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ABSTRACT: This paper describes the isolation and char-
acterization of an aromatic radical cation generated by 
FeCl3.  X-ray crystallographic analysis and kinetic studies 
reveal the mechanism of the generation of aromatic radical 
cation.  In the solid state, a tight ion-pair of a radical cation 
with FeCl4

– is observed.  Leveraging the efficient genera-
tion of the radical cation–FeCl4

– ion pair, we explore a rad-
ical cation-induced cycloaddition of trans-anethole initiated 
by catalytic amount of FeCl3.  Both [4 + 2] cycloaddition 
and [2 + 2] cycloaddition with a broad substrate scope are 
also described.  Moreover, a 100g-scale reaction is demon-
strated with the use of 1 mol% of FeCl3 as a simple and a 
highly active initiator. 

Aromatic radical cations are open-shell reactive species 
that appear in various one-electron oxidation reactions.1  
Since radical cation-induced reactions exhibit reactivity 
and selectivity complementary to those in thermal reac-
tions,2 tremendous effort has been devoted to identifying 
radical cation-induced reactions.  The explicit characteriza-
tion of these key radical cation intermediates can serve as a 
basis for the discovery of further reactions.  However, be-
cause of their high reactivities and short lifetimes, the 
structural characterization of radical cations has been chal-
lenging.3  Within this catalytic regime, FeCl3-promoted 
oxidation reactions are of particular interest.4  For examples, 
FeCl3 has been shown to promote oxidative coupling reac-
tions5,6 and the Scholl reaction,7,8 which have been utilized 
for syntheses of polycyclic aromatic hydrocarbons for more 
than a century (Scheme 1a).  Despite its wide application 
for material science,9 the mechanism of the FeCl3-
promoted oxidation reaction has been scarcely studied.  
Whereas the oxidation reactions are believed to proceed 
through aromatic radical cations as a key intermediate,6a–e,10 
there have been no reports on the isolation of aromatic rad-
ical cations generated by FeCl3.  Major challenges include 
a highly reactive and labile aromatic radical cation, which 
decomposes or undergoes oxidation reaction immediate-
ly.10,11  Therefore, the actual structure of aromatic radical 
cations remains unclear.  In particular, the identity of coun-
teranion (X–) has remained elusive in key previous studies.  

Here, we report the isolation and characterization of an 
aromatic radical cation–anion generated by FeCl3 (Scheme 
1b).  Moreover, by means of the efficient generation of 
radical cation by FeCl3, we have developed radical cation-
induced [4 + 2] cycloaddition as well as [2 + 2] cycloaddi-
tion promoted by catalytic amounts of FeCl3. 

Scheme 1. FeCl3-mediated Radical Cation Generation.   

 

The isolation of an aromatic radical cation generated by 
FeCl3 was approached empirically.  Most of the electron-
rich aromatics examined did not give isolable products.  
Fortunately, sterically congested arene 1 gave radical cati-
on 2 in 84% yield in CH2Cl2/MeCN (Figure 1a).  The X-
ray crystal structure of 2 reveals an ion pair of FeCl4

– with 
1•+ (Figure 1b).  Additionally, 1•+ could be observed in so-
lution by UV-vis spectroscopy (λmax = 519 nm, 483 nm)12 
and ESI-MS analysis (m/z = 270.16) under ambient condi-
tions (Figures 1c and 1d).  To elucidate the mechanism for 
the generation of 2, kinetic studies were conducted for 
FeCl3 and 1.  First-order dependency for FeCl3 and zero-
order dependency for 1 were observed (Figure 1e), which 
suggested that the nuclearity of the iron species was un-
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changed between the ground state and rate-determining 
transition state.  Combined with the known structure A of 
FeCl3 in MeCN,13 we propose the overall mechanism for 
oxidation shown in Figure 1f.  Namely, zero-order in 1 
implies rate-limiting internal reorganization in the dimeric 
ground-state structure A, which we propose involves a 
ligand dissociation to afford FeCl4

– and FeCl2
+(MeCN)3 

(B).14  This oxidant B is immediately scavenged by 1 to 
give 2, thus exhibiting zero-order behavior.  Because the 
zero-order behavior suggests that 1 is an efficient scaven-
ger of B, this observation suggests that less kinetically re-
ducing arenes could also be oxidized by FeCl3-promoted 
oxidation in MeCN.  

 

Figure 1.  (a) The generation of radical cation 2 by FeCl3.  
(b) Thermal-ellipsoid representation of 2 at the 50% proba-
bility level.  Hydrogens have been omitted for clarity.  (c) 
UV-vis spectrum of 2.  (d) ESI-MS spectrum for 2.  (e) 
Kinetic studies for FeCl3 and 1.  (f) The proposed mecha-
nism for the generation of 2. 

