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Abstract
Indole/isatin conjugated phenyl-amino-pyrimidine derivatives have been synthesized, characterized and evaluated in vitro
for their potential as BCR-ABL inhibitors. Among the series, all derivatives (7a–7o) were found to be more cytotoxic than
standard Imatinib against K-562 cell line. Compound 7l was the most active in the series with almost two folds more potency
than imitanib (IC50 0.65 μM). In vitro enzymatic studies with recombinant ABL kinase enzyme exhibited promising
inhibition in the range of 30–71 µM for most of these novel conjugates. In addition, modelling and other computational
studies have been carried out to draw insight into the BCR-ABL protein interactions with the target molecules and drug like
properties of the conjugates, respectively.

Graphical Abstract
Synthesis and biological evaluation of phenyl-amino-pyrimidine and indole/oxindole conjugates as potential BCR-ABL
inhibitors.
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Introduction

Tyrosine kinases (TKs) are the enzymes responsible to
initiate transfer of phosphate group from ATP to tyrosine, a
critical process in cellular machinery, and inhibition of TKs
is currently considered as one of the most significant
molecular targets in cancer drug discovery programs (Sta-
quinini et al. 2015; Wilhelm et al. 2004). Chronic myeloid
leukemia (CML) is a myelo-proliferative disorder asso-
ciated with the philadelphia chromosome, resulting in the
BCR-ABL fusion gene. This genetic abnormality results in
the formation of a unique gene product (BCR-ABL), which
is a constitutively active TK that is implicated in the
development of CML (Salesse and Verfaillie 2002; An et al.
2010; Goldman and Melo 2008; Rebecca et al. 2018;
Zámečníkova 2010; Carter et al. 2016). The phenylamino
pyrimidine scaffold based BCR-ABL inhibitor, imatinib
drug is considered as a “gold standard” in the treatment of
patients with newly diagnosed CML (Fig. 1) (Karl Peggs
and Stephen Mackinnon 2003; Nida and Naveed 2014;
Druker 2003). However, the emergence of resistance
against imatinib in association with BCR/ABL1 mutations
(Sawyers et al. 2002; Talpaz et al. 2002; Azevedo et al.
2017; Valent 2007; O’Hare et al. 2007; Jabbour et al. 2009)
has become a challenge. Further second generation BCR-
ABL inhibitors such as nilotinib (Fig. 1), dasatinib, and
ponatinib have been developed for treating the CML
patients (Cortes et al. 2011, 2016; Hochhaus et al. 2008,
2016; Milojkovic et al. 2012; Porkka et al. 2008; Hughes
et al. 2009; Kantarjian et al. 2007; Shah et al. 2014; Giles
et al. 2013; Gambacorti-Passerini et al. 2014; Kantarjian
et al. 2014; Nicolini et al. 2017; Lipton et al. 2016).

Similarly, another phenylamino pyrimidine derivative
NRC-AN-019 is in phase-II clinical trials for treating CML

and solid tumors (Second-line therapy). However, the
common adverse effects of these marketed drugs include
skin rash, nausea, vomiting, and vascular adverse events
(VAEs) often leading to severe organ damage (Amala et al.
2013; Płużański and Piórek 2016; Valent 2011; Oren et al.
2015; Haguet et al. 2017; Herrmann 2016; Jason 2017;
Ateyya et al. 2017; Sodergren et al. 2014). Furthermore, the
third generation BCR-ABL inhibitors ponatinib is asso-
ciated with certain arterial occlusive events (Dahlen et al.
2016; Jonathan et al. 2016; Chatree et al. 2016; Gusarova
and Turkina 2016) and being approved by FDA with a
black box warning.

Hence, there is a need to develop novel BCR-ABL
inhibitors with enhanced drug safety and efficacy. Design of
imatinib based novel BCR-ABL inhibitors offers opportu-
nity of simpler, safer, and affordable therapeutics with lesser
side effects and possessing unique inhibitory mechanisms
which could address the issue of drug resistance.

On the other hand, indole and isatin are promising
moieties in the design of anti-cancer agents and they are
present in different anticancer drugs (Sidhu et al. 2015; El
Sayed et al. 2015; Prakash et al. 2018; Vine et al. 2009,
2013; Havrylyuk et al. 2011; Teng et al. 2016). Keeping
this in view, we envisaged hybridizing the promising phe-
nylamino pyrimidine and indole/oxindole scaffolds into a
single chemical entity and explore the biological effect
exerted by these conjugates as newer BCR-ABL inhibitors.
In our investigative strategy the amide moeity present in
imatinib is substituted with isatin/indole ring through a
bridging imine bond to afford new series of phenyl-amino-
pyrimidine and indole/oxindole conjugates. This was fol-
lowed by the evaluation of the therapeutic potency of these
conjugates against K-562 cancer cell line and recombinant
ABL kinase enzyme with comparison to standard drug

Fig. 1 BCR-ABL inhibitors and
Indole/oxindole based inhibitors
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imatinib. Furthermore, we studied the BCR-ABL protein
binding interactions and drug like properties of these newly
synthesized ligands.

Results and discussion

Chemistry

The chemical strategy for the synthesis of the intermediate
amine 6 started with the condensation of 5-nitro-2-methyl
aniline (1) with cynamide to furnish the guanidine deriva-
tive (2), followed by reaction with pyridine based chalcone
(4) in the presence of inorganic base to afford pyrimidine
derivative (5). The pyridine chalcone (4) was obtained from
3-acetyl pyridine (3). The catalytic reduction of pyrimidine
derivative 5 with hydrogen on Pd/carbon in ethyl acetate
afforded the desired intermediate 6 (Scheme 1) (Zimmer-
mann 1993, 1996; Zimmermann et al. 1996).

