Tetrahedron xxx (2013) 1-8

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A novel synthesis of diverse 2-amino-5-hydroxy-4*H*-chromene derivatives with a spirooxindole nucleus by Ca(OH)₂-mediated three-component reactions of substituted resorcinols with isatins and malononitrile

Ji Hyang Park^a, Yong Rok Lee^{a,*}, Sung Hong Kim^b

^a School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea ^b Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 31 May 2013 Received in revised form 6 September 2013 Accepted 7 September 2013 Available online xxx

Keywords: Multi-component reaction One-pot synthesis Resorcinols Isatin Malononitrile Calcium hydroxide

1. Introduction

2-Aminochromenes are important heterocyclic compounds with a number of biological and pharmacological properties.¹ For example, they are known to possess potent antimicrobial,² antiviral,³ anticonvulsant,⁴ antiproliferative,⁵ antitumor,⁶ anti-cancer,⁷ and central nervous system activities,^{8a} and are widely employed as cosmetics, pigments,⁹ and potent biodegradable agrochemicals.¹⁰ Furthermore, their derivatives, such as, HA 14-1 and MX58151, which have proapoptotic effects, are being developed as anti-cancer agents.¹¹ 2-Amino-4H-chromenes are generally synthesized by reactions of phenol or resorcinol, arylaldehydes, and malononitrile (Scheme 1). Basic alumina,¹² piperidine,¹³ morpho-line,¹⁴ cetyltrimethylammonium chloride,^{8b} [bmim]OH,¹⁵ K₂CO₃/ microwave,¹⁶ DBU/microwave,¹⁷ and chitosan¹⁸ have been used in these reactions as catalytic and stoichiometric reagents. Interestingly, all known reactions of resorcinol, arylaldehydes, and malononitrile afford 2-amino-7-hydroxy-4H-chromene derivatives as sole products, and thus, isolation of the expected 2-amino-5-

ABSTRACT

An efficient and facile one-pot synthesis is described for the preparation of novel 2-amino-5-hydroxy-4*H*-chromene derivatives with a spirooxindole nucleus using Ca(OH)₂-mediated three-component reactions of substituted resorcinols with isatins and malononitrile. This simple method provided a variety of biologically interesting diverse 2-amino-5-hydroxy-4*H*-chromene derivatives in moderate yields under mild reaction conditions.

© 2013 Elsevier Ltd. All rights reserved.

hydroxy-4*H*-chromene derivatives is not required.¹⁹ In addition, reactions of naphthols with arylaldehydes and malononitrile in the presence of $Na_2CaP_2O_7^{20}$ or ceric ammonium nitrate²¹ have been described to afford 2-aminochromene derivatives. Interestingly, resorcinol reacts with arylaldehydes and malononitrile at position 6 rather than at position 2 under the above-described conditions to give 2-amino-7-hydroxy-4*H*-chromenes regioselectively, probably due to steric hindrance between two hydroxyl groups in the meta-disubstituted compound.¹⁹

Spirooxindole derivatives also represent an important class of naturally occurring substances with pronounced biological activities and properties.²² The spirooxindole unit is a core structure of many pharmacological agents and alkaloids.²³ Furthermore, molecules bearing a spirooxindole moiety have been shown to possess a number of important and interesting biological activities.²⁴

In view of these important characteristics, our current research focus has been targeted toward the facile synthesis of 2-amino-5hydroxy-chromenes and spirooxindoles. The unique structural array and highly prominent pharmacological activities of these entities stimulated interest in their syntheses, and in particular, the development of new, simple one-pot synthetic methods for the preparation of both 2-amino-5-hydroxy-chromenes and spirooxindole derivatives has become an interesting challenge.

^{*} Corresponding author. Tel.: +82 53 810 2529; fax: +82 53 810 4631; e-mail address: yrlee@yu.ac.kr (Y.R. Lee).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.09.021

J.H. Park et al. / Tetrahedron xxx (2013) 1–8

Scheme 1.

Recently, several synthetic methods have been reported for the synthesis of 4*H*-pyrans and 4*H*-benzo[*h*]chromenes bearing the spirooxindole moiety based on multi-component reactions of 1,3-dicarbonyl compound or 1-naphthol with isatins and malononitrile (Scheme 2). A variety of catalysts and reagents, such as, Al₂O₃,²⁵ MgO,²⁶ InCl₃,²⁷ NiCl₂,²⁸ KAl(SO₄)₂·12H₂O,²⁹ *p*-MeC₆H₄. SO₃H,³⁰ ammonium salt,³¹ Bu₄N⁺·Br⁻,³² Me(CH₂)16CO₂⁻·Na⁺ (disodium carbonate),³³ [BMIm]BF₄,³⁴ HOCH₂CH₂OH polymer,³⁵ beta-cyclodextrin,³⁶ and lipase³⁷ have been studied in the contexts of these reactions, which provide rapid synthetic methods to the production of 2-amino-4*H*-pyrans and 2-amino-4*H*-benzo[*h*] chromene derivatives bearing the spirooxindole moiety. Furthermore, reactions of substituted resorcinols with isatins and malononitrile to afford a variety of 6-acyl-2-amino-5-hydroxy-4*H*-chromenes bearing various spirooxindoles have not been reported.