With the oxidant B identified, we applied FeCl3-
promoted oxidation for a radical cation-induced cycloaddi-
tion.  We were intrigued by [4 + 2] cycloaddition and [2 + 
2] cycloaddition of trans-anethole 3 (Scheme 2).  The key 
intermediate is 3•+, which undergoes [4 + 2] cycloaddition 
with diene or [2 + 2] cycloaddition with styrene.  To date, 

implementation of an initiator has been the primary strate-
gy developed for the generation of 3•+.15  Great progress 
has been made employing aminium radical cation,16 photo-
redox catalysis,17 electrochemical methods18 and iron(III) 
catalysis19 for [4 + 2] cycloaddition.  With regard to cross 
[2 + 2] cycloaddition, photoredox catalysis,20 hypervalent 
iodine initiator21 and iron(III) catalysis19 have been devel-
oped.  Whereas a broad substrate scope of both cycloaddi-
tions has been achieved, electron-deficient trans-anetholes 
(3) are less explored.  For examples, only one report of 
electron-deficient 3 for [4 + 2] cycloaddition has appeared 
recently from Ferreira’s group.17e  Regarding [2 + 2] cy-
cloaddition, there have been no examples of electron-
deficient 3.22  The generation of electron-deficient 3•+ is 
more difficult because of the high oxidation potential of 
such substrates.  To achieve a wide substrate scope in-
cluding electron-deficient 3, in-situ formed B as a strong 
oxidant should be suitable.   

Scheme 2. Previously Reported [4 + 2] Cycloaddition 
and [2 + 2] Cycloaddition.  

 

Our studies in this area commenced with examination of 
FeCl3-initiated [4 + 2] cycloaddition (Table 1).  To our 
delight, 5 mol% of FeCl3 gave the corresponding product in 
98% yield when 3a was used (see 5a).  Interestingly, 5 
mol% of isolated 2 also promoted the cycloaddition to give 
5a in 90% yield.    Both cyclic and acyclic dienes gave the 
corresponding products in high yields (see 5b–5f).  Various 
aromatic groups and substituents of β-position of 3 were 
well tolerated (see 5g–5l).  Remarkably, our oxidation sys-
tem was also suitable for electron-deficient dienophiles 
(3m–3s).  In some cases, 5 mol% of Fe(OTf)3 in place of 
FeCl3 was also effective (see 5k–5m, 5o and 5p).23  Pre-
sumably, higher oxidation potential of Fe(OTf)3 facilitates 
the oxidation of such less-reducing substrates.24  Whereas 
the conventional aminium radical cation give 5m in only 
30% yield,25 iron(III) oxidation system afforded 5m in an 
improved 63% yield.  In the case of α,β-unsaturated car-
bonyls, such as esters, aldehydes, carboxylic acids and ke-
tones (3n–3s), the corresponding products (5n–5s) were 
obtained in high yield with high regioselectivity in 2–24 h.  
As in previous examples of radical cation cycloaddition, 
the regioselectivity of the corresponding products (5n–5s) 
is complementary to that of thermal [4 + 2] cycloadducts 
(6n–6s).  Indeed, the opposite isomer 6s was mainly ob-
tained from BF3•OEt2-promoted [4 + 2] cycloaddition of 3s.  
These results suggest that FeCl3 acts as a one-electron oxi-
dant rather than a Lewis acid.   
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Table 1. Scope of Radical Cation-induced [4 + 2] Cy-
cloaddition.a   

 
aThe reaction was carried out with FeCl3 (5 mol %), 3 (1 equiv) 
and 4 (2–6 equiv) in MeCN at 0 ºC or room temperature.    bUsing 
2 (5 mol%) instead of FeCl3.  cCH2Cl2 was used as a solvent.    
dMeCN/CH2Cl2 were used as solvents.  eUsing Fe(OTf)3 (5 mol%) 
instead of FeCl3.  fUsing 4 (9 equiv).  gUsing Fe(OTf)3 (10 mol%) 
instead of FeCl3.  hThe reaction was carried out with BF3•OEt2 
(100 mol %), 3 (1 equiv) and 4 (10 equiv) in Et2O at room tem-
perature. 

To test the synthetic potential of our approach, a large-
scale reaction was conducted (Scheme 3).  When 69.8 g of 
3a was reacted in the presence of 1 mol% of FeCl3, the 
crude product was obtained quantitatively in 2 h using a 
flask open to air.  Moreover, removal of inorganic FeCl3

 by 
filtration through a short pad of silica-gel afforded pure 5a 
in 95% yield (103.5 g), highlighting the operational sim-
plicity of this methodology.  Unlike photoredox catalysis, 
this method does not require specialized light-flux-
maximizing flow apparatuses for large-scale reactions,26  
allowing FeCl3-initiated [4 + 2] cycloaddition to be con-
ducted on a 100g scale in standard glassware.   