Upon synthesizing 6, we proceeded towards the synth-
esis of the target compounds through imine formation. In

order to achieve this, reaction between compound 6 and
indole-3-carboxaldehyde was first carried out in water at
room temperature and 40 °C, the progress of the reaction
was monitored by TLC, however the starting materials were
not completely consumed even until 16 h which is in turn
affected the product yield (Table 1, entry 1). Therefore, a
focused optimization study was carried out with different
solvents in the presence and absence of acetic acid as cat-
alyst at varying temperature. It was observed that the use of
catalytic amount of acetic acid afforded better yields of the
product in water (Table 1, entry 2). On switching from
water to methanol in the presence of catalytic acetic acid at
room temperature the yield of the reaction improved to 55%
(Table 1, entry 3) and with the increase of the temperature
to 60 °C, the yield further improved to 85% with reduced
reaction time (Table 1, entry 4). Interestingly, when the
reaction was performed in methanol without catalytic acetic
acid at 60 °C the yield was slightly better (Table 1, entry 5).
Furthermore the reaction was also performed in ethanol and
dichloromethane, however the yields decreased compared
to methanol (Table 1, entries 6–7).

Scheme 1 Synthesis of
phenylamino pyrimidine
intermediate 6

Table 1 Optimization of the reaction conditions

Entry Solvent Catalyst Temp (oC) Time (h) Yieldb (%)

1 H2O –a 30 16 10

2 H2O AcOH 40 8 30

3 MeOH AcOH 30 8 55

4 MeOH AcOH 60 4 85

5 MeOH –a 60 4 90

6 EtOH AcOH 80 8 75

7 DCM AcOH 40 8 44

aNo catalyst used
bIsolated yield
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Hence, we performed the condensation reaction of
intermediate 6 with different isatins and aldehydes under the
optimized reaction conditions with methanol as solvent at
60 °C to provide the desired conjugates 7a–7o as outlined in
Scheme 2. Equimolar mixture of compound 6 and different
isatins or aldehydes taken in methanol (5 ml) stirred at 60 °
C temperatures for 4–8 h furnished the desired compounds
in good to excellent yield (Table 2). Since this kind of
condensation reactions moves in the forward direction with
progressive removal of water, we carried out the reaction
with Dean and Stark apparatus with different water
immiscible solvents, however no remarkable changes were
observed in the yields and time.

The structures of the final compounds were confirmed
based on their 1H, 13C NMR and HRMS data. In case of
compound 7a and 7b, we observed three singlet peaks in 1H
NMR spectra for isatinyl, pyridiny,l and secondary amine
protons at chemical shifts (δ) values of 10.85, 9.13, 8.64
and 11.07, 9.18, 8.93 respectively as well as in 13C NMR
characteristic peaks for compound 7a and 7b at δ 164.25,
163.72 for carbons directly attached to the three nitrogen, at
δ 161.89, 162.00 for carbons attached to imine bond, at δ
161.17, 161.23 for carbons attached to nitrogen of pyridine
ring and at δ 155.16, 154.03 for amide carbon respectively.

Moreover to further support the characterization of these
new conjugates, X-ray crystallography was performed with
compound 7a, which clearly identified the presence of
pyridine, pyrimidine and oxindole rings as well as the imine
bond with precision (Fig. 2).

Biological evaluation

Inhibition of cell proliferation

To assess the potency of the novel conjugates of imitanib
(7a–7o), we evaluated their effects on cell proliferation
(Hamaï et al. 2006) as well as enzymatic activity with
imatinib drug as a reference. The decrease in cell viability of
K-562 cells treated with the compounds 7a–7o for 48 h
assessed with the in vitro SRB assay (Kasinski et al. 2015;
Skehan et al. 1990; Vichai and Kirtikara 2006) revealed
their promising anti-proliferative activity. All the deriva-
tives of the series (7a–7o) exhibited more potent cytotoxi-
city than imatinib against K-562 cell line in the range of
0.65–1.1 µM (Fig. 3). Compound 7l with indole ring
exhibited the best activity in the series with an IC50 value of
0.65 µM and almost two folds more potency than imitanib.
We believe introduction of XXX groups and specifically
XYY groups in ZZZ molecules enhanced their binding to
the kinase in focus and thus inhibiting cell proliferation.
Hence, to test the Abl kinase activity we consequently
performed in vitro kinase assays (Mow et al. 2002).

Enzymatic kinase activity

In this study, all the compounds (7a–7o), were tested by
in vitro assay against the recombinant ABL kinase enzyme
(Ding et al. 2008; Ouellette et al. 2016). Most of them
displayed good anti-enzymatic activity with IC50 value
arranging from 30 to 71 µM, however under our experi-
mental conditions, imatinib drug showed a nine fold better
IC50 value. This indicates that there may be other molecular
targets where these compounds could bound and provides
better cytotoxicity values than imatinib. Further, com-
pounds 7a, 7h, 7n, and 7o showed no significant inhibitory
activity toward ABL (IC50 > 100 µM). Amongst the identi-
fied human kinome of 518 protein kinases many have been
identified to bind to same inhibitors thus ensuing

Scheme 2 Reaction between
intermediate amine (6) with
isatin and aldehyde

Table 2 Synthesis of Imatinib based analogues

Entry R Time (h) Yield (%)

7a H 5 80

7b Cl 4.5 85

7c F 4 75

7d Br 5.5 69

7e I 6 85

7f Me 7 80

7g MeO 7.5 70

7h H 6 74

7i F 4.5 82

7j Cl 5 84

7k CN 5 70

7l NO2 4 74

7m MeO 6 72

7n CF3 6 85

7o F 6 75
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polypharmacology (Manning et al. 2002). It has already
been known that kinase inhibitors show less promiscuity
towards their targets owing to their binding of homologous
ATP-binding sites in multiple freely available cellular
kinases. However their promiscuity is to be seen as ratio-
nalized due to their ability to bind to the same region of
several known protein kinases (Hu et al. 2017).

