Article

Subscriber access provided by University of Rochester | River Campus & amp; Miner Libraries

Regioselective Hydrogenolysis of Donor-Acceptor Cyclopropanes with Zn-AcOH Reductive System

Konstantin L. Ivanov, Elena V. Villemson, Gennadij V. Latyshev, Stanislav I. Bezzubov, Alexander G. Majouga, Mikhail Ya. Mel'nikov, and Ekaterina M. Budynina

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b01549 • Publication Date (Web): 11 Aug 2017 Downloaded from http://pubs.acs.org on August 11, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Regioselective Hydrogenolysis of Donor-Acceptor Cyclopropanes with Zn-AcOH Reductive

System

Konstantin L. Ivanov,[†] Elena V. Villemson,[†] Gennadij V. Latyshev,[†] Stanislav I. Bezzubov,[‡]

Alexander G. Majouga,^{†,§} Mikhail Ya. Melnikov,[†] Ekaterina M. Budynina*,[†]

[†]Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow

119991 Russia

[‡]Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991 Russia

[§]National University of Science and Technology "MISiS", Leninskiy pr. 4, Moscow 119991, Russia

ekatbud@kinet.chem.msu.ru

EWG	Zn-AcOH	EWG		
R EWG'	31 examples up to 85%	R-EWG'		
EWG esters • ketones amides • nitriles carboxylic acids <i>etc.</i>	Method simple • low-cost efficient • scalable • regioselective •	Products • functionalized • easily modifiable • no purification needed •		

ABSTRACT: A convenient low-cost method for regioselective ring-opening of donor-acceptor cyclopropanes with the Zn-AcOH reductive system was developed. The general character of the method was displayed *via* efficient reduction of a representative series of 2- (het)arylcyclopropane-1,1-diesters as well as donor-acceptor cyclopropanes with other types of electron-withdrawing activating groups. This method opens a rapid access to γ -substituted propyl-1,1-diesters, ketoesters, cyanoesters, cyanoamides, dinitriles, *etc.*, many of which are not readily accessible with alternative methods. The utility of the synthesized compounds was demonstrated by transforming them into valuable acyclic and cyclic compounds (including pharmacologically relevant carbazoles, δ -lactams and oxindole derivatives).

INTRODUCTION

Donor-acceptor (DA) cyclopropanes are widely known as versatile easily modifiable building blocks for the construction of variously functionalized acyclic and cyclic compounds, mostly due to their tendency to undergo heterolytic cleavage of the selectively activated C-C bond between donor and acceptor substituents (Scheme 1).^{1–13} This mode of reactivity defines the principal trends in the research of these compounds and, thus, has been and is being investigated systematically and thoroughly.

Scheme 1. Two Types of Activated C-C Bond Cleavage in DA Cyclopropanes

Meanwhile, homolytic small ring-opening is a much rarer reactivity of DA cyclopropanes, exemplified by ring-opening reduction^{14–29} as well as several other isolated examples.^{30–32} Two reductive systems are mainly used in relation to DA cyclopropanes: SmI₂-AlkOH^{19–24} and H₂-Pd/C^{25,26} (Scheme 2, **A**). However they are relatively expensive and may cause overreduction (SmI₂) or hydrogenation of multiple bonds (Pd). At the same time, the application of much cheaper and milder Zn-based reductive systems for DA cyclopropane reduction was limited to several specific cases (Scheme 2, **B**).^{27–29}

Scheme 2. Reactions of DA Cyclopropanes with Various Reductive Systems

Two- and three-component Zn-EtOH or Zn-ZnCl₂-EtOH systems were used for the reduction of 2-aryl-substituted ketocyclopropanes while 2-alkyl-substituted analogs were found to be stable under those conditions.²⁷ Unusual ring-opening rearrangement was recently reported for annulated nitrocyclopropanes upon treatment with a Zn-HCl-MeOH reductive system,²⁹ although the application of similar conditions for 2-aryl and alkyl-substituted cyclopropane-1,1-nitroesters resulted in nitro-to-amino group reduction without small ring cleavage.²⁸ Therefore, currently there is no general method for ring-opening reduction of DA cyclopropanes with Zn-based reductive systems.