malononitrile (**3**) were first examined in the presence of several catalysts and bases (Table 1). Using 20 mol % of InCl₃ and Yb(OTf)₃ as Lewis acids, no products were produced (entries 1 and 2). When 20 mol % of ethylenediamine diacetate (EDDA) was used as an organocatalyst, no products were isolated (entry 3). In addition, the use of 1 equiv of DBU and K₂CO₃ as bases in refluxing methanol for 12 h did not produce the desired products (entries 4 and 5). Interestingly, reactions using 1.0 equiv of Ca(OH)₂ in refluxing toluene or acetonitrile for 12 h gave no products (entries 6 and 7), but reactions in refluxing ethanol or methanol provided the desired product **4a** at yields of 40 and 60%, respectively (entries 8 and 9). Two equivalent of Ca(OH)₂ in refluxing methanol for 5 h increased the yield of **4a** to 75% (entry 10). The use of H₂O as a solvent resulted in the production of **4a** in only 5% yield (entry 11). Importantly, in these reactions, only **4a** was formed and other possible

Recently, we developed a method for synthesizing 2-amino-5hydroxy-4H-chromene derivatives based on two-component reactions between 2,4-dihydroxyacetophenone and 2benzylidenemalononitriles in methanol in the presence of base (path a, Scheme 3).³⁸ As part of our ongoing studies on the syntheses of novel types of 2-aminochromene derivatives, we examined three-component reactions of substituted resorcinols with various isatins and malononitrile in the presence of different catalysts and other reagents. Here, we describe a one-pot synthesis of biologically interesting diverse 2-amino-5-hydroxy-4H-chromene derivatives using Ca(OH)₂-mediated three-component reactions of substituted resorcinols with isatins and malononitrile (path b, Scheme 3).

regioisomers were not produced. The structure of **4a** was determined by ¹H NMR, which showed AB aromatic protons on the 4*H*-chromene ring at δ 6.71 (*J*=8.6 Hz) and δ 7.90 (*J*=8.6 Hz) ppm and two methyl peaks at δ 3.15 and 2.50 ppm attributed to a *N*-methyl and an acyl group. The ¹³C NMR spectrum of **4a** contained a characteristic quaternary carbon peak at δ 47.3 ppm due to a spirooxindole moiety.

To explore the generality and scope of this method, additional reactions of substituted resorcinols containing electron-donating or -withdrawing groups on the benzene ring with malononitrile and isatins were attempted under optimized conditions. The results are summarized in Table 2. Reaction of 2,4-dihydroxyacetophenone (**1a**), with isatin (**2b**) and malononitrile (**3**) in the presence of 2 equiv of

2. Results and discussion

To afford 2-amino-5-hydroxy-4*H*-chromenes bearing the spirooxindole moiety, three-component reactions of 2,4-dihydroxyacetophenone (**1a**) with 1-methylisatin (**2a**) and

Ca(OH)₂ in refluxing methanol for 4 h provided compound **4b** in 60% yield (entry 1). When 5-methylisatin with an electron-donating group on the benzene ring was used, product **4c** was produced in 68% yield (entry 2). When 5-bromoisatin, 5-chloroisatin, 7-chloroisatin, and 5-nitroisatin with electron-withdrawing groups

Table 1

Three-component reactions of 2,4-dihydroxyacetophenone (1a) with isatin (2a) and malononitrile (3) under several conditions

	DH + V = 0 + N DH + V = 0 + N DH - 2a	CN CN solve	o H o C	
Entry	Catalyst/reagent	Solvent	Condition	Yield (%)
1	InCl ₃ (0.2 equiv)	MeOH	Reflux, 12 h	0
2	Yb $(OTf)_3$ (0.2 equiv)	CH ₃ CN	Reflux, 12 h	0
3	EDDA (0.2 equiv)	MeOH	Reflux, 12 h	0
4	DBU (1.0 equiv)	MeOH	Reflux, 12 h	0
5	K_2CO_3 (1.0 equiv)	MeOH	Reflux, 12 h	0
6	$Ca(OH)_2$ (1.0 equiv)	Toluene	Reflux, 12 h	0
7	$Ca(OH)_2$ (1.0 equiv)	CH ₃ CN	Reflux, 12 h	0
8	$Ca(OH)_2$ (1.0 equiv)	EtOH	Reflux, 8 h	40
9	$Ca(OH)_2$ (1.0 equiv)	MeOH	Reflux, 5 h	60
10	$Ca(OH)_2$ (2.0 equiv)	MeOH	Reflux, 5 h	75
11	Ca(OH) ₂ (2.0 equiv)	H ₂ O	Reflux, 12 h	5

on the benzene ring were used, the desired products **4d**–**g** were obtained in 57–70% yield (entries 3–6). When 1-phenylisatin was used, **4h** was produced in 69% yield (entry 7). For other resorcinols, reactions of 2,4-dihydroxypropiophenone (**1b**) and 2',4'-dihydroxy-2-phenylacetophenone (**1c**) afforded the desired products **4i**–**s** in 45–75% yield (entries 8–18). Similarly, reactions of 2,4-dihydroxybenzophenone (**1d**) were also successful. Reaction of **1d** with isatin and malononitrile in refluxing methanol for 6 h provided **4t** in 55% yield, whereas that of 5-chloroisatin afforded **4u** in 40% yield. These reactions provided a rapid means of synthesizing a variety of 2-amino-5-hydroxy-4*H*-chromene derivatives **4b–u** containing various spirooxindole moieties. To confirm the structures of **4a–u**, the structure of **4i** was determined by X-ray crystallography (Fig.1).³⁹

The formation of **4a** can be explained by the mechanism shown in Scheme 4. 2,4-Dihydroxyacetophenone (**1a**) first gives the phenoxide intermediate **5** in the presence of base, which attacks the 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile (**6**) formed by Knoevenagel condensation between 1-methylisatin (**2a**) and malononitrile (**3**), to give intermediate **7**. As an evidence of this reaction pathway, intermediate 6 was isolated and identified by comparison with spectral data of the reported compound.⁴⁰ The attack of **5** to **6** at more crowded 3-position on the benzene ring in comparison with 5-position may due to higher electron density at the 3-position.⁴¹ Tautomerism of **7** followed by intramolecular nucleophilic addition of oxygen to the cyano group and protonation provides **8**, which undergoes isomerization to give **4a**. The regioselective ring closure of **7** to **8** may be determined by the deactivation of the *O*-hydroxy group by intramolecular hydrogen bonding to the neighboring carbonyl.

