

CHEMISTRY A European Journal

Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Well Defined Cooperative Functional Groups as Excellent Catalysts for CO₂ Cycloaddition

Jiahui Liu,^[a,b] Guoying Zhao,^[b] Ocean Cheung,^[c] Lina Jia,^[b] Zhenyu Sun*^[a] and Suojiang Zhang*^[b]

Abstract: The development of multifunctional heterogeneous catalysts with high porosity and remarkable catalytic activity still remains the challenge. Herein, four highly porous metalloporphyrin covalent ionic frameworks (CIFs) were synthesized by coupling 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (TNPP) with 3,8-diamino-6-phenylphenanithridine (NPPN) or 5,5'-diamino-2,2'-bipyridine (NBPy) following ionized by using bromoethane (C2H5Br) or dibromoethane (C₂H₄Br₂) and then metalize by Zn or Co. The resulting CIFs showed high efficiency in catalyzing the CO₂ cycloaddition of propylene oxide (PO) to form propylene carbonate (PC). All of the Zn containing CIF catalysts were able to catalyze the cycloaddition reaction with a PC yield of over 97%. The TNPP/NBPy (CIF2) catalyst ionized with C2H4Br2 and metalized with Zn (Zn-CIF2-C2H4) exhibited the highest catalytic activity among the synthesized catalysts. The high catalytic performance of Zn-CIF2-C2H4 was related to its large porosity (577 m²/g), high Br:metal ratio (1:3.89) as well as the excellent synergistic action between the Lewis acid Zn sites and the nucleophilic Br⁻ ion. We found that Zn-CIF2-C₂H₄ was stable that over 94% PC yield could be obtained even after 6 cycles. In addition, Zn-CIF2-C₂H₄ could catalyze the CO₂ cycloaddition of several other epoxides. We are confident that these highly porous materials are promising multifunctional and efficient catalysts for industrial relevant reactions.

Introduction

The development of new and efficient catalysts is a key part of implementing clean and sustainable chemical processes.^[1] Generally, homogeneous catalysts show high catalytic activity because of their highly accessible and well-defined active sites. Natural enzyme catalysts typically combine multiple functional groups that can cooperate with each other into a confined space.^[2] This gives enzyme catalysts enhanced catalytic activity, high selectivity of substrates, reactions and stereo structures.

[a]	J. Liu, Prof. Dr. Z. Sun
	State Key Laboratory of Organic–Inorganic Composites
	Beijing University of Chemical Technology
	Beijing, 1000029 (RP China)
	E-mail: sunzy@mail.buct.edu.cn
[b]	J. Liu, Prof. Dr. G. Zhao, L. Jia, Prof. Dr. S. Zhang
	Institute of Process Engineering, Chinese Academy of Sciences
	Beijing, 100190 (RP China)
	E-mail: sjzhang@ipe.ac.cn
[c]	Dr. O. Cheung
	Nanotechnology and Functional Materials Division, Department of
	Engineering Sciences
	The Ångström Laboratory, Uppsala University
	Box 534, SE-751 21 Uppsala, Sweden
	Supporting information for this article is given via a link at the end of
	the document.

Nevertheless, heterogeneous catalysts are often placed at the forefront of the chemical industry because they have several advantages over homogeneous, and natural enzyme catalysts. They have high stability and can stand relatively harsh reaction conditions. Unlike homogeneous catalysts, heterogeneous catalysts can easily be separated and recycled after a reaction. However, the active sites of heterogeneous catalysts are typically less available when compared with homogeneous catalysts, as a catalyzed reaction can only take place at the liquid/gas - solid interface (i.e. in the case of a solid catalyst in a liquid/gas phase reaction). As the active sites of heterogeneous catalysts are spatially fixed and separated in the rigid framework, the cooperative active sites found in homogeneous or enzyme catalysts are not usually found in heterogeneous catalysts.^[3] It would be highly desirable to develop heterogeneous catalysts with some of the advantageous properties of homogeneous or enzyme catalysts, such as the highly accessible, well-defined and well-placed cooperative active sites. Such "biomimetic catalysts" would combine the advantages of homogeneous, enzyme and heterogeneous catalysts. Confining functional molecules into the pores of heterogeneous catalysts by physical impregnation is a possible approach to create a "hybrid catalyst", although leaching of the functional molecules is often a problem.^[4] Integrating ionic modules into the framework of a heterogeneous catalyst could result in a framework containing free mobile functional counter ions with coulomb interactions.^[5] This can promote a cooperative environmental for the different functional active sites within the framework. Furthermore, increasing the specific surface area and the active sites density of the multifunctional heterogeneous catalysts is an important aspect for improving the accessibility of the active sites. Both of these factors would further increase the catalytic activity of heterogeneous catalysts. Highly porous charged (cationic or anionic) polymers can be suitable multifunctional biomimetic catalysts, but their synthesis is difficult due to the strong coulomb interactions between building blocks that often resulted in the collapse of the pore structure.^[6]

Recently, covalent organic frameworks (COFs) with periodic rigid organic scaffold have gain significant attention in catalysis, gas separation and storage due to their high porosity, their chemical flexibility, structural diversity and stability.^[7] Ionic liquids are a class of popular soft materials that have been tested and adopted in various applications. Ionic liquids are interesting due to their distinct ionic properties, including the ability to design specific ions, ion diversity, and ion synergy.^[8] The incorporation of modular ionic liquids into the rigid organic scaffold of COF can stabilize the pores within these charged polymers. The functionality of ionic liquids incorporated COFs can be an auspicious approach to develop novel efficient and stable biomimetic multifunctional catalysts.^[9] The biomimetic catalysts would have periodic network

of catalytic active centers which are composed of multiple welldefined and well-placed cooperative active sites.

