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Abstract
The electroreduction reaction of methyl cinnamate on a boron-doped diamond (BDD) electrode was investigated. The hydrodimer,

dimethyl 3,4-diphenylhexanedioate (racemate/meso = 74:26), was obtained in 85% yield as the major product, along with small

amounts of cyclic methyl 5-oxo-2,3-diphenylcyclopentane-1-carboxylate. Two new neolignan-type products were synthesized from

the hydrodimer.
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Introduction
Numerous lignans and neolignans were found as secondary

plant metabolites, and many of them are known to exhibit

interesting biological activities [1]. Due to their plausible roles

as defense substances of plants, lignans, neolignans, and their

congeners are promising candidates for agricultural chemicals,

and some of their antioxidant and/or anti-inflammatory prop-

erties may be utilized for biological research and as lead struc-

tures for chemotherapeutic agents. Despite consisting of two

phenylpropane (C6–C3) fragments, the variety of carbon frame-

works provides a huge library of lignans and neolignans [2-4].

As a result of their structural diversity, they have been targets of

synthetic and biological investigations. Several synthetic
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Figure 1: Expected coupling products from one-electron oxidation (left) and one-electron reduction (right) of C6–C3 compounds.

approaches, including electrochemical oxidative coupling reac-

tions mimicking biosynthetic pathways, were reported to

construct the backbones of these molecules [5]. Recently,

boron-doped diamond (BDD) electrodes have attracted a great

deal of attention for their wide potential window against evolu-

tion of both hydrogen and oxygen and for their high stability

which is derived from their diamond carbon structure [6].

Although anodic oxidation reactions mediated by BDD elec-

trodes have been exploited in organic synthesis, there have been

only few reports regarding their application in preparative-scale

cathodic reduction of organic compounds [7].

During our investigations of phenolic oxidation reactions using

BDD electrodes, we observed the generation of solvent-derived

methoxy radicals that conducted an oxidation process of the

phenol substrate to the corresponding coupling product [8]. In

our second investigation on the use of the BDD electrode in

organic synthesis, the electrochemical reduction of methyl

cinnamate (1a) was investigated to assess the applicability of

BDD electrodes under cathodic reduction conditions, and to

obtain new neolignan-type bioactive substances. As shown in

Figure 1, the radical intermediate derived from phenylacrylate

through a one-electron reduction (right) differs from that

obtained by anodic oxidation of 4-hydroxyphenyl-1-propene

(left). Therefore, the reductive dimerization of cinnamic acid

derivatives was expected to provide access to unprecedented

neolignan-type dimeric compounds.

Results and Discussion
Cathodic reduction on BDD electrode
The ester methyl cinnamate (1a) was electrolyzed under

constant current electrolysis (CCE) conditions in a divided cell.

Solvents used for the reactions played a significant role in

providing the desired coupling (Table 1, entries 1–5). Thus,

only acetonitrile (Table 1, entry 5) gave the desired coupling

product (±)-2 [9] in 4% yield, recovered educt 1a and

hydrolyzed product 1b. The undesired hydrolysis could be

depressed using a phosphate-buffered solution in the cathodic

cell (pH 7, Table 1, entries 7–11), and finally the optimized

conditions for the synthesis of 2 (85% yield, racemate/meso =

74:26) were acquired in the case of 2.5 F/mol current (Table 1,

entry 11).

To check for a different behavior of the BDD electrode, several

electrode materials, including glassy carbon (GC), platinum

(Pt), and magnesium (Mg), were examined as cathodes under

the optimized electrolytic conditions (Table 1, entry 11).

Hydrogen evolution at the electrode was recognized when Pt

and Mg electrodes were used, and the educt 1a was recovered in

high yield. The GC electrode provided the coupling product 2

(34%, racemate/meso = 74:26) and E-3 (25%), along with 41%

of 1a. Similar cathodic reductions of cinnamate derivatives

were carried out using Hg [10,11], Cu [12,13], Pb [13,14], Zn

[13], Sn [13], and Ag [13], and the major products were the

cyclic products (type 3) through Diekmann-type cyclization,

whereas the hydrodimer 2 was the predominantly produced

product in the present BDD electrode mediated reduction.

Despite a different product ratio, the GC electrode gave similar

reaction products to that of the BDD electrode.

Synthesis of new neolignans
As shown in Scheme 1, after separation of the diastereomeric

mixture, (±)-2 was submitted to the chemical conversion into

the new neolignan-type derivatives E-5 and E-8. Thus, reduc-

tion of (±)-2 with LiAlH4 gave the alcohol (±)-4 [15] in quanti-

tative yield, which on oxidation with PCC [16] gave the lactone

E-5 in 32% yield. Selective DIBAL reduction of E-5 gave an

inseparable mixture of 6 and 7, which were identified by
1H NMR spectroscopy. Subsequent treatment of the mixture

with Et3SiH in the presence of BF3·OEt2 finally gave E-8.

Conclusion
The cathodic reduction of 1a using BDD electrode pre-

dominantly gave the dimeric product 2 in 85% yield. A
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Table 1: Cathodic reduction of 1a on a BDD electrode.

Entrya Solvent Current
density (mA/cm2)

Potential
(V vs SCE)

F/mol Yield (%)b

1a 1b 2 [(±)/meso)]c 3d

1 DMSO 0.21 −2.08 to −1.93 1 32 51 0 0
2 DMF 0.50 −1.96 to −1.86 1 43 43 0 0
3 TFEe 0.53 −2.00 to −1.85 1 100 0 0 0
4 MeOH 1.29 −2.08 to −1.84 1 74 12 0 0
5 MeCN 1.29 −2.00 to −1.88 1 42 46 4 (100/0) 0
6 MeCNf 1.29 −2.21 to −1.98 1 10 23 19 (79/21) 3
7 MeCNg 1.29 −2.07 to −1.89 1 23 13 33 (85/15) 5
8 MeCNh 1.29 −1.91 to −1.83 1 45 0 44 (73/27) 3
9 MeCNh 1.29 −2.02 to −1.84 1.5 26 0 67 (73/27) 5
10 MeCNh 1.29 −2.00 to −1.82 2.0 15 0 70 (73/27) 5
11 MeCNh 1.29 −2.12 to −1.93 2.5 1 0 85 (74/26) 4

aUpon using undivided cell systems, the reaction proceeded slower than in the divided cell cases, and lower selectivity of 2 and 3 was observed.
bIsolated yields. cThe ratio of (±) and meso forms was determined by 1H NMR spectroscopy. dEnantiomeric mixture. e2,2,2-Trifluoroethanol.
fContaining 0.07 M pH 6.0 phosphate buffer. gContaining 0.07 M pH 7.0 phosphate buffer. hContaining 0.33 M pH 7.0 phosphate buffer.

Scheme 1: Chemical conversion of (±)-2 into E-5 and E-8.

remarkable solvent effect of MeCN was observed for

this dimerization reaction, while stereoselectivity was

unaffected among the conditions tested and the racemic form

was predominant over the meso form in all cases. Electrochemi-

cally prepared (±)-2 was further converted into E-5 and E-8 as

novel unprecedented neolignan-type derivatives. These results

provide an example for an electroorganic synthesis using

cathodic reductive coupling on a boron-doped diamond elec-

trode.
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