In summary, we describe the efficient and general one-pot synthesis of biologically interesting 2-amino-5-hydroxy-4H-chromene derivatives bearing spirooxindole skeletons via a Ca(OH)₂-mediated three-component reaction of substituted resorcinols with isatins and malononitrile. This method has advantages of requiring mild reaction conditions, ease of handling, and the use of an effective reagent.

3. Experimental section

All experiments were carried out in a nitrogen atmosphere. Merck pre-coated silica gel plates (Art. 5554) and a fluorescent indicator were used for analytical TLC. Flash column chromatography was performed using silica gel 9385 (Merck). ¹H and ¹³C NMR spectra were recorded on a Bruker Model ARX (300 and 75 MHz, respectively) spectrometer in DMSO- d_6 . IR spectra were recorded on a JASCO FTIR 5300 spectrophotometer. HRMS was carried out at the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 spectrometer.

3.1. General procedure for the synthesis of spirooxindoles (4a-u)

To a solution of substituted isatin (1.0 mmol) in methanol (5 mL) was added various resorcinols (1.0 mmol), malononitrile (1.0 mmol), and Ca(OH)₂ (2.0 mmol). The mixture was stirred at reflux until the completion of the reaction, as indicated by TLC (ethyl acetate/*n*-hexane). Then the reaction mixture was quenched with NH₄Cl solution (50 mL) and extracted with ethyl acetate (50 mL×3). The organic layer was washed with water (50 mL), dried (MgSO4), and evaporated under reduced pressure to give the residue. Chromatography on silica gel using ethyl acetate/*n*-hexane (1:1) afforded the desired products.

3.1.1. 6-Acetyl-2-amino-5-hydroxy-1'-methyl-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4a**). Yield: 270 mg (75%) as a solid; mp 274–276 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.84 (1H, s), 7.90 (1H, d, *J*=8.6 Hz), 7.32–7.03 (3H, m), 7.01–6.80 (3H, m), 6.71 (1H, d, *J*=8.6 Hz), 3.15 (3H, s), 2.50 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 204.7, 176.2, 160.3, 159.4, 154.1, 143.5, 133.5, 132.7, 128.6, 123.2, 122.6, 117.4, 115.8, 108.2, 107.6, 56.2, 54.8, 47.3, 26.4; IR (KBr) 3421, 3324, 3178, 2196, 1710, 1655, 1611, 1489, 1472, 1398, 1368, 1327, 1256, 1127, 1081, 1026, 808, 753 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₀H₁₅N₃O₄: 361.1063; found: 361.1067.

3.1.2. 6-Acetyl-2-amino-5-hydroxy-2'-oxospiro[chromene-4,3'-indo-line]-3-carbonitrile (**4b**). Yield: 208 mg (60%) as a solid; mp 290 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 13.05 (1H, s), 10.59 (1H, s), 7.94 (1H, d, *J*=8.9 Hz), 7.31–7.10 (3H, m), 6.99–6.80 (3H, m), 6.74 (1H, d, *J*=8.9 Hz), 2.56 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 204.9, 177.9, 160.7, 159.4, 154.3, 142.0, 134.5, 132.8, 128.5, 123.6, 122.0, 117.7, 115.8, 109.4, 108.4, 107.6, 56.5, 47.7, 26.6; IR (KBr) 3316, 3176, 2194, 1711, 1651, 1475, 1401, 1326, 1255, 1129, 1079, 808, 752 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₁₉H₁₃N₃O₄: 347.0906; found: 347.0903.

3.1.3. 6-Acetyl-2-amino-5-hydroxy-5'-methyl-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4c**). Yield: 245 mg (68%) as a solid; mp 205–207 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.04 (1H, s), 10.45 (1H, s), 7.94 (1H, d, J=8.7 Hz), 7.17 (2H, br s), 6.97 (1H, d, J=7.5 Hz), 6.80–6.63 (3H, m), 2.56 (3H, s), 2.16 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 204.6, 177.6, 160.6, 159.2, 154.2, 139.5, 134.4, 132.4, 130.7, 128.6, 123.9, 117.4, 115.7, 109.0, 108.5, 107.4, 56.9, 47.6, 26.3, 20.4; IR (KBr) 3331, 3198, 2197, 1719, 1655, 1492, 1398, 1324, 1255, 1132, 1079, 810 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₀H₁₅N₃O₄: 361.1063; found: 361.1059.

3.1.4. 6-Acetyl-2-amino-5'-bromo-5-hydroxy-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4d**). Yield: 243 mg (57%) as a solid; mp 279 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 13.07 (1H, s), 10.71 (1H, s), 7.96 (1H, d, *J*=9.0 Hz), 7.36 (1H, d, *J*=8.3 Hz), 7.28 (2H, br s), 7.16 (1H, br s), 6.84 (1H, d, *J*=8.3 Hz), 6.75 (1H, d, *J*=9.0 Hz), 2.56 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 204.9, 177.6, 160.5, 159.5, 154.3, 141.4, 136.7, 132.9, 131.3, 126.5, 117.6, 115.8, 113.7, 111.4, 107.7, 107.7, 55.7, 47.9, 26.6; IR (KBr) 3318, 3180, 2197, 1718, 1653, 1475, 1401, 1325, 1254, 1127, 1079, 807, 632 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₂BrN₃O₄: 425.0011; found: 425.0009.