CO₂ cycloaddition on epoxides to produce cyclic carbonate is a well-known chemical process in which heterogeneous catalysts play an important role. The process is also an effective and economical way of CO₂ utilization.^[10] Cyclic carbonates produced from CO₂ cycloaddition can be used in various applications, including as excellent aprotic polar solvents, electrolytes in batteries, raw materials for the production of polycarbonates, polyurethane and some pharmaceuticals etc.[11] In order to achieve high reaction rate, it is essential that the nucleophilic halide anions and the Lewis acid sites are in close proximity to function cooperatively.^[6a, 12] Various catalysts have been developed for CO2 cycloaddition, including organic catalysts (Nheterocyclic carbene, ionic liquids, poly-ionic liquids etc), metal complexes (e.g. metal halides, metalsalen and metalloporphyrins, etc) and metal oxides.^[13] Among these catalysts. metalloporphyrins (Por) and their derivatives. such as metalloporphyrin-based metal-organic frameworks [M(Por)MOF], metalloporphyrin-based organic polymers [M(Por)OP], metalloporphyrin immobilized on porous materials (zeolites, MOF or carbon nanotubes) have shown outstanding catalytic activities towards CO₂ cycloaddition.^[6a, 14] However, in most of these cases, nucleophilic organic salts, such as tetrabutylammonium bromide (TBAB), are required. The addition of salts makes this catalytic process not truly heterogeneous. Bifunctional cationic porous organic polymer incorporated with both metalloporphyrin sites and nucleophilic sites were developed recently by Ji et al.^[15] This catalyst also exhibited good catalytic activity and recyclability in CO₂ cycloaddition at atmospheric pressure without the use of any co-catalysts. On the other hand, the low Brunauer-Emmett-Teller (BET) surface area of these charged polymers is usually quite low, which limits the accessibility of the active sites and reduces their catalytic activity.

In this work, we illustrated the concept of designing biomimetic multifunctional heterogeneous catalyst that would be suitable for CO₂ cycloaddition on epoxides. Four nitro containing porphyrin (5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (TNPP)) and two diamino compounds (3,8-diamino-6-phenylphenanithridine (NPPN) or 5,5'-diamino-2,2'-bipyridine (NBPy)) were chosen as rigid building blocks to synthesize a series of porous covalent ionic framework (CIF) via a sequential coupling between the nitro and amino groups. The synthesized CIFs were ionized postsynthesis (by quaternization) and subsequently metalized. A schematic of the processes behind the production of these novel multifunctional CIF catalysts can be found in Figure 1. Various characterization techniques were employed to characterize the synthesized catalysts, including Fourier transform infrared spectroscopy (FT-IR), Solid-state ¹³C NMR spectroscopy, Energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA), Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Ion chromatography analysis (IC) and Nitrogen sorption. These multifunctional CIFs catalysts have high porosity and contain metalloporphyrin Lewis acid centers and bromide anions as nucleophile. The stoichiometry between metalloporphyrin and bromide ions was varied and the BET surface area was adjusted by tailoring ionic liquid moieties. Furthermore, their catalytic performance in CO_2 cycloaddition on epoxides was systematically examined.

Figure 1. Schematic representation of the synthetic process of the metalloporphyrin-based covalent ionic frameworks(CIFs).

Results and Discussion

Preparation of catalysts

The multifunctional CIF catalysts (Figure 1) were prepared using a three step processes that involved 1) synthesis of CIF, 2) ionization by quaternization and 3) metallization. Two different types of CIF catalysts were synthesized. CIFs that were synthesized by coupling TNPP with NPPN were referred to as CIF1 in this study. Post-synthesis ionization on CIF1 was carried out using bromoethane (C_2H_5Br). The ionized CIFs (CIF1- C_2H_5) were then metallized with Zn or Co. This gave two CIF1 catalysts referred to as $Zn-CIF1-C_2H_5$ and $Co-CIF1-C_2H_5$. We also synthesized another type of CIFs by coupling TNPP with NBPy (referred to as CIF2). Post-synthesis ionization of CIF2 was carried out using bromoethane (C₂H₅Br) or ethylene dibromide (C₂H₄Br₂) to give CIF2-C₂H₅ and CIF2-C₂H₄. CIF2-C₂H₅ and CIF2-C₂H₄ were metallized using Zn to give Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. The four successfully synthesized multifunctional CIF catalysts were characterized using various methods as discussed below.

Catalyst characterization

The X-Ray diffractograms (XRD) of Zn-CIF1-C₂H₅, Co-CIF1-C₂H₅, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ (Figure S1) confirmed that these azo polymers were amorphous as expected for CIFs. The

FULL PAPER

Scanning electron microscopy (SEM) images shown in Figure S2 suggested that these CIF catalysts were composed of agglomerated irregularly shaped particles. No distinctive particle size or shapes could be observed in any of the CIF catalysts. Thermogravimetric analysis (TGA) curve displayed in Figure 2 revealed that the Thermal degradation temperature (Td=10% weight loss under N₂ atmosphere) of Zn-CIF1-C₂H₅, Zn-CIF2-C₂H₄ and Co-CIF1-C₂H₅ varied between 380 and 485°C. The TGA data demonstrated that these CIF catalysts were thermally stable because of the rigid structure of the azo polymer.^[16] The porous polymer precursors CIF1 and CIF2, and the ionized CIF1-C₂H₅, CIF2-C₂H₄ also exhibited excellent thermal stability (TGA curves shown in Figure S3).

Figure 2. Thermogravimetric analysis (TGA) of metalloporphyrin CIFs (Co-CIF1-C₂H₅, Zn-CIF1-C₂H₅, Zn-CIF2-C₂H₅, and Zn-CIF2-C₂H₄ under N₂ atmosphere up to 800°C at a heating rate 10°C min⁻¹.