Here we report a practical and low-cost method for efficient regioselective hydrogenolysis of differently substituted DA cyclopropanes with the Zn-AcOH reductive system (Scheme 2). The method allows for rapid reduction of 2-(het)aryl-substituted cyclopropane-1,1-diesters, ketoesters, cyanoesters, cyanoamides, dinitriles 1 into the corresponding functionalized propane derivatives 2. Commonly, these compounds are perceived as products of alkylation of active methylene compounds. Though this approach appears to be more convenient, many alkylating

agents, especially those with electron-abundant (het)aryl substituents, are unstable or even inaccessible. Moreover, in order to avoid double alkylation, a significant excess of the methylene component has to be added. Therefore, our approach is a new advanced alternative affording **2**, including those variations of it with highly electron-abundant aryl and hetaryl substituents. The proposed procedure provides desired compounds with sufficient purity to obviate chromatography and can be easily scaled up with no loss in efficiency.

RESULTS AND DISCUSSION

Reduction of 2-(het)arylcyclopropane-1,1-diesters into 2-(het)arylethylmalonates

At the beginning of this study, we carried out a brief series of experiments using cyclopropane 1a as a model substrate which was treated with different Zn-containing reductive systems (Table 1). We revealed that the traditional Zn-NH₄Cl reductive system provided complete conversion of 1a within 45 min in MeOH under reflux leading to 2a in 62% NMR vield along with styrene **3a** (11%) and lactone **4a** (5%) (entry 1). Introducing a strong Brønsted acid, aq HCl, at ambient temperature resulted in 92% conversion of **1a** in 15 min and increase in the percentage of lactone 4a, while the yield of the desired product 2a decreased (entry 2). For an identical reaction at 0 °C, only 20% conversion was achieved (entry 3). The best results were obtained when Zn-AcOH reductive systems were examined (entries 4-7). We have found that Zn-AcOH in a 20:10 ratio allowed for complete conversion of **1a** in just 5 min in MeOH as well as EtOH under reflux. In both cases, only trace amounts of **3a** and **4a** were detected while the yields of **2a** were comparable (entries 4, 5). Twofold decrease in the initial amount of Zn-AcOH afforded the best result: 2a was isolated in a 77% yield (entry 6). Further decrease in Zn-AcOH loading led to noticeable deceleration (entry 7). It is noteworthy that even substoichiometric amounts of AcOH (0.5 equiv) were found to be sufficient, although complete 1a-into-2a conversion was achieved in 200 min.

Table 1. Optimization of the reaction conditions

Page	5	of	44
------	---	----	----

$p-\text{Tol} \xrightarrow{\text{CO}_2\text{Me}} \frac{2\text{n}-\text{H}^+}{\text{MeOH}} \xrightarrow{\text{CO}_2\text{Me}} \xrightarrow{\text{CO}_2\text$							
ontry	$7n/H^{+}$ (mol%)	T [°C]	t [min]	Yield $[\%]^a$			
entry			i [C] t [mm]	1a	2a	3a	4 a
1^c	Zn (20)/NH ₄ Cl (20)	reflux	45	-	62	11	5
2	Zn (20)/HCl (15)	20	15	8	51	-	13
3	Zn (20)/HCl (15)	0	15	80	14	-	-
4	Zn (20)/AcOH (10)	reflux	5	-	72	b	_ ^b
5	Zn (20)/AcOH (10)	reflux ^c	5	-	68	b	_ ^b
6	Zn (10)/AcOH (5)	reflux	5	-	77^d	b	b
7	Zn (5)/AcOH (3)	reflux	15	2	70	b	_ ^b

^{*a*}NMR yield. ^{*b*}Only trace amounts were detected. ^{*c*}Ethanol was used as a solvent. ^{*d*}Isolated yield.

Afterwards, we studied the scope of DA cyclopropanes available for this process. Initially, a series of cyclopropane-1,1-diesters **1b-w**, containing various aryl and hetaryl substituents, was examined under optimized conditions (Table 2). In most cases, reductive ring opening proceeds efficiently under standard conditions in MeOH under reflux in 5 min, leading to corresponding ethylmalonates 2 in good yields. Slightly reduced reactivity was observed for phenylcyclopropane **1b** whose reaction was carried out in EtOH under reflux; furthermore, reaction time was extended up to 70 min. A slight discrepancy was revealed between the reactivities of 2-thienyl-cyclopropane 1s, which was converted into 2s in 15 min in MeOH under reflux, and 3-thienyl-derivative 1t whose complete conversion into 2t was achieved in *ca.* 1 h. However, this difference was completely negated in ethanol under reflux. The steric effect of ortho-substituents in the aromatic ring also reduces the reactivity of the starting compounds. The reduction of cyclopropanes **1g-j** with *ortho*-substituted electron-abundant aryls as well as *o*methoxycarbonyl 1m and naphthyl 10 derivatives, generally takes more time to complete. Among them, 5-chloro-2-methoxymethoxy-cyclopropane **1i** was found to be the least reactive substrate, undergoing transformation into 2i in 1 h. It is noteworthy that deprotection of MOMor EOM-derivatives was not observed under the studied conditions. The reduction of cyclopropane **1n**, containing electron-deficient 3-pyridine substituent, was the slowest, with the conversion to **2n** completed in 270 min. The decrease in the yield of furyl derivative **1r** is caused