3.1.5. 6-Acetyl-2-amino-5'-chloro-5-hydroxy-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile(**4e**). Yield: 218 mg (57%) as a solid; mp 280 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 12.38 (1H, s), 10.05 (1H, s), 7.26 (1H, d, *J*=8.7 Hz), 6.64 (2H, s), 6.53 (1H, d, *J*=8.0 Hz), 6.37 (1H, s), 6.17 (1H, d, *J*=8.0 Hz), 6.05 (1H, d, *J*=8.7 Hz), 1.86 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 205.1, 177.9, 160.8, 159.8, 154.6, 141.3, 136.6, 133.2, 128.7, 126.2, 124.1, 117.8, 116.1, 111.1, 108.0, 56.1, 48.2, 26.8; IR (KBr) 3389, 3323, 3178, 2197, 1707, 1654, 1477,

4

ARTICLE IN PRESS

J.H. Park et al. / Tetrahedron xxx (2013) 1–8

Table 2

Additional reactions for the synthesis of a variety of 2-amino-5-hydroxy-4H-chromenes bearing spirooxindole moieties in the presence of Ca(OH)₂

J.H. Park et al. / Tetrahedron xxx (2013) 1–8

Table 2. (continued)

Fig. 1. The X-ray structure of compound 4i

1404, 1325, 1255, 1126, 1079, 809, 633 cm $^{-1}$; HRMS $m/z~(\rm M^+)$ calcd for C $_{19}\rm H_{12}ClN_{3}O_{4}$: 381.0516; found: 381.0518.

3.1.6. 6-Acetyl-2-amino-7'-chloro-5-hydroxy-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4f**). Yield: 267 mg (70%) as a solid; mp 269 °C (decomp.); ¹H NMR (300 MHz, DMSO-d₆) δ 12.97 (1H, s), 10.60 (1H, s), 7.90 (1H, d, *J*=8.9 Hz), 7.23–7.03 (3H, m), 6.98 (1H, s), 6.82 (1H, d, *J*=8.4 Hz), 6.68 (1H, d, *J*=8.9 Hz), 2.50 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 204.6, 177.4, 160.4, 159.4, 154.2, 140.9, 136.2, 132.7, 128.2, 125.8, 123.6, 117.3, 115.8, 110.7, 107.6, 107.5, 55.9, 47.9, 26.4; IR (KBr) 3390, 3319, 3175, 2197, 1707, 1653, 1478, 1405, 1325, 1254, 1127, 1079, 809, 633 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₁₉H₁₂ClN₃O₄: 381.0516; found: 381.0514.

3.1.7. 6-Acetyl-2-amino-5-hydroxy-5'-nitro-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4g**). Yield: 239 mg (61%) as a solid; mp 260 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 13.08 (1H, s), 11.37 (1H, s), 8.17 (1H, d, *J*=8.3 Hz), 7.97 (1H, d, *J*=9.0 Hz), 7.92 (1H, s), 7.45 (2H, s), 7.08 (1H, d, *J*=8.3 Hz), 6.77 (1H, d, *J*=9.0 Hz), 2.54 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 205.1, 178.7, 160.6, 160.0, 154.6, 148.8, 143.0, 135.6, 133.5, 126.3, 119.7, 117.7, 116.2, 110.0, 108.2, 107.3, 55.2, 48.1, 26.8; IR (KBr) 3442, 3364, 3276, 2197, 1731, 1652, 1484, 1404, 1333, 1254, 1079, 809, 632 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₂N₄O₆: 392.0757; found: 392.0759.

3.1.8. 6-Acetyl-2-amino-5-hydroxy-2'-oxo-1'-phenylspiro[chromene-4,3'-indoline]-3-carbonitrile (**4h**). Yield: 292 mg (69%) as a solid; mp 254–256 °C; ¹H NMR (300 MHz, DMSO-d₆) δ 13.08 (1H, s), 8.00 (1H, d, J=9.0 Hz), 7.78–7.56 (2H, m), 7.55–7.40 (3H, m), 7.36 (2H, s), 7.22 (1H, t, J=7.5 Hz), 7.13–6.96 (2H, m), 6.80 (1H, d, J=9.0 Hz), 6.71 (1H, d, J=7.8 Hz), 2.58 (3H, s); ¹³C NMR (75 MHz, DMSO-d₆) δ 204.5, 175.7, 160.2, 159.2, 154.1, 143.1, 134.5, 133.2, 132.7, 129.6, 128.5, 128.1, 126.6, 123.7, 123.1, 117.3, 115.9, 108.5, 108.1, 107.5, 56.4, 47.4, 26.4; IR

Scheme 4. Plausible mechanism for the formation of 4a.

(KBr) 3463, 3318, 3192, 2196, 1722, 1657, 1609, 1498, 1369, 1327, 1254, 1077, 810, 749, 700, 625 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₅H₁₇N₃O₄: 423.1219; found: 423.1217.

3.1.9. 2-Amino-5-hydroxy-1'-methyl-2'-oxo-6-propionylspiro[chromene-4,3'-indoline]-3-carbonitrile (4i). Yield: 195 mg (52%) as a solid; mp 270–272 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.00 (1H, s), 7.97 (1H, d, J=9.0 Hz), 7.32-7.19 (3H, m), 7.09-6.91 (3H, m), 6.76 (1H, d, J=9.0 Hz), 3.21 (3H, s), 3.02 (2H, q, J=7.5 Hz), 1.03 (3H, t, I=7.5 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.3, 176.5, 160.6, 159.7, 154.2, 143.8, 133.8, 132.1, 128.8, 123.5, 122.9, 117.7, 115.5, 108.6, 108.5, 107.8, 56.4, 47.6, 31.2, 26.7, 8.2; IR (KBr) 3385, 3309, 3198, 2194, 1718, 1655, 1468, 1367, 1236, 1120, 1080, 1023, 803, 748 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₁H₁₇N₃O₄: 375.1219; found: 375.1217.

