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Abstract: ( + )-Goniobutenolide A was synthesized in six steps in 21.4% overall yield from (R)-mandelic acid via 
P d-catalyzed ene-yne cross coupling--lactonization cascade with essentially complete control of the exocyclic alkene 
geometry. Copyright © 1996 Elsevier Science Ltd 

Goniobutenolide A (1) has been recently isolated from the ethanolic extract of the stem bark of Goniothalamus 

giganteus Hook. f. & Thomas (Annonaceae) from Thailand, and it has been shown to be marginally cytotoxic against 

human tumor ceils. 1 Over the past few years, several syntheses of this compound have been published. 2-6 One 

shortcoming common to all of these syntheses is the lack of control of the exocyclic alkene geometry, the Z/E ratio 

ranging from 1/3 to 3/1. In view of the high efficiency and potential generality of the Pd-catalyzed ene-yne cross 

coupling--lactonization cascade mute to (Z)-y-alkylidenebutenolides with essentially complete Z selectivity that we have 

recently developed, 7'8 a synthetic mute shown in Scheme 1 was envisioned. Herein we report its realization and some 

experimental details. 
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(a) (i) MeOH, p-TsOH (0.01 eq), reflux, 3h. (ii) t-BuMe2SiCI (1.5 eq), imidazole (2 eq), DMF, 22 °C, 12 h. (iii) i-Bu2AIH 
(1.1 eq), Et2 O, -78 °C, 0.5 h; (b) ~--MgCI (4 eq), THF, -78 to 22 °C, 1 h. (c) t-BuMe2SiCI (1.5 eq), imidazole (2 eq), 
DMF, 22 °C, 12h. (d) (Z)-3-bmmopropenoic acid (2 eq), PdCI2(PPh3)2 (0.05 eq), PPh3 (0.2 eq), Cul (0.05 eq), Et3N 
(4 eq), MeCN, 22 °C, 48 h. (e) THF-3NHCI, 22 °C, 6 h. 

9041 



9042 

(R)-Mandelic acid was converted to aldehyde 2 via (i) esterification with MeOH and TsOH, (ii) protection with 

t-BuMe2SiCI and imidazole in DMF, and (iii) reduction with i-Bu2A1H in 80% overall yield according to a literature 

procedure. 9 The reaction of 2 with 4 equiv of HC-=CMgC1 gave a 90% combined NMR yield of a 4.3/1 mixture of the 

desired 3a and its epirner 3b, from which 3a t° and 3b were isolated as pure compounds in 55 and 11% yields, 

respectively. The predominant formation of the desired erythro isomer indicates that the reaction is not of chelation 

control but of steric control. 11 After quantitative protection of 3a with t-BuMe2SiC1 and imidazole, the doubly protected 

diol 4 was reacted with 2 equiv of (Z)-3-bromopropenlc acid in the presence of CI2Pd(PPh3) 2 (5 mol%), PPh 3 (20 mol%), 

CuI (5 mol%), and NEt 3 (4 equiv) in MeCN at 22 °C for 48 h to produce the desired 5 in 55% yield along with diyne 

6, the amount of which corresponded to 27% of the starting alkyne 4. Examination of the crudely isolated 5 by NMR 

spectroscopy indicated that it was _>98% isomerically pure. Deprotection of the silyl group was conveniently and 

effectively achieved with 3N HC1 in THF (1/1) at 22 °C for 6 h to provide a 92% yield of isomerically pure (+)- 

goniobutenolide A (1), [Qt}24D +183 ° (c 1.05, CHCI3), whose spectral properties shown below are indistinguishable from 

those reported earlier: 1'2'4-6 1H NMR (CDCI3) ~5 2.92 (bs, 2 H), 4.92 (d, J = 4.5 Hz, 1 H), 4.98 (dd, J = 8.5, 4.5 Hz, 

1 H), 5.30 (d, J = 8.5 Hz, 1 H), 6.14 (d, J = 5.5 Hz, 1 H), 7.27 (d, J = 5.5 Hz, 1 H), 7.3 - 7.35 (m, 5 H); 13C NMR 

(CDC13) ~ 70.61, 75.95, 112.99, 126.42 (2 C), 128.05, 128.34 (2 C), 139.02, 143.63, 150.45, 169.27; IR (Neat) 3418, 

1752 cm t .  The overall yield for the six-step synthesis of 1 from (R)-mandelic acid is 21.4%. 

It should he emphasized here again that, in addition to proper selection of solvent, 7 i.e., MeCN, the amount of 

PPh 3 relative to Pd is critically important for obtaining 5 from 4 in the yield indicated above. Both CI2Pd(PPh3) 2 + 

4 PPh 3 and Pd(PPh3) 4 + 2 PPh 3 were satisfactory and comparable to each other, whereas the use of C12Pd(PPh3)2 ,s 

Pd(PPh3)4 ,7 or CI2Pd(PPh3) 2 + 2 PPh37 led to the formation of 5 only in 20-30% yields. On the other hand, the use of 

more than 6 equiv of PPh 3 relative to Pd did not further improve the yield of 5. These results not only further support 

our previous conclusion 7 that the amount of PPh 3 is critically important but also indicate that optimization with respect 

to the PPh3/Pd ratio may he needed for any given case. Further efforts are being made to explore the synthetic utility 

of the Pd-catalyzed cross coupling--lactonization cascade. 
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