The IR spectra of the CIF catalysts can be found in Figure 3. The IR spectra of CIF1, CIF1-C₂H₅, Zn-CIF1-C₂H₅ and Co-CIF1-C₂H₅ in Figure 3a all contained an IR band centered at around 1597 cm⁻¹, this band was related the N=N group.^[16] The presence of this N=N vibration band confirmed the successful coupling of the amino/nitro groups to form an "azo-bridge". Additional IR bands at around 1520 cm⁻¹ and 1340 cm⁻¹ were also detected, these bands were related to the N=O stretching vibration and indicated the presence of unreacted terminal nitro groups from TNPP.^[17] Two new bands at around 1452 and 1261 cm⁻¹ appeared after the successful ionization of phenanthridine. These bands were related to the methyl group after ionization. The IR band at around 997 cm⁻¹ was related to the in-plane metalloporphyrin deformation mode and only appeared in the metalized Zn-CIF1-C₂H₅ and Co- $\text{CIF1-C}_2\text{H}_5.^{[18]}$ These bands confirmed the successful metalation of CIF1-C₂H₅.

The N=N (~1600 cm⁻¹) and the N=O stretching (1520 and 1340 cm⁻¹) bands were also observed in the IR spectra of CIF2, CIF2-C₂H₅ and Zn-CIF2-C₂H₅ shown in Figure 3b, as well as in the IR spectra of CIF2, CIF2-C₂H₄ and Zn-CIF2-C₂H₄ shown in Figure 3c. The in-plane metalloporphyrin deformation mode band at around 997 cm⁻¹ was also observed in the IR spectra of Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. The bands that were related to the presence of the methyl (or methylene) group after ionization (at around 1452 and 1261 cm⁻¹) also appeared on CIF2-C₂H₅ (Figure 3b middle), Zn-CIF2-C₂H₅ (Figure 3b bottom), CIF2-C₂H₄ (Figure 3c middle), and Zn-CIF2-C₂H₄ (Figure 3c bottom).

The solid state ^{13}C NMR spectra of the non-metalized CIFs are displayed in Figure 3d. The peak centered at around 150.9 ppm

was observed on all samples. This peak confirmed the formation of azo-linked aromatic carbon atoms as previously reported in literature.^[17] The peaks related to methyl and methylene groups were also observed for CIF1-C₂H₅, CIF2-C₂H₅ and CIF2-C₂H₄ at 11, 45.4 and 49 ppm.^[19]

Figure 3. FT-IR spectra of a) CIF1, CIF1- C_2H_5 , Zn-CIF1- C_2H_5 and Co-CIF1- C_2H_5 ; b) CIF2, CIF2- C_2H_5 and Zn-CIF2- C_2H_5 ; c) CIF2, CIF2- C_2H_4 and Zn-CIF2- C_2H_4 . d) Solid-state ¹³C NMR spectra of CIF1, CIF1- C_2H_5 , CIF2, CIF2- C_2H_5 and CIF2- C_2H_4 .

The N 1s XPS spectrum of CIF1, Co-CIF1-C₂H₅, and Zn-CIF1-C₂H₅ is shown in the Supporting Information Figure S3. Three peaks were observed at around 401.0, 399.9 and 398.0 eV. These peaks corresponded to the pyrrolic nitrogen (-NH-), azo nitrogen (-N=N-) and imine nitrogen (-C=N-) of porphyrin ring and NPPN, respectively.^[20] The N 1s XPS spectrum of CIF2 is shown in Figure 4a (top). Four peaks at 404.0, 400.7, 399.8, 398.0 eV were observed. These peaks corresponded to nitro nitrogen (Ph-NO₂), pyrrolic nitrogen (-NH-), azo nitrogen (-N=N-) and imine nitrogen (-C=N-) of porphyrin ring and NBPy, respectively. The N 1s XPS spectrum of Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ (Figure 4a, middle and bottom) both showed one new peak at 401.8 eV, indicating the appearance of ionic pyridine near the surfaces.[6b] The Br 3d XPS spectra of Zn-CIF1-C₂H₅ in Figure 4b (top) showed three peaks at 70.3, 68.25 and 67.04 eV. The Br 3d XPS spectrum (Figure S3b) for Co-CIF1-C₂H₅ displayed two weak peaks at 70.3 and 68.5 eV. Only two peaks were observed in the Br 3d XPS spectrum of Zn-CIF2-C₂H₅ (at 68.83, 67.74 eV Figure 4b, middle) and Zn-CIF2-C₂H₄ (at 69.13 and 68.06 eV Figure 4b, bottom). The small shift in their Br binding energy indicated that there is a similar level of interaction between the cationic frameworks of CIFs and Branions in Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. The absence of any peaks between 71 to 73 eV indicated that there were no C-Br bonds present on these CIFs. The Zn 2p XPS spectra of Zn-CIF1-C₂H₅, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ are shown in Figure 4c. In all three cases two peaks were observed, the Zn 2P 1/2 peak (at 1044.7 and 1046.7 eV) and the Zn 2P 3/2 peak (at 1021.6 and 1023.5 eV). These peaks confirmed the presence of Zn.^[4b] In the case of Co-CIF1-C₂H₅ (Figure S3c), four peaks were observed in the Co 2p XPS spectrum, which

suggested that cobalt ions exist in a mixed valence state in Co-CIF1-C_2H_5.^{\sc 21}

Figure 4. a) N 1s XPS spectra of CIF2, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. b) Br 3d XPS spectra of Zn-CIF1-C₂H₅, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. c) Zn 2p XPS spectra of Zn-CIF1-C₂H₅, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄.