3.1.10. 2-Amino-5-hydroxy-2'-oxo-6-propionylspiro[chromene-4,3'indoline]-3-carbonitrile (4j). Yield: 191 mg (53%) as a solid; mp 289 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 13.08 (1H, s), 10.57 (1H, s), 7.96 (1H, d, J=8.9 Hz), 7.25-7.12 (3H, m), 6.94-6.81 (3H, m), 6.74 (1H, d, J=8.9 Hz), 3.02 (2H, q, J=6.9 Hz), 1.04 (3H, t, I=6.9 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.1, 177.8, 160.5, 159.3, 154.1, 142.0, 134.4, 131.7, 128.4, 123.5, 121.9, 117.6, 115.3, 109.3, 108.5, 107.5, 56.6, 47.7, 31.0, 8.0; IR (KBr) 3472, 3332, 3193, 2197, 1721, 1655, 1469, 1393, 1299, 1236, 1119, 1076, 808, 747 cm⁻¹; HRMS m/z(M⁺) calcd for C₂₀H₁₅N₃O₄: 361.1063; found: 361.1060.

3.1.11. 2-Amino-5-hydroxy-5'-methyl-2'-oxo-6-propionylspiro[chromene-4,3'-indoline]-3-carbonitrile (4k). Yield: 169 mg (45%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.06 (1H, s), 10.42 (1H, s), 7.98 (1H, d, J=9.0 Hz), 7.14 (2H, br s), 6.98 (1H, d, *J*=7.8 Hz), 6.78–6.67 (3H, m), 3.04 (2H, q, *J*=7.1 Hz), 2.18 (3H, s), 1.07 (3H, t, J=7.1 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.2, 177.9, 160.6, 159.3, 154.1, 139.6, 134.6, 131.8, 130.9, 128.8, 124.1, 117.8, 115.3, 109.2, 108.6. 107.6, 56.7, 47.7, 31.1, 20.6, 8.0; IR (KBr) 3472, 3322, 3185, 2197, 1719, 1655, 1491, 1393, 1305, 1239, 1131, 1110, 809 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₁H₁₇N₃O₄: 375.1219; found: 375.1219.

3.1.12. 2-Amino-5'-bromo-5-hydroxy-2'-oxo-6-propionylspiro[chromene-4,3'-indoline]-3-carbonitrile (41). Yield: 268 mg (61%) as a solid; mp 188–190 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.10 (1H, s), 10.70 (1H, s), 7.98 (1H, d, J=8.6 Hz), 7.36 (1H, d, J=8.1 Hz), 7.26 (2H, s), 7.15 (1H, s), 6.83 (1H, d, J=8.1 Hz), 6.74 (1H, d, J=8.6 Hz), 3.03 (2H, q, J=6.6 Hz), 1.05 (3H, t, J=6.6 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.0, 177.3, 160.3, 159.4, 154.0, 141.4, 136.7, 131.9, 131.1, 126.3, 117.4, 115.3, 113.5, 111.2, 107.7, 107.5, 55.8, 47.8, 30.9, 7.9; IR (KBr) 3476, 3309, 3182, 2197, 1722, 1655, 1472, 1396, 1303, 1239, 1119, 1080, 807 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₀H₁₄BrN₃O₄: 439.0168; found: 439.0171.

3.1.13. 2-Amino-5'-chloro-5-hydroxy-2'-oxo-6-propionylspiro[chromene-4,3'-indoline]-3-carbonitrile (4m). Yield: 198 mg (50%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.08 (1H, s), 10.68 (1H, s), 7.98 (1H, d, J=8.7 Hz), 7.29-7.17 (3H, m), 7.03 (1H, s), 6.88 (1H, d, J=8.1 Hz), 6.74 (1H, d, J=8.7 Hz), 3.03 (2H, q, J=6.6 Hz), 1.04 (3H, t, J=6.6 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.0, 177.5, 160.4, 159.4, 154.0, 141.0, 136.3, 131.9, 128.3, 125.8, 123.6, 117.4, 115.3, 110.7, 107.7, 107.5, 55.9, 47.9, 30.9, 7.9; IR (KBr) 3475, 3305, 3180, 2196, 1724, 1654, 1473, 1395, 1302, 1238, 1119, 807 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₀H₁₄ClN₃O₄: 395.0673; found: 395.0677.

3.1.14. 2-Amino-5-hydroxy-5'-nitro-2'-oxo-6-propionylspiro[chromene-4.3'-indoline]-3-carbonitrile (**4n**). Yield: 187 mg (46%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.10 (1H, s), 11.32 (1H, s), 8.18 (1H, d, J=8.7 Hz), 8.00 (1H, d, J=9.0 Hz), 7.89 (1H, s), 7.37 (2H, s), 7.09 (1H, d, *J*=8.7 Hz), 6.77 (1H, d, *J*=9.0 Hz), 3.02 $(2H, q, J=7.2 \text{ Hz}), 1.02 (3H, t, J=7.2 \text{ Hz}); {}^{13}\text{C} \text{NMR} (75 \text{ MHz}, \text{DMSO-}d_6)$ δ 207.0, 178.3, 160.2, 159.6, 154.1, 148.5, 142.6, 135.3, 132.2, 125.9, 119.2, 117.3, 115.4, 109.6, 107.7, 107.1, 55.0, 47.8, 30.9, 7.8; IR (KBr) 3421, 3306, 3182, 2195, 1725, 1653, 1524, 1479, 1406, 1340, 1232, 1118, 1077, 833, 690 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₀H₁₄N₄O₆: 406.0913; found: 406.0910.