by partial furan ring opening into 1,4-diketone under studied conditions. However, the obtained

products 2 were mostly pure.

^{*a*}Reaction conditions: 0.1 M solution of **1** (0.5 mmol), Zn (5 mmol), AcOH (2.5 mmol). ^{*b*}Isolated yield. ^{*c*}MeOH was used as a solvent. ^{*d*}Yield in 2.5 (for **1a**) and 5.2 (for **1d**) gram-scale synthesis. ^{*e*}EtOH was used as a solvent.

Reduction of DA cyclopropanes containing various electron-withdrawing activating groups

Next, DA cyclopropanes **1x-ae** with various electron-withdrawing substituents were studied in their reactions with Zn-AcOH (Table 3). We have found that hemimalonates **1x,y** (irrespective of the donating abilities of the aryl substituents) and dinitrile **1ac** exhibited high reactivity towards the Zn-AcOH reductive system, affording products **2x,y,ac** under standard conditions (MeOH, reflux, 5 min). Ketoester **1z** and cyanoester **1aa** were found to be more reactive *vs*. their

The Journal of Organic Chemistry

diester analog **1b**. Reduction of 2-pyridyl-derivative **1ad** under identical conditions led to the desired product **2ad** in a 55% yield only. Meanwhile, the fragmentation product, methyl 2- (pyridin-2-yl)acetate, was additionally isolated in a 30% yield (see below, Scheme 5). Within the studied series of DA cyclopropanes, amides **1ab,ae** were the least reactive substrates: their complete conversion into the corresponding products **2ab,ae** could only be achieved in 270 min.

Table 3. Varying Electron-Withdrawing Groups^{*a,b*}

^{*a*}Reaction conditions: 0.1 M solution of **1** (0.5 mmol), Zn (5 mmol), AcOH (2.5 mmol). ^{*b*}Isolated yield. ^{*c*}MeOH was usd as a solvent. ^{*d*}EtOH was used as a solvent. ^{*e*}Methyl 2-(pyridin-2-yl)acetate was additionally isolated in a 30% yield.

Reaction mechanism

In most of the studied reactions, trace amounts of the corresponding styrenes **3** were detected. Thus, relatively low-intensive characteristic resonances of $CH=CH_2$ tri-spine systems of **3** were observed in the ¹H NMR spectra of most reaction mixtures. For the reduction of cyclopropanes **1** with electron-abundant aryl substituents, molar percentages of styrenes **3** were higher than for the reactions of cyclopropanes containing the phenyl group or electron-withdrawing aryls. In the reduction of 2-pyridine-derivative **1ad**, the desired product **2ad** was

obtained along with the corresponding methylene compound, methyl 2-(pyridin-2-yl)acetate, in a 65:35 ratio.

The reduction of 2,2-diphenylcyclopropane-1,1-diester **1af** with Zn-AcOH (20:10 equiv) for 5 min in MeOH under reflux proceeded with 50% conversion according to the ¹H NMR spectrum of the reaction mixture. However, the molar percentage of the immediate reduction product **2af** was only 7%, whereas the major components of the reaction mixture were 1,1-diphenylethylene **3af** (43%) and dimethylmalonate, apparently pointing to fragmentation of **2af** (Scheme 3).

Scheme 3. Reduction of 2,2-Diphenylcyclopropane-1,1-Diester 1af

To identify the source of hydrogen in **2**, we carried out the reduction of **1a** in CH₃OD and obtained **2a**, mono-deuterated at the benzylic carbon. Therefore, the formation of **2** *via* radical hydrogen abstraction from the solvent is highly unlikely, whereas the protonation of the intermediate benzyl anion seems more probable. The KIE value of 4.3, measured with the mixture of CH₃OH-CD₃OD (1:4) acting as a medium, is consistent with proton transfer occurring during the reaction. These results, along with DFT calculations (B3LYP/ma-def-SVP/PCM) and well-known data related to the reduction of cyclopropanes with metal-based systems, allowed us to propose a mechanism for the studied process, visualized in Scheme 4.