Structure activity relationship (SAR) can be explained
on the basis of values obtained from the cytotoxicity and
anti-enzymatic profile of compounds (7a–7o), (Fig. 3 and
Table 3). Interestingly, compounds having oxindole
(7a–7g) were found most active amongst the series; how-
ever there was no remarkable distinction in activity between
electron donating and withdrawing groups containing

Fig. 2 A view of 7a, showing
the atom-labeling scheme.
Displacement ellipsoids are
drawn at the 30% probability
level and H atoms are
represented by circles of
arbitrary radii

Fig. 3 In vitro cytotoxicity
against K562 cell line
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compounds. Nevertheless, methyl group slightly decreases
the activity with IC50 value 1.01 µM in compound 7f. In
case of indolyl compounds (7h–7m), electron rich indoles
have shown good activity however, halogenated and elec-
tron deficient indoles decreases the activity with an excep-
tion of nitro compound 7l which has shown excellent
activity with IC50 value 0.65 µM. Furthermore, aromatic
compounds (7n–7o), were found to have relatively similar
cytotoxicity as that of oxindole analogues (7a–7g) (Fig. 4).
In case of enzymatic activity, the oxindole analogues
(7a–7g) having electron donating groups namely methyl
and methoxy have shown better activity than electron
withdrawing groups. However, in case of indole based
derivatives (7h–7m), electron deficient groups were found
to be better, particularly compound 7l with IC50 value 30
µM. None of the aromatic compounds (7n–7o) were found
to have anti-enzymatic activity.

Traditionally, oxindole extracted from the cat claw’s
plant Uncaria tomentosa in Amazon South America, have

demonstrated vast therapeutic potential. The extent of
pharmacological activities ascribed to oxindole derivatives,
include anti-cancer, anti-viral anti-leishmanial, antibacterial,
antidiabetic, antioxidant, AChE inhibitory, adrenergic
receptor agonistic, analgesic, spermicidal, vasopressin/pro-
gesterone antagonistic, neuroprotection, and NMDA
blocker activities (Kaur et al. 2016). Oxindole derivatives
have gained respect in the field due to the principal com-
pound Sunitinib, that has been made for inhibition of
VEGFR2 specifically as an anti-angiogenesis compound
(Kang et al. 2016) that has been clinically approved for
renal cell carcinoma. Oxindole derivatives have been shown
to bind to ATP-binding region of the catalytic domain of
kinases.

Druglikeness, toxicity and pharmacokinetic toxicity
and pharmacokinetics analysis

The pharmacokinetics and drug-likeness properties of the
hit compounds were studied using Mol-inspiration and
Swiss ADME online server by submitting SMILES. The
compounds were filtered out based on Water Partition
Coefficient (miLogP) values to be <5 which predict lower
toxicity, possible oral administration and non-specific
binding. The TPSA (Topological Polar Surface Area)
score <140 A0 (da Silva et al. 2015) indicating a high
possibility of absorption (Table 4). In addition, the com-
pounds were also analyzed for bioavailability property
using Swiss ADME (Daina et al. 2017a, b) (Figs 4 and 5).

The pharmacokinetic and physicochemical properties of
all the synthesized compounds were studied using Swiss
ADME server. Among all the tested, five molecules were
selected as hit molecules by passing the filtering criteria of
miLogp < 5 and TPSA < 140 A0. BOILED-Egg (Brain Or
IntestinaL EstimateD permeation method) is a perceptive
model to predict the passive gastrointestinal absorption
(HIA) and Blood Brain Barrier (BBB) permeation of small
molecules (Daina et al. 2017a, b). The BOILED-Egg ana-
lysis showed that most of the molecules (11 compounds) are
highly absorbable in the gastrointestinal tract. The active
efflux mechanism, P-gp as substrate has involved in the

Table 3 In vitro bcr-abl enzymatic activity

Compounds IC50 (µM)

7a >100

7b 60 ± 0.58

7c 62 ± 0.64

7d 71 ± 0.66

7e 55 ± 0.42

7f 40 ± 0.51

7g 36 ± 0.38

7h >100

7i 55 ± 0.49

7j 37 ± 0.28

7k 40 ± 0.36

7l 30 ± 0.64

7m 52 ± 0.32

7n >100

7o >100

Imatinib 3.7 ± 0.21

7f 7g 7j

7k 7l 7m

Fig. 4 Topological polar surface area (TPSA) of the top active syn-
thesized molecules

Table 4 Drug-likeness properties of the top six active indole based
scaffolds

Compound TPSA
score

miLogP H-bond
acceptors

H-bond
donors

7f 95.93 5.03 7 2

7g 105.16 4.64 8 2

7j 78.86 5.64 6 2

7k 102.65 4.72 7 2

7l 124.68 4.92 9 2

7m 88.09 5.02 7 1
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permeation of molecules (indicated as blue dots) to the
gastrointestinal lumen (Fig. 5).

Molecular docking studies

The molecular docking studies of 7h–7m designed inhibi-
tors demonstrated binding into the pocket of BCR-ABL
enzyme and forming one H-bond with the hinge region
Met-318 of Abl kinase catalytic domain, proven to be
essential for the inhibition of kinase activity (Parcha et al.
2017; Banavath et al. 2014). Critical analysis of the ligand
interaction pattern revealed that nitrogen of pyridyl ring
system involved in a H-bond with Met-318. The –NH linker
showed a H-bond with Tyr 315 and pyramidal ring exhib-
ited strong П-П stacking with Thr 253 as shown in sup-
plementary data with all synthesized molecules. Further
formation of salt bridge between Glu286, Asp 381 amino
acids and nitro substitution on indole moiety of compound
7l contributed for BCR-ABL inhibition and absent in other
derivatives. Interaction with Glu286, Asp 381 is an essential
interaction to show Bcr-Abl inhibition as suggested and
evidenced by Parcha et al. (2017) and also observed with
co-crystal ligand, nilotinib (Sabitha 2012) (Fig. 6).

