* 2012, *77*, 8220-8230.

19. (a) Yeung, C. S.; Hsieh, T. H. H.; Dong, V. M., Ru-Catalyzed Activation of Sp³C–O Bonds:
O- to N-Alkyl Migratory Rearrangement in Pyridines and Related Heterocycles. *Chem. Sci.* 2011, 2, 544-551.

20. Pan, S.; Ryu, N.; Shibata, T., Ir(I)-Catalyzed Synthesis of N-Substituted Pyridones from 2-Alkoxypyridines via C-O Bond Cleavage. *Org. Lett.* **2013**, *15*, 1902-1905.

21. (a) Stewart, H. F.; Seibert, R. P., Catalyzed Rearrangements of 2-Allyloxypyridine and 2-Crotyloxypyridine. *J. Org. Chem.* **1968**, *33*, 4560-4561. (b) Balavoine, G; Guibe, F., Rearrangements D'allyloxy-Pyridines Catalyses Par Les Complexes Du Platine(0). *Tetrahedron Lett.* **1979**, *20*, 3949-3952. (c) Rodrigues, A.; Lee, E. E.; Batey, R. A., Enantioselective Palladium(II) -Catalyzed Formal [3,3]-Sigmatropic Rearrangement of 2-Allyloxypyridines and Related Heterocycles. *Org. Lett.* **2010**, *12*, 260-263. (d) Romero, N. A.; Klepser, B. M.; Anderson, C. E., Au(III)-Catalyzed Tandem Amination-Hydration of Alkynes: Synthesis of Alpha-(N-2-Pyridonyl)Ketones. *Org. Lett.* **2012**, *14*, 874-877. (e) Chandra Sheker Reddy, A.; Narsaiah, B.; Venkataratnam, R. V., Palladium (II) Catalysed Claisen Rearrangement: Synthesis of Inaccessible N-Allyl-2(1H)-Pyridones From 2-(Allyloxy)Pyridines. *Tetrahedron Lett.* **1996**, *37*, 2829-2832. (f) Kumar, D.; Vemula, S. R.; Cook, G. R., Highly Chemo- and Regioselective Allylic Substitution with Tautomerizable Heteroarenes. *Green Chem.* **2015**, *17*, 4300-4306. (g) Itami, K.; Yamazaki, D.; Yoshida, J., Palladium-Catalyzed Rearrangement/Arylation of 2-Allyloxypyridine Leading to the Synthesis of N-Substituted 2-Pyridones. *Org. Lett.* **2003**, *5*, 2161-2164.

22. Zhang, X.; Yang, Z. P.; Huang, L.; You, S. L., Highly Regio- and Enantioselective Synthesis of N-Substituted 2-Pyridones: Iridium-Catalyzed Intermolecular Asymmetric Allylic Amination. *Angewan. Chem. Int. Ed.* **2015**, *54*, 1873-1876.

23. (a) Li, C.; Kahny, M.; Breit, B., Rhodium-Catalyzed Chemo-, Regio-, and Enantioselective Addition of 2-Pyridones to Terminal Allenes. *Angew. Chem. Int. Ed. Engl.* 2014, *53*, 13780-13784. (b) Timmerman, J. C.; Widenhoefer, R. A., Gold-Catalyzed Intermolecular Anti-Markovnikov Hydroamination of Methylenecyclopropanes with 2-Pyridones. *Adv. Synth. Cat.* 2015, *357*, 3703-3706. (c) Timmerman, J. C.; Laulhe, S.; Widenhoefer, R. A., Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with 2-Pyridones. *Org. Lett.* 2017, *19*, 1466-1469. (d) Gurak, J. A.; Tran, V. T.; Sroda, M. M.; Engle, K. M., N-Alkylation of 2-Pyridone Derivatives Via Palladium(II)-Catalyzed Directed Alkene Hydroamination. *Tetrahedron* 2017, *73*, 3636-3642.