Single electron transfer (SET) from Zn to 1 could lead to anion-radical I-1, which is known to rearrange to the acyclic anion-radical form I-2. The synergistic effect of an aryl group at C2 and strong anion-stabilizing groups at C1 ensures that this rearrangement is fast.^{33–35} The calculation suggests that dissociative electron transfer (DET)^{36,37} occurs upon the addition of an electron to the LUMO of 1, directly affording I-2.³⁸ This key intermediate undergoes the second SET (path **a**) with the formation of dianion I-3,^{21,22} yielding reduction product 2 *via* protonation.

The Journal of Organic Chemistry

Alternatively, protonation of **I-2** leads to radical **I-4**. Single electron reduction of **I-4** with subsequent protonation gives **2**. However, the more stable tautomeric form **I-4'** and especially the reduced form **I-5** are prone to β -scission. DFT calculations show that this process is characterized by a relatively high activation barrier ($\Delta G^{\neq} = 20.9$ kcal/mol), being thermodynamically unfavorable ($\Delta G_{298} = 6.6$ kcal/mol) toward **I-4'**. On the other hand, it is extremely fast and exergonic ($\Delta G^{\neq} = 0.6$ kcal/mol, $\Delta G = -39.6$ kcal/mol) for **I-5**.³⁹ This is especially significant for **1af** since the benzhydryl radical is known to accept electrons at a much lower rate than benzyl,⁴⁰ allowing for the tautomerization of **I-4** to **I-4'** and subsequent fragmentation to proceed more readily.

Scheme 4. Proposed Mechanism of DA Cyclopropane Reduction with Zn-AcOH System

Transformations of the synthesized compounds

The presence of several functional groups in 2 furnishes various opportunities of their transformation and, thus, makes them valuable precursors of various acyclic and cyclic compounds.

A rapid access to tetralins and their heterocyclic analogs can be provided *via* S_EAr in the cases when 2 contains an electron-abundant (het)aryl substituent.^{41,42} Thus, carbazole derivative 5^{43} was obtained directly from indolylmalonate 2u in a good yield (Scheme 5).

Scheme 5. Transformation of 2u into Carbazole 5

The presence of malonyl or similar CH-activated motifs in the molecules of compounds 2 opens up a plethora of opportunities for their transformations. The reactions of 2 with such C-electrophiles as alkyl and acyl halides, electrophilic alkenes (Michael acceptors), *etc.* allow for the prolongation and additional functionalization of the alkyl chain in 2. Such preinstallation provides accesss to further easy assembly of the cyclic moiety in the target structures. In this context, we developed a divergent strategy for the synthesis of functionalized δ -lactones 7 and lactams 8 which are structural fragments of bioactive compounds^{44,45} (Scheme 6).

Scheme 6. Divergent Strategy for the Synthesis of &Lactones 7 and &Lactams 8

In order to obtain alkylated products **6**, arylmalonates **2** were treated with acrolein, methylor phenylvinyl ketones in the presence of NaB(OMe)₄ as a catalyst⁴⁶ (Table 4). The efficiency of this method was demonstrated with a short series of compounds **2**, affording Michael adducts **6ad** in good yields. While using acrolein or phenylvinyl ketone as Michael acceptors, yields of the corresponding products **6a** and **6d** were reduced due to repeated Michael addition acting as a side process and leading to tangible oligo- and polymerization. In particular, the product of double Michael addition **6d'** was isolated in a 5% yield from the reaction of **2d** with phenylvinyl ketone. Diethyl ester analog of **6c** was used in the synthesis of natural 4-(*p*-methoxyphenethyl)cyclohex-2-en-1-one.⁴⁷

Table 4. Synthesis of Intermediate Products 6 via Alkylation of 2^{a,b}

^aReaction conditions: 0.1 M solution of **2** (0.5 mmol) in MeCN, Michael acceptor (0.7-1.0 mmol), NaB(OMe)₄ (4 mg, 0.025 mmol). ^bIsolated yield. ^cYield in 2.5 gram-scale synthesis.

Reduction of 6a with NaBH₄ in methanol results in a mixture of the target lactone 7 and intermediate alcohol I-6 which undergoes complete cyclization into 7 after heating in benzene under reflux (Scheme 7).