From in vitro enzymatic and in silico studies it is evi-
denced that only compound 7l making interaction with
Glu286 and Asp 381 inhibited the BCR-ABL with an IC50

of 30 µM and arrested the K-562 cell growth with an IC50 of
0.64 ± 0.09 demonstrating the potential lead like properties
of 7l to treat CML (Fig. 6).

It was observed that nilotinib formed hydrogen bonds
with Asp-381 and Glu-296 where as the compound 7l did
not formed these hydrogen bonds and this will be making
the compound more drug like as breaking the H-bonds
needs more energy making it physiologically non favorable
for the active site. Yet, the nitro group of the indole moiety
in 7l forms stable salt bridges with Asp-381 and Glu-296.

We confer that 7l may look as potential scope for lead
development.

Conclusion

Synthesis, characterization and in vitro evaluation of indole/
isatin conjugated phenyl-amino-pyrimidine derivatives as
potential BCR-ABL inhibitors have been demonstrated.
Among the series, all derivatives (7a–7o) were found to be
more cytotoxic than standard Imatinib against K-562 cell
line. Notably, compound 7l was the most active in the series
with almost two folds more potency than imitanib (IC50

0.65 μM). Furthermore, in vitro enzymatic studies with
recombinant ABL kinase enzyme exhibited promising
inhibition in the range of 30–71 µM for most of these novel
conjugates. In addition, modelling and other computational
studies have been carried out to draw insight into the BCR-
ABL protein interactions with the target molecules and drug
like properties of the conjugates, respectively. A detailed
study in understanding pattern of this biological activity
outcome would be worthwhile research investigation.

Experimental section

Chemistry

All reagents, starting materials, and solvents were pur-
chased from Aldrich (Sigma-Aldrich, St. Louis, MO, USA)
or Alfa Aesar (Johnson Matthey Company, Ward Hill, MA,
USA) and used without further purification. Reactions were
monitored by TLC, performed on silica gel glass plates
containing 60 F-254, and visualization on TLC was
achieved by UV light or using an iodine indicator. Column
chromatography was performed with Merck 60–120 mesh
silica gel. 1H and 13C NMR spectra were recorded with 75,
100, 300, 400, and 500MHz spectrometer in CDCl3 and
DMSO-d6 solutions. Chemical shifts (δ) are expressed in
ppm relative to the internal standard TMS and multiplicities
of NMR signals are represented as singlet (s), broad singlet
(bs), doublet (d), triplet (t), double doublet (dd), triplet of
doublet (td), and multiplets (m). High-resolution mass
spectra (ESI-HRMS) were obtained by using ESI-QTOF
mass spectrometer. Melting points were determined on an
electro-thermal melting point apparatus and are uncorrected.

General procedure for the synthesis of compounds (7a–7o)

6-methyl-N1-(4-(pyrdin-3-yl)pyrimidin-2-yl) benzene-1,3-
diamine (compound 6) (0.5 mmol) and 5-substituted, indo-
line-2,3-dione(isatins) or indole and aromatic aldehydes
(0.5 mmol) were taken in methanol (5 ml) and stirred at
60 °C temperature for 4–8 h. The reaction was monitored by

Fig. 5 Brain/intestinal permeation estimation
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TLC using methanol and chloroform (2%) as a solvent
system. After completion of reaction this mixture was
evaporated by vacuum distillation and the residue was
extracted with ethyl acetate (25 mL × 3). The organic solu-
tion was dried over anhydrous Na2SO4 and evaporated the
solvent to offered crude product. This was further purified
by column chromatography using 0.1:10 methanol/chloro-
form as eluent to obtain the pure compound in good yield.

(Z)-3-((4-Methyl-3-((4-pyrdin-3-yl) pyrimidin-2-yl) amino-
phenyl) imino) indolin-2-one (7a) White solid (80%); Rf:
0.35 (5%, MeOH/CHCl3); M.P.: 254-255 °C; 1H NMR
(300MHz, CDCl3+DMSO-d6) δ 10.85 (s, 1H), 9.13 (s,
1H), 8.64 (s, 1H), 8.57 (d, J= 3.9Hz, 1H), 8.40 (d, J=
4.9Hz, 1H), 8.20 (d, J= 7.7 Hz, 1H), 7.37 (s, 1H), 7.29–
7.16 (m, 4H), 6.82 (dd, J= 12.5, 7.8 Hz, 2H), 6.62 (dd, J=
16.5, 8.2 Hz, 2H), 2.32 (s, 3H).; 13C NMR (75MHz,
CDCl3+DMSO-d6) δ 164.25, 161.89, 161.17, 159.25,
155.16, 151.25, 148.51, 148.23, 147.16, 138.90, 134.27,
132.44, 131.33, 127.99, 126.30, 123.60, 121.86, 115.98,
113.63, 113.39, 111.57, 107.90, 18.00. HRMS (ESI) cal-
culated for C24H19ON6 [M+H]+ 407.1614; found:
407.1613.

(Z)-5-Chloro-3-((4-methyl-3-((4-pyrdin-3-yl) pyrimidin-2-yl)
amino) phenyl) imino) indolin-2-one (7b) White solid
(85%); Rf: 0.25 (5% MeOH/CHCl3); M.P.: 252-253 °C; 1H
NMR (300MHz, CDCl3+DMSO-d6) δ 11.07 (s, 1H), 9.18
(s, 1H), 8.93 (s, 1H), 8.61 (d, J= 3.8Hz, 1H), 8.44 (d, J=
5.1Hz, 1H), 8.29 (d, J= 7.9 Hz, 1H), 7.32 (m, 5H), 6.88 (d,
J= 8.4 Hz, 1H), 6.77 (s, 1H), 6.70 (d, J= 7.4 Hz, 1H), 2.34
(s, 3H); 13C NMR (75MHz, CDCl3+DMSO-d6) δ 163.72,
162.00, 161.23, 159.42, 154.03, 151.42, 148.35, 147.90,