The metal and Br content of the CIF catalysts were analyzed using ICP-AES and IC analysis. Table 1 shows the elemental composition of these elements. The Zn content of the Zn-CIF1- C_2H_5 , Zn-CIF2- C_2H_5 and Zn-CIF2- C_2H_4 catalysts were approximately 0.48, 0.45 and 0.40 mmol/g, respectively according to the ICP-AES. The Co-CIF1- C_2H_5 catalyst had a Co content of 0.46 mmol/g. The Br content of Co-CIF1- C_2H_5 , Zn-CIF2- C_2H_5 , Zn-CIF2- C_2H_5 , and Zn-CIF2- C_2H_4 varied from 0.91 to 1.75 mmol/g based on IC results. Additionally, the molar ratios of Br:Zn or Br:Co were calculated based on the Br, Zn and Co content (Table 1). The Br:Co ratio was 1:1.98 on Co-CIF1- C_2H_5 . The Br:Zn ratio was 1:1.90 on Zn-CIF1- C_2H_5 , 1:3.89 on Zn-CIF2- C_2H_5 and 1:3.95 on Zn-CIF2- C_2H_4 .

The N₂ adsorption isotherm of all CIF catalysts are shown in Figure 5 and the BET specific surface area and pore volume are summarized in Table 1. All of the synthesized catalysts showed high porosity with BET surface area ranging from 281 to 815 m²/g. As expected, the metal-free, as-synthesized CIF-1 and CIF-2 had the highest BET surface area when compared with their respective ionized and metallized CIFs. It is important to note that the CIF catalysts showed high BET surface area even after ionization and metallization, which would allow the active catalyst sites to be more available when compared with low surface area solid catalysts. The specific BET surface area and total pore volume of the CIF catalysts after ionization and metallization decreased, which was expected due to the addition of the heavy

Br and metal ions. Despite that, significant porosity was still detected for all CIF catalysts.

Table 1 Physiochemical parameters of as-synthesized polymer CIF1,							
CIF2 and ionized and metalized CIFs Zn-CIF1-C2H5, Co-CIF1-C2H5, Zn-							
CIF2-C ₂ H ₅ , Zn-CIF2-C ₂ H ₄ .							
Sample	S _{BET} ^[a] (m²/g)	V _p ^[b] (cm ³ /g)	Br ^[c] (mmol/g)	Metal content ^[d] (mmol/g)	M:Br ^[e]		
CIF1	433.6	0.43	-	-	-		
Zn - $CIF1$ - C_2H_5	289.0	0.36	0.91	0.48 (Zn)	1:1.90 (Zn:Br)		
Co-CIF1-C ₂ H ₅	281.4	0.36	0.91	0.46 (Co)	1:1.98 (Co:Br)		
CIF2	815.4	0.89		-	-		
Zn-CIF2-C ₂ H ₅	465.4	0.40	1.75	0.45 (Zn)	1:3.89 (Zn:Br)		
Zn-CIF2-C ₂ H ₄	577.4	0.72	1.58	0.40 (Zn)	1:3.95 (Zn:Br)		

[a] Surface area calculated based on the BET model from the nitrogen adsorption isotherm (P/P₀=0.01–0.25). [b] The total pore volume calculated at P/P₀=0.99. [c] The results of Br content were measured using ion chromatography (IC). [d] Calculated by ICP analysis. [e] The ratio of metal content to Br was calculated by the results of ICP and IC.

Figure 5. N₂ adsortion (filled) and desorption (empty) isotherm of CIF2, Zn-CIF2-C₂H₄, Zn-CIF2-C₂H₅, CIF1, Zn-CIF1-C₂H₅ and Co-CIF1-C₂H₅ at 77 K.

Catalyst perfomance

The synthesized CIF catalysts were tested for their catalytic activities in CO₂ cycloaddition of propylene oxide (PO) to form propylene carbonate (PC). Table 2 gives a summary of the catalytic performance of the CIF catalysts included in this study. The synthesized CIFs (metalized and non-metalized) were tested together with Zn-TNPP as well as with a mixture containing Zn-TNPP/TBAB. By comparing Entry 1-4 (Table 2) it was clear that the Zn-CIF1-C₂H₅ catalyst performed better than CIF-C₂H₅, Zn-TNPP and Zn-TNPP/TBAB. Zn-CIF1-C₂H₅ was able to achieve 97% PC yield after 8 h, which was a much higher yield than Zn-TNPP (8%), Zn-TNPP/TBAB (77%) and CIF1-C₂H₅ indicated the structure-specific synergy of Lewis acid Zn metal sites and nucleophile Br anions.^[22] Furthermore, Zn-CIF1-C₂H₅ had high BET surface area and porosity, allowing high accessibility to the

FULL PAPER

catalytic sites. There was also a high amount of nucleophile Br anion in the vicinity of the Zn sites on Zn-CIF1-C₂H₅, which would enhance the catalytic activity as these sites could cooperate with one another.^[23]

Catalysts performance were also carried out under harsh conditions (Entry 5-6, Table 2). Yield of 69% was obtained at 0.1 MPa for 8 h at 120 °C by catalysed by Zn-CIF1-C₂H₅. A longer reaction time at 0.1 MPa for 140 h at room temperature of Zn-CIF1-C₂H₅ was also carried out and gave the 65% PC yield.

Table 2. Catalytic performance of the cycloaddition reaction of CO ₂							
with PO over various catalysts. ^[a]							
Entry	Catal.	Т	Р	time	Yield ^[b]	Sel. ^[c]	
		(°C)	(M)	(h)	(%)	(%)	
1	Zn-TNPP	120	2.5	8	8	>99	
2 ^[d]	Zn- TNPP/TBAB	120	2.5	8	77	>99	
3 ^[e]	$CIF1-C_2H_5$	120	2.5	8	37	>99	
4	Zn - $CIF1$ - C_2H_5	120	2.5	8	97	>99	
5	Zn - $CIF1$ - C_2H_5	120	0.1	8	69	>99	
6	Zn - $CIF1$ - C_2H_5	25	0.1	140	65	>99	
7	Co-CIF1-C ₂ H ₅	120	2.5	8	82	>99	
8	Zn - $CIF2$ - C_2H_5	120	2.5	5	98	>99	
9	Zn - $CIF2$ - C_2H_4	120	2.5	4	97	>99	
[a] Reaction conditions: PO (3.0 mmol), catalyst (0.18 mol%). [b]							
Determined by using GC with ethyl acetate as an external standard.							
[c] The selectivity of PC. [d, e] The catalyst loading of TBAB and CIF1-							
C ₂ H ₅ wa	C_2H_5 was 0.34 mol% respected to the Br ⁻ content.						