Scheme 7. Synthesis of & Lactone 7

Lactams **8** were synthesized from ketones **6** under Borch reductive amination⁴⁸ conditions (Table 5). In the case of AcONH₄, reaction proceeded as a cascade of reductive amination and spontaneous 1,6-lactamization,⁴⁹ directly yielding lactams **8a-c**. This domino reaction proceeded with high diastereoselectivity, predominantly yielding diastereomers **8a-c** with a *cis*-relationship

between ArCH₂CH₂ and R' substituents. The structure of the major isomer (3RS,6RS)-**8b** was unambiguously proved by single crystal X-ray analysis.^{38,50}

Spontaneous lactamization did not proceed under the same conditions when benzylamine was employed. Therefore, lactam **8d** was obtained *via* initial synthesis of acyclic amine **9** followed by its lactamization under harsher conditions. In this case, significant decrease in diastereoselectivity was observed.

Table 5. Synthesis of δ -Lactams 8^{*a,b*}

^{*a*}Reaction conditions: 0.1 M solution of **6** (0.5 mmol) in MeOH, NaBH₃CN (0.7 mmol), AcONH₄ (5 mmol) or BnNH₂ (1 mmol), heating under reflux for 3 h. ^{*b*}Isolated yield. ^{*c*}Two-step yield starting from **6b**.

The same concept related to preliminary arylation of **2** was used in the synthesis of oxindole derivative **11**. Intermediate acyclic product **10** was obtained by nucleophilic aromatic substitution in 1-chloro-2,4-dinitrobenzene (Scheme 8). Further reduction of NO₂ groups in the aryl fragment, followed by γ -lactamization, led to the assembly of the oxindole core in the final product **11**.

Scheme 8. Synthesis of Oxindole 11

CONCLUSION

In conclusion, we have developed a practical method for regioselective hydrogenolysis of DA cyclopropanes *via* reductive cleavage of the activated C-C bond between the donor and acceptor substituents with a Zn-AcOH reductive system. This system proved to be efficient for the conversion of 2-(het)aryl-substituted cyclopropanes, activated with ester, keto, cyano, amide groups *etc.* as acceptors, into the correspondingly functionalized propane derivatives.

The proposed mechanism for the studied process includes initial homolytic small-ring opening *via* electron transfer, followed by the transformation of the generated radical anion into the final propane derivative *via* proton and electron transfer. Fragmentation of acyclic intermediates yielding the corresponding styrene and an active methylene compound was revealed as the principal side process.

In order to show the potential utility of the synthesized products, selected representatives were transformed into derivatives of carbazole, δ -lactone and lactam as well as oxindole.

EXPERIMENTAL SECTION

General Information

NMR spectra were acquired at room temperature if not specified otherwise; the chemical shifts δ were measured in ppm with respect to solvent (¹H: CDCl₃, δ = 7.27 ppm; ¹³C: CDCl₃, δ = 77.0 ppm). The structures of compounds were elucidated with the aid of 1D NMR (¹H, ¹³C) and 2D NMR (¹H–¹H COSY, ¹H–¹³C HSQC, ¹H–¹³C HMBC, ¹H–¹H NOESY) spectroscopy. Low resolution mass spectra were recorded using MALDI technique with a TOF mass analyzer; anthracene was used as a matrix. High resolution mass spectra (HRMS) were performed using

ESI and Orbitrap mass analyzer. Elemental analyses were performed with elemental analyser instrument. Crystallographic data were collected at 150 K using graphite monochromatized Mo– K α radiation ($\lambda = 0.71073$ A) using a ω -scan mode. Absorption corrections based on measurements of equivalent reflections were applied. The structures were solved by direct methods and refined by full matrix least squares on F² with anisotropic thermal parameters for all non-hydrogen atoms. Melting points (mp) were determined using capillary melting point apparatus. Microwave reactions were performed in a microwave synthesis reactor Monowave 300 (Anton Paar) in sealed reaction vessels; the temperature was monitored with external IR detector. Analytical thin layer chromatography (TLC) was carried out with silica gel plates (silica gel 60, F₂₅₄, supported on aluminium) visualized with UV lamp (254 nm). Column chromatography was performed on silica gel 60 (230-400 mesh).

DFT calculations were carried out with ORCA 4.0.0 suite of programs,⁵¹ at the B3LYP^{52,53} / ma-def-SVP^{54,55} level of theory using RIJCOSX⁵⁶ approximation. Conductor-like PCM model^{57,58} (MeOH as a solvent) was employed to account for solvation effects.