145.92, 139.08, 134.33, 133.86, 132.45, 131.50, 128.89,
125.95, 125.65, 123.71, 117.03, 113.78, 113.57, 113.12,
108.11, 18.11; HRMS calculated for C24H18ON6Cl
[M+H]+ 441.1225; found: 441.1225; C24H18ON6Cl [M+
2]+ 443.1196; found: 443.1236;

(Z)-5-Fluoro-3-((4-methyl-3-((4-pyrdin-3-yl) pyrimidin-2yl)
amino) phenyl) imino) indolin-2-one (7c) White solid
(75%); Rf: 0.28 (5% MeOH/CHCl3); M.P.: 243–245 °C, 1H
NMR (300MHz, CDCl3+DMSO-d6) δ 10.78 (s, 1H), 9.08
(s, 1H), 8.54 (d, J= 3.9 Hz, 1H), 8.36 (d, J= 5.2 Hz, 1H),
8.17 (d, J= 8.0 Hz, 1H), 7.53 (s, 1H), 7.26–7.07 (m, 5H),
6.94–6.79 (m, 1H), 6.66–6.63 (m, 2H), 2.33 (s, 3H).; 13C
NMR (75MHz, CDCl3+DMSO-d6) δ 164.48, 162.68 (d,
J1= 270.7 Hz, 1C), 158.97, 155.88, 154.41, 151.10,
148.16, 147.73, 143.22, 138.58, 134.30, 132.51, 131.29,
127.27, 123.48, 120.48 (d, J2= 26.5 Hz, 1C), 116.22
(d, J3= 7.8 Hz, 1C), 113.82, 113.35, (d, J2= 26.7 Hz, 1C),
112.37, 108.06, 17.89; HRMS (ESI) calculated for
C24H18ON6F [M+H]+ 425.1520; found: 425.1512.

(Z)-5-Bromo-3-((4-methyl-3-((4-pyrdin-3-yl) pyrimidin-2-yl)
amino) phenyl) imino) indolin-2-one (7d) White solid
(69%); Rf: 0.30 (5% MeOH/CHCl3); M.P.: 194-196 °C; 1H
NMR (300MHz, CDCl3+DMSO) δ 10.83 (s, 1H), 9.16 (s,
1H), 8.64 (d, J= 4.6 Hz, 1H), 8.48 (t, J= 4.4 Hz, 1H), 8.24
(d, J= 8.1 Hz, 1H), 7.82 (s, 1H), 7.77 (s, 1H), 7.59 (s, 1H),
7.34–7.28 (m, 2H), 7.19 (d, J= 5.1 Hz, 1H), 7.15 (s, 1H),
6.80 (t, J= 8.6 Hz, 1H), 6.74 (d, J= 7.7 Hz, 1H), 2.44 (s,
3H); 13C NMR (75MHz, CDCl3+DMSO) δ 163.2, 161.7,
160.9, 159.44, 153.7, 151.31, 148.1, 147.7, 145.9, 138.8,
136.5, 134.2, 132.3, 132.1, 131.3, 130.4, 128.8, 123.6,
119.5, 117.3, 113.5, 111.1, 107.9, 17.8; HRMS (ESI)

Fig. 6 Binding pose of 7l and nilotinib into the active site pocket of BCR-ABL enzyme
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calculated for C24H18ON6Br [M+H]+ 485.0720; found:
485.0748; C24H18ON6Br [M+ 2]+ 485.0700; found:
485.0727.

(Z)-5-Iodo-3-((4-methyl-3-((4-pyrdin-3-yl) pyrimidin-2-yl)
amino) phenyl) imino) indolin-2-one (7e) White solid
(85%); Rf: 0.40 (5% MeOH/CHCl3); M.P.: 126-128 °C; 1H
NMR (300MHz, CDCl3+DMSO-d6) δ 10.91 (s, 1H), 9.09
(s, 1H), 8.54 (d, J= 3.4 Hz, 1H), 8.40 (d, J= 5.2 Hz, 1H),
8.17 (d, J= 8.0 Hz, 1H), 7.80 (d, J= 2.8 Hz, 1H), 7.57 (s,
1H), 7.45 (d, J= 8.2 Hz, 1H), 7.24 (d, J= 8.0 Hz, 1H), 7.17
(d, J= 5.5 Hz, 1H), 2.35 (s, 3H); 13C NMR (75MHz,
CDCl3+DMSO-d6) δ 163.74, 162.24, 162.06, 160.86,
159.24, 159.12, 153.56, 151.12, 148.23, 147.74, 146.58,
146.28, 145.86, 138.66, 134.51, 133.13, 132.61, 131.27,
130.77, 127.34, 123.75, 123.57, 117.91, 115.00, 113.85,
113.64, 112.26, 111.16, 110.11, 108.25, 107.54, 84.16,
18.01; HRMS (ESI) calculated for C24H18ON6I [M+H]+

533.0586; found: 533.0575.

(Z)-5-Methyl-3-((4-methyl-3-((4-pyrdin-3-yl) pyrimidin-2-yl)
amino) phenyl) imino) indolin-2-one (7f) White solid
(80%); Rf: 0.20 (5% MeOH/CHCl3); M.P.: 134-136 °C; 1H
NMR (300MHz, CDCl3+DMSO-d6) δ 10.35 (s, 1H), 9.05
(s, 1H), 8.54 (d, J= 3.7 Hz, 1H), 8.36 (d, J= 5.1 Hz, 1H),
8.12 (d, J= 7.9 Hz, 1H), 7.71 (s, 1H), 7.53 (s, 1H), 7.44 (s,
2H), 7.09 (d, J= 5.1 Hz, 1H), 6.95 (d, J= 7.9 Hz, 1H),
6.76–6.56 (m, 3H), 2.34 (s, 3H), 1.87 (s, 3H); 13C NMR
(75MHz, CDCl3+DMSO-d6) δ 164.72, 162.15, 160.62,
158.86, 154.97, 151.04, 148.41, 148.04, 144.49, 143.87,
138.11, 134.33, 130.96, 126.78, 125.76, 123.33, 113.38,
111.73, 111.08, 107.99, 20.61, 17.71; HRMS (ESI) calcu-
lated for C25H21ON6 [M+H]+ 421.1771; found: 421.1763.