3.1.15. 2-Amino-7'-chloro-5-hydroxy-2'-oxo-6-propionylspiro[chromene-4,3'-indoline]-3-carbonitrile (40). Yield: 234 mg (59%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 13.11 (1H, s), 10.97 (1H, s), 7.98 (1H, d, J=8.7 Hz), 7.31-7.18 (3H, m), 6.95-6.86 (2H, m), 6.74 (1H, d, J=8.7 Hz), 3.02 (2H, q, J=7.1 Hz), 1.04 (3H, t, J=7.1 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 207.0, 177.7, 160.3, 159.3, 153.8, 139.7, 136.0, 131.9, 128.3, 123.1, 122.1, 117.3, 115.3, 113.5, 107.9, 107.5, 56.0, 48.5, 30.9, 7.8; IR (KBr) 3413, 3326, 3199, 2197, 1729, 1649, 1466, 1400, 1239, 1124, 1088, 800, 751 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₀H₁₄ClN₃O₄: 395.0673; found: 395.0676.

3.1.16. 2-Amino-5-hydroxy-1'-methyl-2'-oxo-6-(2-phenylacetyl) spiro[chromene-4,3'-indoline]-3-carbonitrile (**4p**). Yield: 317 mg (75%) as a solid; mp > 300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.91 (1H, s), 10.53 (1H, s), 8.14 (1H, d, J=8.7 Hz), 7.35–7.09 (8H, m), 6.95–6.70 (4H, m), 4.36 (2H, s); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 203.9, 177.6, 160.9, 159.2, 154.2, 141.9, 134.3, 134.2, 132.3, 129.5, 128.3, 128.2, 126.7, 123.4, 121.8, 117.4, 115.1, 109.2, 108.6, 107.5, 56.6, 47.6, 44.1; IR (KBr) 3432, 3289, 3181, 2198, 1716, 1650, 1478, 1404, 1345, 1255, 1109, 1040, 804, 746 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₅H₁₇N₃O₄: 423.1219; found: 423.1216.

3.1.17. 2-Amino-5'-bromo-5-hydroxy-2'-oxo-6-(2-phenylacetyl)spiro [chromene-4,3'-indoline]-3-carbonitrile (4q). Yield: 246 mg (49%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.94 (1H, s), 10.69 (1H, s), 8.15 (1H, d, J=8.7 Hz), 7.40-7.12 (9H, m), 6.89-6.71 (2H, m), 4.36 (2H, s); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 203.9, 177.3, 160.8, 159.3, 154.3, 141.3, 136.6, 134.2, 132.5, 131.1, 129.6, 128.3, 126.7, 126.3, 117.4, 115.2, 113.5, 111.2, 107.9, 107.6, 55.9, 47.8, 44.2; IR

(KBr) 3359, 3170, 2195, 1724, 1649, 1475, 1401, 1349, 1258, 1111, 1036, 806, 696 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₅H₁₆BrN₃O₄: 501.0324; found: 501.0325.

3.1.18. 2-Amino-5'-chloro-5-hydroxy-2'-oxo-6-(2-phenylacetyl)spiro [chromene-4,3'-indoline]-3-carbonitrile (**4r**). Yield: 252 mg, (55%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.96 (1H, s), 10.71 (1H, s), 8.17 (1H, d, *J*=8.7 Hz), 7.36–7.16 (8H, m), 7.07 (1H, s), 6.87 (1H, d, *J*=8.1 Hz), 6.78 (1H, d, *J*=8.7 Hz), 4.38 (2H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 203.9, 177.4, 160.8, 159.3, 154.3, 140.9, 136.2, 134.2, 132.5, 129.6, 128.3, 128.2, 126.7, 125.8, 123.6, 117.3, 115.1, 110.7, 107.8, 107.7, 55.9, 47.9, 44.2; IR (KBr) 3357, 3169, 2196, 1724, 1648, 1478, 1401, 1349, 1257, 1111, 1037, 806, 698 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₅H₁₆ClN₃O₄: 457.0829; found: 457.0831.

3.1.19. 2-Amino-7'-chloro-5-hydroxy-2'-oxo-6-(2-phenylacetyl)spiro [chromene-4,3'-indoline]-3-carbonitrile (**4s**). Yield: 229 mg (50%) as a solid; mp 177–179 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.95 (1H, s), 10.98 (1H, s), 8.17 (1H, d, J=8.9 Hz), 7.40–7.16 (8H, m), 6.93 (2H, br s), 6.78 (1H, d, J=8.9 Hz), 4.38 (2H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 203.9, 177.6, 161.3, 160.8, 159.3, 154.1, 139.7, 136.0, 134.2, 132.5, 129.6, 128.3, 126.7, 123.1, 122.1, 117.3, 115.2, 113.5, 108.0, 107.6, 56.0, 48.4, 44.1; IR (KBr) 3338, 3200, 2197, 1730, 1650, 1469, 1402, 1360, 1255, 1114, 1041, 800, 741, 717 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₅H₁₆ClN₃O₄: 457.0829; found: 457.0829.

3.1.20. 2-Amino-6-benzoyl-5-hydroxy-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4t**). Yield: 225 mg (55%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.54 (1H, s), 10.61 (1H, s), 7.67–7.45 (6H, m), 7.29–7.12 (3H, m), 7.02–6.82 (3H, m), 6.75 (1H, d, *J*=8.1 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 199.7, 177.8, 161.0, 159.3, 154.2, 142.0, 136.9, 134.4, 134.2, 132.2, 128.8, 128.5, 128.4, 123.6, 122.0, 117.6, 115.7, 109.3, 109.0, 107.6, 56.6, 47.8; IR (KBr) 3421, 3319, 3187, 2193, 1713, 1648, 1478, 1397, 1343, 1256, 1093, 1019, 802, 754, 704 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₄H₁₅N₃O₄: 409.1063; found: 409.1065.