General Procedure for the Synthesis of Alkenes

The parent alkenes were synthesized *via* Knoevenagel condensation under piperidinium acetate catalysis. Solution of the corresponding benzaldehyde (1 equiv), methylene component (1 equiv), piperidine (0.05 equiv) and acetic acid (0.2 equiv) in benzene (3 M regarding benzaldehyde) was heated under reflux with 15-mL Dean-Stark trap for 2–6 h. After cooling to the ambient temperature, reaction mixture was diluted with ethyl acetate, washed twice with brine, dried with Na₂SO₄ and concentrated under reduced pressure. Residue was either purified by column chromatography on silica gel or used without purification.

Dimethyl 2-[2-(ethoxymethoxy)benzylidene]malonate (S1)

S1 was synthesized from 2-(ethoxymethoxy)benzaldehyde (14.38 g, 79 mmol) and dimethyl malonate (9.15 mL, 79 mmol). Yield 22.06 g (95%); yellowish oil; ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.22$ (t, ³J = 7.1 Hz, 3H, CH₃), 3.74 (q, ³J = 7.1 Hz, 2H, CH₂O), 3.79 (s, 3H, CH₃O), 3.85 (s,

3H, CH₃O), 5.28 (s, 2H, OCH₂O), 6.95–6.98 (m, 1H, Ar), 7.18–7.20 (m, 1H, Ar), 7.34–7.36 (m, 2H, Ar), 8.13 (s, 1H, CH=); ¹³C NMR (CDCl₃, 150 MHz) δ = 14.8 (¹*J*_{CH} = 127 Hz, CH₃), 52.1 (¹*J*_{CH} = 148 Hz, CH₃O), 52.2 (¹*J*_{CH} = 148 Hz, CH₃O), 64.4 (¹*J*_{CH} = 143 Hz, CH₂O), 93.2 (¹*J*_{CH} = 165 Hz, OCH₂O), 114.5 (CH), 121.4 (CH), 122.7 (C), 125.3 (C), 128.5 (CH), 131.9 (CH), 138.6 (CH), 155.9 (C), 164.4 (*C*O₂Me), 166.9 (*C*O₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₆⁺ 317; Found 317; Anal. Calcd for C₁₅H₁₈O₆: C, 61.22; H, 6.16. Found: C, 61.17; H, 6.21.

Dimethyl 2-[5-chloro-2-(methoxymethoxy)benzylidene]malonate (S2)

S2 was synthesized from 5-chloro-2-(methoxymethoxy)benzaldehyde (6.13 g, 30.6 mmol) and dimethyl malonate (3.50 mL, 30.6 mmol). Yield 9.54 g (99%); yellowish oil; $R_f = 0.29$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 3.45$ (s, 3H, CH₃O), 3.80 (s, 3H, CH₃O), 5.18 (s, 2H, OCH₂O), 7.09 (d, ³*J* = 8.7 Hz, 1H, Ar), 7.26 (dd, ³*J* = 8.7, ⁴*J* = 2.6 Hz, 1H, Ar), 7.28 (d, ⁴*J* = 2.6 Hz, 1H, Ar), 7.99 (s, 1H, CH=); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 52.4$ (¹*J*_{CH} = 147 Hz, CH₃O), 52.6 (¹*J*_{CH} = 147 Hz, CH₃O), 56.3 (¹*J*_{CH} = 143 Hz, CH₃O), 94.8 (¹*J*_{CH} = 167 Hz, OCH₂O), 116.0 (CH, Ar), 124.3 (C), 126.78 (C), 126.80 (C), 128.4 (CH, Ar), 131.4 (CH, Ar), 137.2 (CH=), 154.4 (C, Ar), 164.2 (CO₂Me), 166.4 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₅ClNaO₆⁺ 337; Found 337; Anal. Calcd for C₁₄H₁₅ClO₆: C, 53.43; H, 4.80. Found: C, 53.25; H, 4.84.