(Z)-5-Methoxy-3-((4-methyl-3-((4-pyrdin-3-yl)pyrimidin-2-yl)
amino)phenyl)imino)indolin-2-one (7g) White solid (70%);
Rf: 0.22 (5% MeOH/CHCl3); M.P.: 132–134 °C; 1H NMR
(300MHz, DMSO-d6) δ 10.41 (s, 1H), 9.05 (s, 1H), 8.53 (d,
J= 3.7 Hz, 1H), 8.36 (d, J= 5.1Hz, 1H), 8.12 (d, J= 7.9 Hz,
1 H), 7.81 (s, 1H), 7.61 (d, J= 1.8 Hz, 1H), 7.54 (d, J= 3.5
Hz, 1H), 7.21 (d, J= 8.1 Hz, 1H), 7.10 (d, J= 5.1 Hz, 1H),
6.72 (s, 2H), 6.62 (dd, J= 7.9, 1.8 Hz, 1H), 6.37 (s, 1H), 3.32
(s, 3H), 2.32 (s, 3H); 13C NMR (75MHz, CDCl3+DMSO-
d6): δ 164.0, 161.4, 158.2, 153.7, 150.3, 147.4, 147.3, 144.1,
139.8, 137.6, 133.7, 133.6, 130.4, 130.0, 124.5, 122.8, 118.9,
112.8, 111.3, 110.2, 107.3, 54.5, 17.0; HRMS (ESI) calcu-
lated for C25H21 O2N6 [M+H]+ 437.1720; found: 437.1714.

(E)-N1((1H-indol-3-yl) methylene)-4-methyl-N3-(4-(pyridine-
3-yl) pyrimidin-2-yl) benzene-1,3-diamine (7h) White
solid (74%); Rf: 0.33 (5% MeOH/CHCl3); M.P.: 126–128 °C;
1H NMR (300MHz, DMSO-d6) δ 12.12 (s, 1H), 9.87 (s, 1H),
9.23 (s, 1H), 9.00 (s, 1H), 8.66 (s, 1H), 8.47 (dd, J= 15.9,

6.4 Hz, 2H), 8.23 (s, 1H), 8.03 (d, J= 7.0Hz, 1H), 7.65–7.50
(m, 2H), 7.44 (s, 2H), 7.29–7.13 (m, 3H), 6.94 (d, J= 7.3 Hz,
1H), 2.21 (s, 3H); 13C NMR (100MHz, DMSO-d6) δ 185.51,
162.01, 161.18, 160.03, 151.44, 148.18, 139.20, 138.96,
137.52, 135.58, 131.70, 130.81, 130.66, 124.67, 123.94,
122.61, 121.28, 118.31, 112.92, 108.74, 18.18; HRMS (ESI)
calculated for C25H21N6 [M+H]+ 405.1822; found:
405.1822.

(E)-N1((5-Fluoro-1H-indol-3-yl)methylene)-4-methyl-N3-(4-
(pyridine-3-yl) pyrimidin-2-yl) benzene-1,3-diamine (7i)
White solid (82%); Rf: 0.24 (5% MeOH/CHCl3); M.P.:
146–148 °C; 1H NMR (500MHz, DMSO-d6) δ 12.38 (s,
1H), 9.98 (s, 1H), 9.41 (s, 1H), 9.20 (s, 1H), 8.84 (dd, J=
14.3, 4.1 Hz, 1H), 8.72 (d, J= 7.9 Hz, 1H), 8.65 (t, J= 4.6
Hz, 1H), 8.41 (d, J= 3.1 Hz, 1H), 7.81 (dd, J= 14.2, 7.3
Hz, 3H), 7.60 (dd, J= 9.7, 4.9 Hz, 2H), 7.41 (d, J= 8.1 Hz,
1H), 7.19 (dd, J= 9.2, 2.5 Hz, 1H), 7.16–7.12 (m, 1H), 2.35
(s, 3H); 13C NMR (100MHz, DMSO-d6) δ 185.54, 161.37,
161.29, 161.10, 160.23, 159.16 (d, J1= 234.9Hz, 1C),
149.61, 146.55, 140.10, 139.32, 139.16, 137.58, 137.40,
134.07, 133.43, 131.78, 131.68, 130.03, 125.47, 119.04,
114.27 (d, J3= 9.7 Hz, 1C), 112.07 (d, J2= 25.9Hz, 1C),
108.94, 106.13 (d, J2= 24.5 Hz, 1C), 18.21; HRMS (ESI)
calculated for C25H21FN6 [M+H]+ 423.1732; found:
423.1728.

(E)-3-(((4-Methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)
phenyl)imino)methyl)-1H-indole-5-carbonitrile (7k) White
solid (70 %); Rf: 0.22 (5% MeOH/CHCl3); M.P.: 231–233 °C;
1H NMR (400MHz, DMSO-d6) δ 12.78 (s, 1H), 9.98 (s, 1H),
9.47 (s, 1H), 9.24 (s, 1H), 8.98 (d, J= 7.9 Hz, 1H), 8.93 (s,
1H), 8.63 (d, J= 4.9 Hz, 1H), 8.50 (d, J= 2.9 Hz, 1H), 8.44
(s, 1H), 7.99 (dd, J= 15.0, 9.4 Hz, 1H), 7.79 (d, J= 1.4 Hz,
1H), 7.71 (d, J= 8.5 Hz, 1H), 7.66–7.58 (m, 2H), 7.35 (d, J
= 8.1 Hz, 1H), 7.11 (dd, J= 8.0, 1.7 Hz, 1H), 2.28 (s, 3H);
13C NMR (100MHz, DMSO-d6) δ 185.97, 161.01, 160.51,
160.07, 146.61, 143.91, 140.77, 139.33, 138.97, 134.60,
131.80, 129.82, 126.89, 126.77, 126.15, 124.41, 120.42,
119.28, 118.42, 114.50, 109.12, 104.82, 18.20; HRMS (ESI)
calculated for C25H21N6 [M+H]+ 430.1782; found: 430.1774.