3.1.21. 2-Amino-6-benzoyl-5'-chloro-5-hydroxy-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile (**4u**). Yield: 178 mg (40%) as a solid; mp >300 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.54 (1H, s), 10.74 (1H, s), 7.70–7.68 (3H, m), 7.68–7.46 (3H, m), 7.31 (2H, s), 7.24 (1H, d, *J*=8.3 Hz), 7.12 (1H, s), 6.88 (1H, d, *J*=8.3 Hz), 6.75 (1H, *J*=7.2 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 199.5, 177.5, 160.7, 159.4, 154.1, 141.0, 136.9, 136.3, 134.2, 132.1, 128.7, 128.4, 128.2, 125.8, 123.7, 117.4, 115.8, 110.7, 108.2, 107.6, 55.9, 48.0; IR (KBr) 3352, 3309, 3183, 2195, 1714, 1648, 1628, 1478, 1401, 1342, 1254, 1092, 803, 698 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₄H₁₄ClN₃O₄: 443.0673; found: 443.0670.

Acknowledgements

This research was supported by the Nano Material Technology Development Program of the Korean National Research Foundation (NRF) funded by the Korean Ministry of Education, Science, and Technology (2012M3A7B4049675).

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2013.09.021.

References and notes

 (a) Makarem, S.; Mohammadi, A. A.; Fakhari, A. R. *Tetrahedron Lett.* 2008, 49, 7194; (b) Elinson, M. N.; Dorofeev, A. S.; Miloserdov, F. M.; Ilovaisky, A. I.; Feducovich, S. K.; Belyakov, P. A.; Nikishin, G. I. Adv. Synth. Catal. 2008, 350, 591 and references cited therein.

- Khafagy, M. M.; Abd El-Wahab, A. H. F.; Eid, F. A.; El-Agrody, A. M. Farmaco 2002, 57, 715.
- (a) Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Starkey, I. D.; Cobley, K. N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R. J.; Morley, P. J.; Pateman, T.; Beresford, A. J. Med. Chem. 1998, 41, 787; (b) Martinez-Grau, A.; Marco, J. L. Bioorg. Med. Chem. Lett. 1997, 7, 3165.
- Joshi, K. C.; Jain, R.; Sharma, K.; Bhattacharya, S. K.; Goel, R. K. J. Indian Chem. Soc. 1988, 65, 202.
- 5. Bianchi, G.; Tava, A. Agric. Biol. Chem. 1987, 51, 2001.
- 6. Mohr, S. J.; Chirigos, M. A.; Fuhrman, F. S.; Pryor, J. W. Cancer Res. 1975, 35, 3750.
- (a) Anderson, D. R.; Hegde, S.; Reinhard, E.; Gomez, L.; Vernier, W. F.; Lee, L.; Liu, S.; Sambandam, A.; Snider, P. A.; Masih, L. *Bioorg. Med. Chem. Lett.* 2005, *15*, 1587; (b) Skommer, J.; Wlodkowic, D.; Matto, M.; Eray, M.; Pelkonen, J. *Leukemia Res.* 2006, *30*, 322 and references cited therein; (c) Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinvasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. *Proc. Natl. Acad. Sci. USA.* 2000, *97*, 7124.
 (a) Erichsen, M. N.; Huynh, T. H. V.; Abrahamsen, B.; Bastlund, J. F.; Bundgaard,
- (a) Erichsen, M. N.; Huynh, T. H. V.; Abrahamsen, B.; Bastlund, J. F.; Bundgaard, C.; Monrad, O.; Bekker-Jensen, A.; Nielsen, C. W.; Frydenvang, K.; Jensen, A. A.; Bunch, L. J. Med. Chem. 2010, 53, 7180; (b) Ballini, R.; Bosica, G.; Conforti, M. L.; Maggi, R.; Mazzacanni, A.; Righi, P.; Sartori, G. Terrahedron 2001, 57, 1395.
- Ellis, G. P. In Chemistry of Heterocyclic Compounds. Chromenes, Chromanones, and Chromones; Weissberger, A., Taylor, E. C., Eds.; John Wiley: New York, NY, 1977; Chapter II, pp 11–139.
- (a) Hafez, E. A. A.; Elnagdi, M. H.; Elagamey, A. G. A.; El-Taweel, F. M. A. A. Heterocycles 1987, 26, 903; (b) Abdel-Galil, F. M.; Riad, B. Y.; Sherif, S. M.; Elnagdi, M. H. Chem. Lett. 1982, 1123; (c) Sofan, M. A.; El-Taweel, F. M.; Elagamey, A. G. A.; Elnagdi, M. H. Liebigs Ann. Chem. 1989, 935.
- (a) Doshi, J. M.; Tian, D.; Xing, C. J. Med. Chem. 2006, 49, 7731; (b) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S. X. J. Med. Chem. 2004, 47, 6299; (c) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S. X. J. Med. Chem. 2007, 50, 2858; (d) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Crogan-Grundy, C.; Labreque, D.; Bubenick, M.; Attardo, G.; Denis, R.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S. X. J. Med. Chem. 2008, 51, 417.
- 12. Maggi, R.; Ballini, R.; Sartori, G.; Sartorio, R. Tetrahedron Lett. 2004, 45, 2297.
- Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S. X. Bioorg. Med. Chem. Lett. 2005, 15, 4745.
- Klokol, G. V.; Sharanina, L. G.; Nesterov, V. N.; Shklover, V. E.; Sharanin, Y. A.; Struchkov, Y. T. *Zh. Org. Khim.* **1987**, *23*, 412.
 - Gong, K.; Wang, H.-L.; Luo, J.; Liu, Z.-L. J. Heterocycl. Chem. 2009, 46, 1145.
- Kidwai, M.; Saxena, S.; Khalilur Rahman Khan, M.; Thukral, S. S. Bioorg. Med. Chem. Lett. 2005, 15, 4295.
- 17. Raghuvanshi, D. S.; Singh, K. N. Arkivoc 2010, 305.
- Al-Matar, H. M.; Khalil, K. D.; Meier, H.; Kolshorn, H.; Elnagdi, M. H. Arkivoc 2008, 288.
- **19.** Dekamin, M. G.; Eslami, M.; Maleki, A. *Tetrahedron* **2013**, 69, 1074.
- Solhy, A.; Elmakssoudi, A.; Tahir, R.; Karkouri, M.; Larzek, M.; Bousmina, M.; Zahouily, M. Green. Chem. 2010, 12, 2261.
- 21. Kumar, A.; Sharma, S.; Maurya, R. A.; Sarkar, J. J. Comb. Chem. 2010, 12, 20.
- 22. (a) Marti, C.; Carreira, E. M. *Eur. J. Org. Chem.* 2003, 2209; (b) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261; (c) James, D. M.; Kunze, H. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1137; (d) Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.; Mikami, Y. Tetrahedron 1991, 47, 6617; (e) Sannigrahi, M. Tetrahedron 1999, 55, 9007; (f) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. Spirocyclic Systems. In Total Synthesis of Natural Products; Simon, J., Ed.; John Wiley & Sons: New York, NY, 1983; Vol. 5, p 264; (g) Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127; (h) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748; (i) Cui, C. B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832; (j) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron 1997, 53, 59.
- (a) Kang, T.-H.; Matsumoto, K.; Tohda, M.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. *Eur. J. Pharmacol.* 2002, 444, 39; (b) Ma, J.; Hecht, S. M. *Chem. Commun.* 2004, 1190; (c) Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. *J. Am. Chem. Soc.* 1999, 121, 2147.
- 24. (a) Fischer, C.; Meyers, C.; Carreira, E. M. Helv. Chim. Acta 2000, 83, 1175; (b) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M. Angew. Chem., Int. Ed. 1999, 38, 3186; (c) Ashimori, A.; Bachand, B.; Overmann, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477; (d) Matsuura, T.; Overmann, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500.
- 25. Dandia, A.; Singh, R.; Singh, D. Indian J. Chem., Sect. B 2009, 48, 1001.
- 26. Karmakar, B.; Nayak, A.; Banerji, J. Tetrahedron Lett. 2012, 53, 5004.
- 27. Shanthi, G.; Subbulakshmi, G.; Perumal, P. T. Tetrahedron 2007, 63, 2057.
- 28. Zhang, X.-N.; Li, Y.-X.; Zhang, Z.-H. Tetrahedron 2011, 67, 7426.
- Oskooie, H. A.; Heravi, M. M.; Karimi, N.; Hamidi, H. Synth. Commun. 2011, 41, 3344.
 (a) Ghahremanzadeh, R.; Amanpour, T.; Bazgir, A. J. Heterocycl. Chem. 2009, 46, 1266; (b) Ghahremanzadeh, R.; Amanpour, T.; Bazgir, A. J. Heterocycl. Chem. 2010, 47, 46.