Dimethyl 2-[3-methoxy-2-(methoxymethoxy)benzylidene]malonate (S3)

S3 was synthesized from 3-methoxy-2-(methoxymethoxy)benzaldehyde (3.93 g, 20 mmol) and dimethyl malonate (2.29 mL, 20 mmol). Yield 5.59 g (90%); yellowish oil; $R_f = 0.31$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 400 MHz) $\delta = 3.53$ (s, 3H, CH₃O), 3.73 (s, 3H, CH₃O), 3.78 (s, 3H, CH₃O), 3.79 (s, 3H, CH₃O), 5.08 (s, 2H, OCH₂O), 6.91 (dd, ³*J* = 7.6, ⁴*J* = 1.5 Hz, 1H, Ar), 6.92 (dd, ³*J* = 8.3, ⁴*J* = 1.5 Hz, 1H, Ar), 6.99 (dd, ³*J* = 8.3, ³*J* = 7.6 Hz, 1H, Ar), 8.13 (s, 1H, CH=); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 52.2$ (CH₃O), 52.3 (CH₃O), 55.6 (CH₃O), 57.5 (CH₃O), 98.9 (OCH₂O), 114.3 (CH, Ar), 119.9 (CH, Ar), 124.2 (CH, Ar), 126.1 (C), 127.9

(C), 139.2 (CH=), 145.0 (C, Ar), 152.1 (C, Ar), 164.3 (CO_2Me), 166.6 (CO_2Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₇⁺ 333; Found 333; Anal. Calcd for C₁₅H₁₈O₇: C, 58.06; H, 5.85. Found: C, 57.66; H, 5.98.

Dimethyl 2-[2-(methoxycarbonyl)benzylidene]malonate (S4)

S4 was synthesized from methyl 2-formylbenzoate (4.58 g, 28 mmol) and dimethyl malonate (3.20 mL, 28 mmol). Yield 3.89 g (50%); colorless oil; $R_f = 0.40$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 3.60$ (s, 3H, CH₃O), 3.85 (s, 3H, CH₃O), 3.90 (s, 3H, CH₃O), 7.33 (br.d, ³J = 7.7 Hz, 1H, Ar), 7.42–7.46 (m, 1H, Ar), 7.49–7.53 (m, 1H, Ar), 8.05 (dd, ³J = 7.8, ⁴J = 1.4 Hz, 1H, Ar), 8.42 (br.s, 1H, CH=); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 52.1$ (¹ $J_{CH} = 147$ Hz, CH₃O), 52.3 (¹ $J_{CH} = 147$ Hz, CH₃O), 52.5 (¹ $J_{CH} = 147$ Hz, CH₃O), 126.8 (C), 128.7 (CH, Ar), 128.9 (C), 129.3 (CH, Ar), 130.8 (CH, Ar), 132.3 (CH, Ar), 135.9 (C), 145.2 (CH=), 164.2 (CO₂Me), 166.1 (CO₂Me), 166.4 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄NaO₆⁺ 301; Found 301; Anal. Calcd for C₁₄H₁₄O₆: C, 60.43; H, 5.07. Found: C, 60.43; H, 5.01.

General Procedure for the Synthesis of Cyclopropanes 1

Cyclopropanes **1a-y,aa,ad** were synthesized under Corey-Chaykovsky reaction conditions. To suspension of NaH (1.1 equiv, 60% suspension in mineral oil) in dry DMF (0.5 M) Me₃SOI (1.1 equiv) was added in one portion under inert atmosphere. After stirring for 20 min at ambient temperature, resulting mixture was cooled with ice-water bath, and alkene (1 equiv) was added portionwise under vigorous stirring. The mixture was stirred for additional 3–7 h, quenched with ice water (15 mL) and extracted with EtOAc (3×25 mL). Combined organic fractions were washed with water (5×15 mL), dried with Na₂SO₄ and concentrated under reduced pressure. Residue was purified by column chromatography on silica gel.

Dimethyl 2-[2-(ethoxymethoxy)phenyl]cyclopropane-1,1-dicarboxylate (1h)

1h was synthesized from alkene **S1** (5.88 g, 20 mmol). Yield 4.37 g (71%); yellowish oil; $R_f = 0.37$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.24$ (t, ³J = 7.1 Hz,