The catalytic performance of Co-CIF1-C₂H₅, Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ could also be found in Table 2 (Entry 7-9). The same reaction conditions as Entry 1-4 were chosen for these experiments (120°C, 2.5 MPa, 0.18 mol% catalyst loading). Co-CIF1-C₂H₅ showed the lowest PC yield of 82% after 8 h. The lower activity of Co-CIF1-C₂H₅ was due to the lower Lewis acidity of Co (II) when compared with Zn (II) (Figure 4c and Figure S3c). Zn- $CIF2-C_2H_5$ and $Zn-CIF2-C_2H_4$ both reached the maximum PC yield level in less than 8 h. Zn-CIF2-C2H4 required only 4 hours to reach a PC yield of 97%, which was one hour less than Zn-CIF2- C_2H_5 (5 hours) and four hours less than $Zn-CIF1-C_2H_5$ (8 hours). This is at least comparable to some recently reported functional polymers (Table S1). The reasons for the high catalytic activity of Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ could be related to the following separate factors: 1) their BET surface area and Br:metal ratio (Table 1) of Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄ were both higher than Zn-CIF1-C₂H₅. Yang et al. have previously discussed the importance of the Br:metal ratio of a catalyst's ability to catalyze reactions.^[6a, 12] Their findings would also explain the high catalytic activity of Zn-CIF2-C₂H₅ and Zn-CIF2-C₂H₄. 2) The alkylbipyridine cation is less bulky than the alkylphenylphenanithridine cation, which was may be beneficial for the cooperation between the Lewis acid Zn metal sites and nucleophile Br anions.

The kinetic curves of the CO₂ cycloaddition experiments for the four synthesized CIF catalysts (Entry 4, 7-9) can be found in Figure 6. Figure 6 shows that Zn-CIF2-C₂H₄ had the fastest reaction kinetics out of the tested CIF catalysts. The reaction

kinetics of Zn-CIF2-C2H5 was comparable with that of Zn-CIF2-C₂H₄, although the differences were clear. Zn-CIF2-C₂H₄ showed faster reaction kinetics and reached full conversion more quickly. As the Br:metal ratios of Zn-CIF2-C₂H₄ (1:3.95) and Zn-CIF2-C₂H₅ (1:3.89) were similar (Table 1), the high BET surface area and pore volume of on Zn-CIF2-C₂H₄ (577.4 m^2/g , 0.72 cm³/g) may be responsible for the faster reaction kinetics. The relatively lower reaction kinetics observed for Zn-CIF1-C₂H₅ and Co-CIF1-C₂H₅ was mainly the result of both low BET surface area and low Br:metal ratios. Results from a hot filtration experiments of Zn-CIF2-C₂H₄ is presented in the Figure 6. Zn-CIF2-C₂H₄ was filtered after the reaction was carried out for 1 h, while the filtrate was heated under the same conditions for another 7 h. A slight increase in the PC yield was observed after 7 h compared with that measured at 1 h, confirming a small amount of leaching of the active phase of the solid catalysts.

Figure 6. Kinetic curves for PO cycloaddition reactions using metalloporphyrin CIFs (Zn-CIF2-C₂H₄, Zn-CIF2-C₂H₅, Zn-CIF1-C₂H₅, and Co-CIF1-C₂H₅) as the catalysts. Reaction conditons: PO (3.0 mmol), catalyst (0.18 mol% based on metal content), initial CO₂ pressure 2.5 Mpa at 120°C. The filtrate test was performed by removing the Zn-CIF2-C₂H₄ from the reaction system after 1 h.

Figure 7. Catalyst reusability of Zn-CIF2-C₂H₄. Reaction conditions: PO (3.0 mmol), catalyst (0.18 mol% based on metal content), initial CO_2 pressure 2.5 Mpa, for 4 hours at 120°C.

The cycle stability of the best performing $Zn-CIF2-C_2H_4$ catalyst was tested by performing the CO_2 cycloaddition experiment in cycles at 120°C for 4 h at 2.5 MPa (with PO). At the end of each cycle the CIF catalyst was recovered by centrifugation. The recovered CIF catalyst was washed and dried before being employed in the next cycle. The PC yields at of each cycle are depicted in Figure 7. There was no significant loss in the PC yield and selectivity (over 99% of the original) after 6 cycles. The SEM image and FTIR spectrum of the reused Zn-CIF2-C₂H₄ were

FULL PAPER

confirmed, and the morphology and structure of the catalyst showed no obvious change (Figure S5). Moreover, reused Zn-CIF2-C₂H₄ has Zn content of 0.38 mmol/g, which is comparable to that of the fresh value (0.40 mmol/g). This clearly verifies that it is a stable catalyst candidate for this reaction.

We hereby propose a possible reaction mechanism for CO_2 cycloaddition of PO as illustrated in Figure 8. The (Zn or Co) metal sites are the Lewis acid sites which are located in the porphyrin part of the CIF structure. The nucleophilic sites are represented by Br anions. At first, the oxygen on the epoxide comes in contact with the metal sites, activating the epoxide and an M-O bond is formed. Thereafter, the Br nucleophile attacks the β -carbon atom of the epoxy group from the side with low steric hindrance, this leads to the formation of a Br anion alkoxide intermediate. Then, the addition of CO₂ produces an M-carbonate intermediate which further cleaves the cyclic carbonate via an intramolecular ring closure step. Simultaneously, the catalyst is regenerated.