8

ARTICLE IN PRESS

J.H. Park et al. / Tetrahedron xxx (2013) 1–8

- 31. Dabiri, M.; Bahramnejad, M.; Baghbanzadeh, M. Tetrahedron 2009, 65, 9443.
- 32. Mobinikhaledi, A.; Foroughifar, N.; Fard, M. A. B. Synth. Commun. 2011, 41, 441.
- 33. Wang, L.-M.; Jiao, N.; Qiu, J.; Yu, J.-J.; Liu, J.-Q.; Guo, F.-L.; Liu, Y. Tetrahedron 2010, 66, 339.
- Rad-Moghadam, K.; Youseftabar-Miri, L. *Tetrahedron* 2011, 67, 5693.
 (a) Meshram, H. M.; Kumar, D. A.; Prasad, B. R. V.; Goud, P. R. *Helv. Chim. Acta* 2010, 93, 648; (b) Khurana, J. M.; Yadav, S. *Aust. J. Chem.* 2012, 65, 314.
- 36. Sridhar, R.; Srinivas, B.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D.; Rao, K. R. Can. J. Chem. 2009, 87, 1704.
- 37. Chai, S.-J.; Lai, Y.-F.; Xu, J.-C.; Zheng, H.; Zhu, Q.; Zhang, P.-F. Adv. Synth. Catal. 2011, 353, 371.
- 38. Kolla, S. R.; Lee, Y. R. Tetrahedron 2011, 67, 8271.
- 39. Crystallographic data for compound **4i** have been deposited with Cambridge Crystallographic Data Center (CCDC 942704).
- 40. (a) Abdelhamid, I. A.; Mohamed, M. H.; Abdelmoniem, A. M.; Ghozlan, S. A. S. Tetrahedron 2009, 65, 10069; (b) Redkin, R. G.; Shemchuk, L. A.; Chernykh, V. P.; Shishkin, O. V.; Shishkina, S. V. *Tetrahedron* **2007**, 63, 11444; (c) Katritzky, A. R.; Fan, W.-Q.; Liang, D.-S.; Li, Q.-L. J. Heterocycl. Chem. 1989, 26, 1541.
- 41. Zhou, T.; Shi, Q.; Lee, K. H. Tetrahedron Lett. **2010**, *51*, 4382.