Scheme 3. 100-gram Scale Reaction.   

 
Next, we turned our attention to the cross [2 + 2] cy-

cloaddition of 3 with 7 (Table 2).  Initial attempts using 3a 
with 7a gave unsatisfactory results.  Namely, the desired 9a 
was not obtained because of a polymerization of 7a and a 
degradation of 9a.  Nicewicz and coworker have previously 
reported a [2 + 2] cycloaddition in which a redox-mediator 
is employed as an additive to putatively accelerate the 
chain-propagation step and subsequently minimize such 
side reactions.27  In a similar manner, we sought a redox-
mediator.  After screening of additives, diene 8 was found 
to suppress side reactions.  When 5 mol% of FeCl3 was 
used with 30 mol% of diene 8, various substituted styrenes 
(7a–7f), which having electron-withdrawing and electron-
donating groups on aromatics, gave the corresponding 
products in high yields (see 9a–9f).  Whereas there are only 
two examples of the use of α-substituted styrenes in photo-
redox-initiated [2 + 2] cycloaddition,20a α-substituted sty-
renes (see 9g and 9h) were also suitable substrates under 
our conditions.  With respect to 3, both a sterically-
congested substituents and an allylic ether group on the 
olefin were well tolerated (see 9i–9k).  As above, in some 
cases (9e, 9g, 9h and 9k), Fe(OTf)3 was more effective 
than FeCl3.23  To our delight, unprecedented electron-
deficient 3 could be also used when Fe(OTf)3 was em-
ployed.  For examples, the corresponding products (9l–9o) 
were obtained in high yield with high diastereoselectivity 
when α,β-unsaturated ketones with various styrenes were 
used.  The major diastereomer of 9n was unambiguously 
analyzed by X-ray crystallography.  It is worth noting that 
α-methyl substituted styrene also provided the correspond-
ing 9o in 56% yield with high diastereoselectivity.  Moreo-
ver, α,β-unsaturated esters could be well tolerated without 
a decrease in yield (see 9p).  In summary, iron(III) salt-
initiated [2 + 2] cycloaddition exhibits high reactivity with 
a broad substrate scope of both electron-rich and electron-
deficient alkenes.    

Table 2. Scope of Radical Cation-induced [2 + 2] Cy-
cloaddition.a   
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 aThe reaction was carried out with FeCl3 (5 mol %), 3 (1 equiv) 
and 7 (2–6 equiv) in MeCN at 0 ºC.  bIn the absence of 8.  cThe 
yield was determined by 1H NMR analysis using 1,3-
dinitrobenzene as an internal standard.  dUsing Fe(OTf)3 (5 mol%) 
instead of FeCl3.  eThe reaction was carried out at room tempera-
ture.  fThe reaction was carried out at –20 ºC.  gUsing Fe(OTf)3 
(10 mol%) instead of FeCl3.  hUsing 8 (10 mol%).  

To elucidate the role of 8 in [2 + 2] cycloaddition, UV-vis 
analyses were conducted (Figure S9 and S10).  Upon UV-
vis monitoring of the reaction of 9b•+ with 8 (Figure S9), 
we observed the reduction of 9b•+ (λmax = 465 nm, 497 nm) 
to give 9b with concomitant formation of a new feature 
assigned to 8•+ (λmax = 481 nm)28.  Moreover, UV-vis ob-
servation of the reaction between 8•+ and 3a showed the 
generation of 3a•+ (λmax = 580 nm) along with 8 (Figure 
S10).  These results suggest that 8 serves to promote the 
reduction of 9b•+ and the subsequent oxidation of 3a as a 
redox-mediator.  The summarized mechanistic proposal is 
shown in Scheme 4.  After the generation of 3a•+FeCl4

– by 
FeCl3, [2 + 2] cycloaddition of 3a•+FeCl4

– with 7b affords 
9b•+FeCl4

–.  The reduction of 9b•+FeCl4
– by 8 gives 9b 

along with 8•+FeCl4
–.  Subsequent oxidation of 3a by 

8•+FeCl4
– regenerates 3a•+FeCl4

– and 8.  As a result of ac-
celerating the chain propagation step, side reactions might 
be suppressed (Figure S11).   

Scheme 4. A Plausible Role of 8.   

 

In conclusion, the aromatic radical cation generated by 
FeCl3 has been isolated and characterized for the first time.    
Moreover, by virtue of the generation of the radical cation–
FeCl4

– as an ion pair, radical cation-induced [4 + 2] cy-
cloaddition and [2 + 2] cycloaddition were developed, with 
the latter leveraging a novel diene redox-mediator as a co-
catalyst. In addition to delivering a mild, inexpensive, 
straightforward, and easily scalable method for radical cat-
ion-induced cycloaddition chemistry, these results shed 
new light on iron(III)-promoted single-electron chemistry 
writ large.   
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