Figure 8. Representation of the catalytic mechanism for the cycloaddition of epoxide and CO₂ into cyclic carbonate catalyzed by these ionized and metalized CIFs

Table 3 Cycloaddition of CO₂ with various operides

		Zn-CIF2-C ₂ H ₄		Zn-CIF	1-C ₂ H ₅		
Substrate	Product	Con. (%)	Selec. (%)	Con. (%)	Selec. (%)		
ci	ci Ci	98	>99	98	>99		
~~ <u>Å</u>		99	>99	43	91		
<hr/>		95	>99	85	>99		
		83	>99	59	89		
[a] Reaction conditions: substrate (3.0 mmol), catalyst (0.18 mol%), initial CO ₂ pressure 2.5 MPa, 4 h for Zn-CIF2-C ₂ H ₄ (8 h for Zn-CIF1-C ₂ H ₅).							

To further investigate the catalytic ability of these ionized and metalized CIF catalysts for other epoxides, $Zn-CIF1-C_2H_5$ and $Zn-CIF2-C_2H_4$ were tested in CO₂ cycloaddition of four different epoxides. The chosen epoxides were epichlorohydrin (ECH), epoxy pentane (EP), styrene oxide (SO) and allyl glycidyl ether (AGE) and the same reaction conditions as for PO were used.

Table 3 shows that the CIF catalysts were able to catalyze the CO₂ cycloaddition reactions in all cases. Zn-CIF2-C₂H₄ gave very high yield (over 95%) for ECH, EP and SO. The CO₂ cycloaddition of AGE gave the lowest yield (83%). The selectivity in all cases was close to 100%, which confirmed that Zn-CIF2-C₂H₄ is a promising multifunctional catalyst for CO₂ cycloaddition of epoxides. Zn-CIF1-C₂H₅ was also able to catalyze the CO₂ cycloaddition of all of the tested epoxides, but the yield for EP, SO and AGE was lower than Zn-CIF2-C₂H₄ (note that the reactions using Zn-CIF1-C₂H₅ ran for 8 h instead of 4 h). The comparatively low yield was probably related to the low BET surface area and the low Br:metal ratios on Zn-CIF1-C₂H₅ when compared with Zn-CIF1-C₂H₄ as discussed earlier.

Conclusions

Two highly porous CIFs (CIF1 and CIF2) were synthesized by coupling TNPP with NPPN or NBPy. Post-synthesis ionization and metallization of these CIFs resulted in a selection of multifunctional CIF catalysts. For CO2 cycloaddition of PO, all of the ionization and metallization CIF catalysts showed enhanced catalytic activity over Zn-TNPP and as-synthesized CIFs. The enhanced catalytic activity was due to the highly accessible reactive sites provided on the CIF highly porous materials. The well placed functional active sites also provided an synergetic catalytic environment between the Br⁻ anion and the metal sites. The reaction temperature, pressure and catalyst loading all had an effect on the PC yield. Zn-CIF2-C₂H₄ showed the highest catalytic activity of all of the catalysts synthesized with a PC yield of over 97% within 4 h (0.18 mol% catalyst, 120°C, 2.5 MPa). The high catalytic activity was the result of the high porosity and high Br:metal ratio of Zn-CIF2-C₂H₄. Cyclic experiment confirmed that Zn-CIF2-C₂H₄ was stable, with over 95% of the original yield retained after 6 cycles. We demonstrated here that CIFs can be developed into efficient multifunctional heterogeneous catalyst for CO2 cycloaddition of epoxides. The flexibility of the CIF structures and the numerous possibility for post-synthesis functionalization will no doubt put CIFs at the forefront of the development of functional materials.

Experimental Section

Materials

Materials Unless otherwise specified, all chemicals and reagents used in this study were of analytical grade and were used without further purification. N,N-Dimethylformamide (DMF), Potassium hydroxide (KOH), Zinc(II) acetate dihydrate, Cobalt(II) acetate tetrahydrate and anhydrous methanol were purchased from Xilong Chemical Co., Ltd., China. 4-Nitrobenzaldehyde and pyrrole were obtained from Aladdin Chemical Co., Ltd., China. Bromoethane (C₂H₅Br), dibromoethane (C₂H₅Br₂), epichlorohydrin (ECH), epoxy pentane (EP), styrene oxide (SO) and allyl glycidyl ether (AGE) were purchased from Macklin Chemical Reagents Co., Ltd., China. De-ionized water (99.5%) was obtained from home built distillation assembly. 3,8-Diamino-

6-phenylphenanithridine (NPPN) and 5,5'-diamino-2,2'-bipyridine (NBPy) were purchased from Zhengzhou Anmusi Chemical Products Co., Ltd.

Instrumental characterization

The N₂ adsorption-desorption isotherms were recorded using a Micromeritics ASAP 2020 HD surface area and porosity analyzer at 77 K. Before the sorption experiments, the samples were outgassed at 120°C for 4 hours. The BET surface area was calculated from the adsorption data at a relative pressure P/P₀ in the range of 0.01-0.25. The total pore volume was calculated at P/P₀ of 0.99. SEM experiments were carried out using a Hitachi SU8020 scanning electron microscope equipped with an EDS detector at an accelerating voltage of 5 kV for imaging, and 20 kV for EDS. FT-IR spectra were recorded using a Thermo Electron Corporation Nicolet 380 IR spectrometer in the range of 400-4000 cm⁻¹ (KBr pellets were prepared). TGA curves were recorded using a Shimadzu TA-60WS Thermal analyzer in the range of 30-800°C at a heating rate of 10°C min⁻¹ under nitrogen with flow rate of 30 ml/min. Solid state NMR spectra were obtained using a Bruker 500 MHz spectrometer equipped with a magic-angle spin probe. The Zn or Co content in the samples was determined by ICP-AES was carried out using a Shimadzu Plasma Atomic Emission Spectrometer. H₂SO₄/HNO₃ (1:1, V:V) was used as the solvent. Powder X-ray diffraction (PXRD) data were collected on a Bruker AXS D8 Advance A25 Powder X-ray diffractometer (40 kV, 40 mA) using CuKα (λ=1.5406 Å) radiation. Elemental analyzes were performed via flask combustion followed by ion chromatography using a ThermoFisher ICS-900 Dionex, with a 4.0x250 mm analytical column.