(E)-4-methyl-N1-((5-nitro-1H-indol-3-yl)methylene)-N1-(4-
(pyridine-3-yl)pyrimidin-2-yl)benzene-1,3-diamine (7l)
White solid (74%); Rf: 0.20 (5% MeOH/CHCl3); M.P.:
244–245 °C; 1H NMR (300MHz, CDCl3+DMSO-d6) δ
10.04 (s, 1H), 9.31 (d, J= 2.0 Hz, 2H), 9.02 (s, 1H), 8.85 (s,
1H), 8.71 (s, 2H), 8.55 (d, J= 5.1 Hz, 1H), 8.45 (dd, J=
17.2, 7.1 Hz, 2H), 8.26 (s, 1H), 8.14 (dd, J= 8.9, 2.2 Hz,
1H), 7.69 (d, J= 9.0 Hz, 1H), 7.59 (t, J= 3.1 Hz, 1H), 7.54
(dd, J= 7.5, 4.7 Hz, 1H), 7.46 (d, J= 5.1 Hz, 1H), 7.38 (d,
J= 5.1 Hz, 1H), 7.30 (d, J= 8.1 Hz, 1H), 7.06 (dd, J= 8.0,
1.8 Hz, 1H), 6.89 (d, J= 8.1 Hz, 1H), 6.81 (d, J= 1.9 Hz,
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1H), 6.36 (dd, J= 8.0, 2.1 Hz, 1H), 4.95 (s, 1 H), 2.30 (s,
3H); 13C NMR (75MHz, CDCl3+DMSO-d6) δ 164.0,
161.7, 160.4, 158.5, 153.9, 150.6, 147.7, 147.3, 142.7,
138.1, 133.8, 132.0, 130.8, 123.0, 120.2, 119.8, 115.8,
113.3, 113.0, 112.7, 111.9, 107.6, 17.4; HRMS (ESI) cal-
culated for C25H21N6 [M+H]+ 450.1682; found: 450.1673.

(E)-4-methyl-N3-(4-pyrdin-3-yl)pyrimidin-2-yl)-N1-((4-tri-
fluoromethylbenzylidene) benzene-1,3-diamine (7n)
White solid (85%); Rf: 0.27 (5% MeOH/CHCl3); M.P.:
122–124 °C; 1H NMR (300MHz, CDCl3+DMSO-d6): δ
9.22 (d, J= 1.5 Hz, 1H), 8.63 (dd, J= 4.8, 1.4 Hz, 1H),
8.55 (s, 1H), 8.44 (d, J= 5.2 Hz, 1H), 8.27 (dd, J= 6.2, 1.9
Hz, 1H), 7.98 (d, J= 8.5 Hz, 3H), 7.65 (d, J= 8.1 Hz, 2H),
7.50 (s, 1H), 7.34 (dd, J= 7.7, 4.9 Hz, 1H), 7.19 (d, J= 8.1
Hz, 1H), 7.13 (d, J= 5.2 Hz, 1H), 6.91 (dd, J= 8.0, 2.0 Hz,
1H), 2.31 (s, 3H). 13C NMR (75MHz, CDCl3+DMSO-
d6): δ 162.10, 160.83, 159.12, 158.99, 157.57, 151.24,
149.19, 148.31, 139.46, 138.31, 137.87, 134.31, 132.54, δ
131.88 (q, J= 32.1 Hz, 1C), 131.24, 130.93, 130.72,
129.90, 128.92, 128.45, 125.95 (q, J= 3.6 Hz, 1C), 125.50,
125.46, 123.88 (q, J= 272.2 Hz, 1C), 123.55, 116.84,
115.07, 110.88, 109.61, 107.97, 107.50, 17.88; HRMS
(ESI) calculated for C24H19N5F3 [M+H]+ 434.1582;
found: 434.1587.

(E)-N1-(4-fluorobenzylidene)-4-methyl-N3-(4-pyrdin-3-yl)pyr-
imidin-2-yl)benzene-1,3-diamine (7o) White solid (75%);
Rf: 0.32 (5% MeOH/CHCl3); M.P.: 138–140 °C; 1H NMR
(300MHz, CDCl3+DMSO-d6): δ 9.20 (s, 1H), 8.62 (s,
1H), 8.45 (s, 1H), 8.28 (d, J= 5.5 Hz, 1H), 7.97 (s, 2H),
7.85 (s, 1H), 7.50 (m, 2H), 7.20–6.97 (m, 5H), 6.88 (s, 1H),
2.30 (s, 3H); 13C NMR (75MHz,CDCl3+DMSO-d6): δ
167.48, δ 164.44 (d, J1= 252.2 Hz), 162.35, 160.73,
159.06, 158.12, 151.24, 149.99, 148.31, 138.04, 134.52,
132.65, 132.26, 130.94, 130.68, 127.26, 127.02, 123.64,
116.73, 116.29 (d, J2= 22.6 Hz), 115.93, 115.64, 115.37,
115.08, 114.27, 110.92, 109.12, 17.79; MS–ESI-MS: m/z
384 HRMS (ESI) calculated for C25H21N6O [M+H]+

384.1626; found: 384.1619.