24. (a) Ma, X.; Su, C.; Xu, Q. *N-Alkylation by Hydrogen Autotransfer Reactions*, in: *Hydrogen Transfer Reactions: Reductions and Beyond* (Eds.: Guillena, G.; Ramón, D. J.), *Topics in Current Chemistry*, Vol. 374, Springer, Berlin, Heidelberg, **2016**, pp 1–74 and references cited therein. (b)

Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J., Catalyst-Free Dehydrative Alpha-Alkylation of Ketones with Alcohols: Green and Selective Autocatalyzed Synthesis of Alcohols and Ketones. *Angew. Chem. Int. Ed.* **2014**, *53*, 225-229. (c) Xu, Q.; Xie, H. M.; Chen, P. L.; Yu, L.; Chen, J. H.; Hu, X. G., Organohalide-Catalyzed Dehydrative O-Alkylation Between Alcohols: A Facile Etherification Method for Aliphatic Ether Synthesis. *Green Chem* **2015**, *17*, 2774-2779. (d) Xu, Q.; Xie, H. M.; Zhang, E. L.; Ma, X. T.; Chen, J. H.; Yu, X. C.; Li, H., Selective Catalytic Hofmann N-Alkylation of Poor Nucleophilic Amines and Amides with Catalytic Amounts of Alkyl Halides. *Green Chem* **2016**, *18*, 3940-3944. (e) Ma, X. T.; Yu, L.; Su, C. L.; Yang, Y. Q.; Li, H.; Xu, Q., Efficient Generation of C-S Bonds via a Byproduct-Promoted Selective Coupling of Alcohols, Organic Halides, and Thiourea. *Adv. Synth. Cat.* **2017**, *359*, 1649-1655 and references cited therein.

25. **3a** and **4a** (the N- and O-isomers) are greatly different in R_f value in TLC analysis, the retention time and MS in GC-MS analysis, and ¹H and ¹³C NMR spetra. See the SI for detailed comparison of **3a** and **4a**.

26. No unreacted 4a was observed in the reaction. So the selectivity of 3a is also >99%. The observation of mall amounts of 1a and dibenzyl ether generated by decomposition of 4a may account for the moderate yield of 3a. See the SI for detail.

27. No **3a** was observed in the reaction. See the SI for detail. This result is consistent with the literature methods that conversion of **4a** to **3a** requires a catalyst or a promoter (ref. 18-21).

28. Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T., A Mild and Efficient Procedure for Alpha-Bromination of Ketones Using N-Bromosuccinimide Catalysed by Ammonium Acetate. *Chem. Commun.* **2004**, 470-471.

29. Hand, E. S.; Paudler, W. W., Imidazo[1,2-a]pyridine 1-Oxide. Synthesis and Chemistry of a Novel Type of N-Oxide. *J. Org. Chem.* **1978**, *43*, 658-663.

30. Pryde, D. C.; Maw, G. N.; Planken, S.; Platts, M. Y.; Sanderson, V.; Corless, M.; Stobie, A.; Barber, C. G.; Russell, R.; Foster, L.; Barker, L.; Wayman, C.; Van Der Graaf, P.; Stacey, P.; Morren, D.; Kohl, C.; Beaumont, K.; Coggon, S.; Tute, M., Novel Selective Inhibitors of Neutral Endopeptidase for The Treatment of Female Sexual Arousal Disorder. Synthesis and Activity of Functionalized Glutaramides. *J. Med. Chem.* **2006**, *49*, 4409-4424.

31. Yu, Y. Y.; Niphakis, M. J.; Georg, G. I., Palladium(II)-Catalyzed Dehydrogenative Alkenylation of Cyclic Enaminones via the Fujiwara-Moritani Reaction. *Org. Lett.* **2011**, *13*, 5932-5935.

32. Fujita, R.; Hoshino, M.; Tomisawa, H., Cyclization of 1-Benzyl-1,2-Dihydro-2-(Substituted Methylene)Quinolines to Pyrrolo[1,2-a]Quinoline Derivatives. *Chem. Pharm. Bull.*2006, 54, 334-337.

33. Verhelst, T.; Verbeeck, S.; Ryabtsova, O.; Depraetere, S.; Maes, B. U., Synthesis of Functionalized Pyridazin-3(2H)-Ones via Nucleophilic Substitution of Hydrogen (SNH). *Org. Lett.* **2011**, *13*, 272-275.