Synthesis of Catalysts

Synthesis of TNPP: 22.0 g 4-Nitrobenzaldehyde (1.45 x 10⁻¹ mol) and 24.0 mL of acetic anhydride (2.54 × 10⁻¹ mol) were dissolved in 600 mL of propionic acid in a 1 L round-bottom flask. The solution was then refluxed at 120°C for 30 min. After 30 min, 10.0 mL of pyrrole (1.44 \times 10⁻¹ mol) was slowly added to the mixture. After refluxing for a further 30 min at 120°C, the reaction mixture was cooled to give a precipitate. This precipitate was collected by filtration, washed with H₂O and methanol, and then dried under vacuum (80°C) and a powder was obtained. 1.5 g of the powder was then dissolved in pyridine (160 mL) in a 250 mL round-bottom flask and refluxed for 1 h at 80°C. The mixture was cooled after reflux and the solid content was collected by filtration and washed with acetone. 5,10,15,20-tetrakis(4-nitrophenyl)-21H,23H-porphine (TNPP) as a purple crystal with 14% yield was obtained thereafter. UV absorption at 432 nm (DMF), 516 nm (Soret), 550 nm, 591 nm and 646 nm (Q bands) was observed. Synthesis of CIF1 and CIF2: 0.20 g of TNPP (0.3 mmol) and 0.171 g of NPPN (0.6 mmol) or 0.056 g of NBPy (0.6 mmol) was dissolved in 40 mL of DMF in a three-necked round-bottom flask equipped with a condenser, thermocouple and magnetic stirrer. 0.16 g of KOH (2.86 mmol) was added to this solution then stirring at room temperature for 10 min. The temperature of the reaction mixture was increased slowly up to 150°C with vigorous stirring under N2 atmosphere. The reaction was left stirring 150°C for 24

WILEY-VCH

h before cooling down to room temperature. 80 mL of distilled H₂O was added to the reaction mixture and it was stirred for an additional 1 h. The resulting black precipitate was filtered and then washed 5 times individually with DMF, H₂O and methanol in this order. Subsequently, precipitates were dried at 60°C under vacuum for 8 h to yield CIF1 or CIF2 with 57%, 66% yield, respectively.

All ionized CIF1 and CIF2 were prepared by quaternization reaction in DMF solution. Typically 0.2 g of CIF2 and 0.2 g of dibromoethane ($C_2H_4Br_2$) in 20 ml DMF was heated and stirred at 80°C for 3 days. After the mixture was cooled to room temperature, obtained black precipitation was immerged into methanol for 12 hours. Afterwards the precipitate was washed thoroughly with methanol and dried at 80°C for 12 hours under vacuum. The yield of CIF2-C₂H₄ obtained was 0.23 g, (83.2% yield). CIF1-C₂H₅, CIF2-C₂H₅ were synthesized following the same procedure except the dibromoethane was replaced by bromoethane (C_2H_5Br) and with 90.5% and 87.4% yield, respectively.

Synthesis of Zn-ClF1-C₂H₅, Zn-ClF2-C₂H₅ and Zn-ClF2-C₂H₄: Zn-ClF1-C₂H₅, Zn-ClF2-C₂H₅ and Zn-ClF2-C₂H₄ were prepared by direct metallation of the ionized ClFs with Zn(OAc)₂·2H₂O. For Zn-ClF2-C₂H₄, 100 mg of ClF2-C₂H₄ and 500 mg of Zn(OAc)₂·2H₂O were added to 100 mL of dried DMF. The mixture was refluxed at 150°C for 6 h. After 6 h the solution was cooled down to room temperature and the solid content was filtered off. The obtained solid was washed thoroughly with methanol and hot water and dried under vacuum at 80°C overnight to remove absorbed solvents. Co-ClF1-C₂H₅ was prepared following the same synthetic procedure used for Zn-ClF1-C₂H₄ except that Zn(OAc)₂·2H₂O (500 mg) was replaced by Co(OAc)₂·2H₂O (500 mg). A yield of 91.1%, 89.6%, 95.3% and 94.0% was noted for Zn-ClF1-C₂H₅, Co-ClF1-C₂H₅, Zn-ClF2-C₂H₅ and Zn-ClF2-C₂H₄, respectively.

General procedure for the coupling reactions of CO2 and epoxides: The reactions were carried out in a 50 mL stainless steel autoclave equipped with a magnetic stirrer. In a typical experiment, 0.174 mg of PO (3 mmol) and catalysts (0.18 mol. % of PO) were inserted into the reactor at room temperature. After purging the reactor with CO2 to remove air, the autoclave was pressurized to 2.5 MPa (with CO₂) and heated for 4-8 hours to 120°C under stirring at 460 rpm. At the end of the reaction, the reactor was quenched in a bath containing a water-ice slurry. When the reaction had cooled, the CO2 pressure was released from the autoclave. The organic solvent contain liquid products were analyzed by gas chromatograph using a Agilent 7890 GC equipped with a HP-5 column (30 m × 0.25 mm × 0.25 mm). Ethyl acetate was added to serve as the external standard. In the cyclic experiment, the solid catalyst was recovered by centrifugation. The recovered catalyst was washed carefully with methanol and dried under vacuum at 60°C for 3 h before the next cycle.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.21676278, No.21878303), the

FULL PAPER

Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201624) and The National Key Research and Development Program of China (No.2016YFB0601303). the State Key Laboratory of Organic-Inorganic Composites (No. oic-201503005), and Beijing Natural Science Foundation (2192039).