Biology

Cell cultures, maintenance, and evaluation of anti-
proliferative activity

Cell line utilized during the experiments was procured
from American Type Culture Collection (ATCC, USA),
K562 cells were grown in RPMI1640 medium at 37 °C
containing 10% Fetal Bovine Serum (FBS). The cells
were collected after 24 h post treatment. To estimate the
cell growth in the presence of the compounds, SRB cell
proliferation assay was performed. In a 96 well plate, cell

line was seeded in media containing 10% FBS and based
on the cells replicative capacity, plating was performed.
Prior to treatment with experimental drugs, plates were
maintained at 100% relative humidity, 5% CO2, 95% air
and temperature of 37 °C. To each well, 198 μL of med-
ium containing cells and 2 μL of test compounds were
added. The assay was performed in triplicates for each
sample and five different concentrations (0.01, 0.1, 1, 10,
and 100 μM) were taken into consideration. After incu-
bation for 24 h, 100 μL of ice-cold 10% TCA was added
and incubated at 40 °C for 60 min. Post-incubation plates
were washed thrice with water and dried at room
temperature.

To each well, 100 μL of SRB (sulforhodamine B)
solution was added and incubated at room temperature
for 30 min. Plates were washed with 1% acetic acid
thrice to remove unbound dye and left for drying over-
night. A volume of 200 μl of 10 mM Tris base solution
was added to each well to solubilize the protein bound
dye and measurements were taken at 510 nm with aid of
Varioscan Flash multimode plate reader. Based on
the percentage growth in controls, the inhibitory con-
centrations were determined and graphs were plotted
between percentage of viable cells and concentration of
compounds. IC50 values were calculated and reported as
result of mean ± SD for all triplicate independent
experiments.

BCR-ABL kinase inhibitory assay

The kinase inhibitory effect of the test compounds was
assessed by Z-lyte kinase assay kit (details) according to
manufacturer’s instructions which is based on the differ-
ential sensitivity of phosphorylated and non-
phosphorylated peptides to proteolytic cleavage. Test
compounds with 5 mM concentrations was diluted to
1000 μM with DMSO and transferred to the dose plate.
Further, each compound was diluted to 10-fold con-
centration with reaction buffer to obtain a 10X final
concentration. Later, the compounds (1 µL/well) were
transferred to assay plate with a concentration ranging
from 100 to 0.006 μM for the BCR-ABL activity. Imatinib
was run in parallel as a positive control. Reaction mixture
with ATP (0% inhibition), without ATP (100% inhibition)
and without ATP and kinase peptide mixture (100%
phosphorylation) are used as controls in the experiments.
The reaction mixtures were mixed and incubated 1 h at
room temperature followed by development reaction. All
the plates were incubated at room temperature for 1 h and
the fluorescence signal was measured at an excitation and
emission wavelengths of 400 and 445 nm, respectively.
Each experiment was performed in triplicates and the
results are expressed as mean ± S.D.
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Molecular docking studies

All computational calculations were carried out on an Intel
(R) Xenon(R) 2 Duo CPU E7600 @ 3.06 GHz processor
with memory of 2 GB RAM running with the LINUX
operating system. Software package used was Schrodinger
suite 2017 drug discovery suite. Docking (Friesner et al.
2006) studies were perfomed for dataset compounds on to
the active site of Bcr-Abl crystal structure (PDB ID: 3CS9)
using Schrodinger Suite 2017. Structures were sketched and
converted to 3D using Ligprep (Schrödinger 2014). Bcr-Abl
crystal structure was prepared using Protein Prep wizard,
Schrodinger Suite. Further grid was defined using center of
nilotinib co-crystal as reference. Top 10 docking poses for
each compound was generated and analyzed. Manual
inspection of hits was performed to understand the binding
pattern and docking scores were considered.

X-ray crystallography 7l

X-ray data for the compound 7l was collected at room tem-
perature on a Bruker D8 QUEST instrument with an IμS Mo
microsource (λ= 0.7107A) and a PHOTON-100 detector.
The raw data frames were reduced and corrected for absorp-
tion effects using the Bruker Apex 3 software suite programs
(Bruker 2016). The structure was solved using intrinsic
phasing method and further refined with the SHELXL pro-
gram and expanded using Fourier techniques (Sheldrick
2015). Anisotropic displacement parameters were included for
all non-hydrogen atoms. N bound H atom was located in
difference Fourier maps and their positions and isotropic dis-
placement parameters were refined. All other C bound H
atoms were positioned geometrically and treated as riding on
their parent C atoms [C–H= 0.93–0.97 Å, and Uiso(H)=
1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms]. The
crystal was found to be twinned and the exact twin matrix was
identified by the integration program as 0.989 0.011 −0.021,
0 −1 0, −0.995 −0.006 −0.989. The structure was refined
using the hklf 5 routine with all reflections.

Crystal data for 7a C24H18N6O (M= 406.44 g/mol): tri-
clinic, space group P-1 (no. 2), a= 8.46500(10) Å, b=
11.00000(10) Å, c= 11.4730(3) Å, α= 70.5200(6)°, β=
80.6100(6)°, γ= 89.3400(7)°, V= 992.60(3) Å3, Z= 2,
T= 294.15 K, μ(MoKα)= 0.088 mm-1, Dcalc= 1.360 g/
cm3, 11,518 reflections measured (4.468° ≤ 2Θ ≤ 50°),
11518 unique (Rint= ?, Rsigma= 0.0976) which were used
in all calculations. The final R1 was 0.0813 (I > 2σ(I)) and
wR2 was 0.2450 (all data). CCDC 1841348 contains sup-
plementary Crystallographic data for the structure. These
data can be obtained free of charge at www.ccdc.cam.ac.uk/
conts/retrieving.html [or from the Cambridge Crystal-
lographic Data Centre (CCDC), 12 Union Road, Cambridge

CB2 1EZ, UK; fax: +44(0) 1223 336 033; email:
deposit@ccdc.cam.ac.uk].
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