Keywords: cooperative catalysis • carbon dioxide • cycloaddition • ionic framework • metalloporphyrin

- a) X. Bao, *Natl. Sci. Rev.* 2015, *2*, 137-137; b) P. Lanzafame, S. Perathoner, G. Centi, S. Gross, E. J. M. Hensen, *Catal.Sci.Technol.* 2017, 7, 5182-5194.
- a) W. Günter, *Chem. Rev.* 2002, *102*, 1-27; b) N. Straeter, W. N. Lipscomb, T. Klabunde, B. Krebs, *Angrew. Chem.* 1996, *18*, 2159-2191;
 c) D. Urbano, B. Daniel, C. Avelino, *Chem. Soc. Rev.* 2013, *42*, 4083-4097.
- a) S. Liu, A. Motta, A. R. Mouat, D. Massimiliano, T. J. Marks, J. Am. Chem. Soc. 2014, 136, 10460-10469; b) Q. Sun, B. Aguila, J. Perman, N. Nguyen, S. Ma, J. Am. Chem. Soc. 2016, 138, 15790-15796.
- [4] a) J. An, C. M. Shade, D. A. Chengelis-Czegan, P. Stéphane, N. L. Rosi, J. Am. Chem. Soc. 2011, 133, 1220-1223; b) Q. Su, Y. Qi, X. Yao, W. Cheng, L. Dong, S. Chen, S. Zhang, Green Chem. 2018, 20,1463-9262.
- [5] H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong, Y. Sun, Y. Dai, S. Wang, H. Qian,
 Z. Lin, J. Am. Chem. Soc. 2018, 140, 896-899.
- a) S. Jayakumar, H. Li, J. Chen, Q. Yang, ACS Appl. Mater. Interfaces
 2018, 10, 2546-2555; b) D. Ma, K. Liu, J. Li, Z. Shi, Acs Sustain. Chem. Eng. 2018, 6, 15050-15055.
- [7] S. Cao, B. Li, R. Zhu, H. Pang, *Chem. Eur. J.* 2019, 355, 602-623.
- a) K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, *Chem. Rev.* 2017, *117*, 6636-6695; b) S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao, J. Wang, *Chem. Soc. Rev.* 2014, *43*, 7838-7869; c) S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, *J. Phys. Chem. Ref. Data* 2006, *35*, 1475-1517.
- H. Hu, Q. Yan, M. Wang, L. Yu, W. Pan, B. Wang, Y. Gao, *Chin. J. Catal.* 2018, 39, 1437-1444.

- [10] a) A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, *Chem. Rev.* 2013, *113*, 6621-6658; b) M. Aresta, A. Dibenedetto, A. Angelini, *Chem. Rev.* 2014, *114*, 1709-1742.
- [11] B. Xu, J. Wang, J. Sun, Y. Huang, J. Zhang, X. Zhang, S. Zhang, Green Chem. 2015, 17, 108-122.
- [12] S. Jayakumar, H. Li, L. Tao, C. Li, L. Liu, J. Chen, Q. Yang, Acs Sustain. Chem. Eng. 2018, 6, 9237-9245.
- [13] M. North, R. Pasquale, C. Young, Green Chem. 2010, 12, 1514-1539.
- [14] a) J. Chen, M. Zhong, L. Tao, L. Liu, S. Jayakumar, C. Li, H. Li, Q. Yang, Green Chem. 2018, 20, 903-911; b) W. Jiang, J. Yang, Y. Liu, S. Song, J. Ma, Chemistry 2016, 22, 16991-16997; c) J. Kim, S. Kim, H. Jang, G. Seo, W. Ahn, Appl. Catal. A Gel. 2013, 453, 175-180; d) Z. Dai, Q. Sun, X. Liu, C. Bian, Q. Wu, S. Pan, L. Wang, X. Meng, F. Deng, F. Xiao, J. Catal. 2016, 338, 202-209.
- [15] a) Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, *ChemSusChem* 2017, 10, 2534-2541; b) Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, *Acs Sustain. Chem. Eng.* 2017, 6, 1074-1082.
- [16] N. Manoranjan, S. I. Woo, Rsc Adv. 2016, 6, 2046-2069.
- [17] H. Li, X. Ding, B. Han, Chemistry 2016, 22, 11863-11868.
- [18] A. Chen, Y. Zhang, J. Chen, L. Chen, Y. Yu, J. Mater. Chem. A 2015, 3, 9807-9816.
- [19] J. Liang, Y. Xie, Q. Wu, X. Wang, T. Liu, H. Li, Y. Huang, R. Cao, *Inorg. Chem.* 2018, 57, 2584-2593.
- [20] Y. Xu, Z. Li, F. Zhang, X. Zhuang, Z. Zeng, J. Wei, RSC Adv. 2016, 6, 30048-30055.
- [21] S. Wang, K. Song, C. Zhang, S. Yu, L. Tao, B. Tan, J. Mater. Chem. A 2017, 5, 1509-1515.
- [22] T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, J. Y. Hasegawa, J. Am. Chem. Soc. 2016, 136, 15270-15279.
- [23] M. Chihiro, T. Tomoya, O. Kanae, E. Tadashi, Angew. Chem. 2015, 46, 134-138.

FULL PAPER

FULL PAPER

We designed new "biomimetic heterogeneous catalyst" multifunctional metalloporphyrin CIFs with a highly porous structure for cooperative catalysis, which showed efficient catalytic activity in CO2 cycloaddition catalytic and the performance further could be enhanced by altering the functional groups and the BET surface area.

Jiahui Liu, Guoying Zhao, Ocean Cheung, Lina Jia, Zhenyu Sun* and Suojiang Zhang*

Page No. – Page No.

HighlyPorousMetalloporphyrinCovalentIonicFrameworks withWellDefinedCooperativeFunctionalGroups asExcellentCatalysts for CO2Cycloaddition