3H, CH₃), 1.75 (dd, ${}^{2}J = 5.1$, ${}^{3}J = 9.2$ Hz, 1H, CH₂), 2.22 (dd, ${}^{2}J = 5.1$, ${}^{3}J = 8.3$ Hz, 1H, CH₂), 3.32 (s, 3H, CH₃O), 3.35 (dd, ${}^{3}J = 9.2$, ${}^{3}J = 8.3$ Hz, 1H, CH), 3.74 (dq, ${}^{2}J = 9.7$, ${}^{3}J = 7.1$ Hz, 1H, CH₂O), 3.79 (dq, ${}^{2}J = 9.7$, ${}^{3}J = 7.1$ Hz, 1H, CH₂O), 3.80 (s, 3H, CH₃O), 5.24 (s, 2H, OCH₂O), 6.90–6.92 (m, 1H, Ar), 6.98–7.00 (m, 1H, Ar), 7.08–7.10 (m, 1H, Ar), 7.19–7.22 (m, 1H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 15.0$ (${}^{1}J_{CH} = 127$ Hz, CH₃), 18.5 (${}^{1}J_{CH} = 165$ Hz, CH₂), 28.5 (${}^{1}J_{CH} = 167$ Hz, CH), 36.3 (C), 51.9 (${}^{1}J_{CH} = 147$ Hz, CH₃O), 52.5 (${}^{1}J_{CH} = 147$ Hz, CH₃O), 64.1 (${}^{1}J_{CH} = 142$ Hz, CH₂O), 93.3 (${}^{1}J_{CH} = 165$ Hz, OCH₂O), 113.8 (CH, Ar), 120.9 (CH, Ar), 123.7 (C, Ar), 127.7 (CH, Ar), 128.6 (CH, Ar), 157.1 (C, Ar), 167.1 (CO₂Me), 170.3 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₀NaO₆⁺ 331; Found 331; Anal. Calcd for C₁₆H₂₀O₆: C, 62.33; H, 6.54. Found: C, 62.17; H, 6.61.

Dimethyl 2-[5-chloro-2-(methoxymethoxy)phenyl]cyclopropane-1,1-dicarboxylate (1i)

Ii was synthesized from alkene **S2** (9.54 g, 30.3 mmol). Yield 6.26 g (63%); yellowish oil; $R_f = 0.41$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.72$ (dd, ²*J* = 5.2, ³*J* = 9.2 Hz, 1H, CH₂), 2.14 (dd, ²*J* = 5.2, ³*J* = 8.4 Hz, 1H, CH₂), 3.26 (dd, ³*J* = 9.2, ³*J* = 8.4 Hz, 1H, CH), 3.36 (s, 3H, CH₃O), 3.46 (s, 3H, CH₃O), 3.77 (s, 3H, CH₃O), 5.13 (d, ²*J* = 6.8 Hz, 1H, OCH₂O), 5.15 (d, ²*J* = 6.8 Hz, 1H, OCH₂O), 6.95 (br.d, ⁴*J* = 2.6 Hz, 1H, Ar), 6.98 (d, ³*J* = 8.8 Hz, 1H, Ar), 7.12 (dd, ³*J* = 8.8, ⁴*J* = 2.6 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 18.5$ (¹*J*_{CH} = 166 Hz, CH₂), 28.0 (¹*J*_{CH} = 169 Hz, CH), 36.2 (C), 52.1 (¹*J*_{CH} = 147 Hz, CH₃O), 52.7 (¹*J*_{CH} = 147 Hz, CH₃O), 55.9 (¹*J*_{CH} = 143 Hz, CH₃O), 94.6 (¹*J*_{CH} = 166 Hz, OCH₂O), 114.9 (CH, Ar), 125.7 (C, Ar), 126.0 (C, Ar), 127.9 (CH, Ar), 128.3 (CH, Ar), 155.4 (C, Ar), 166.8 (CO₂Me), 170.0 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₇CINaO₆⁺ 351; Found 351; Anal. Calcd for C₁₅H₁₇CIO₆: C, 54.80; H, 5.21. Found: C, 54.49; H, 5.36.

Dimethyl 2-[3-methoxy-2-(methoxymethoxy)phenyl]cyclopropane-1,1-dicarboxylate (1j')

1j' was synthesized from alkene **S3** (5.50 g, 17.7 mmol). Yield 3.73 g (65%); yellowish oil; $R_f = 0.25$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.75$ (dd, ²J = 5.2, ³J = 9.3 Hz, 1H, CH₂), 2.18 (dd, ²J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₂), 3.37 (s, 3H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2), ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J = 5.2, ³J = 8.3 Hz, 1H, CH₃O), 3.47 (dd, ³J

9.3, ${}^{3}J = 8.3$ Hz, 1H, CH), 3.57 (s, 3H, CH₃O), 3.76 (s, 3H, CH₃O), 3.81 (s, 3H, CH₃O), 5.06 (d, ${}^{2}J = 5.7$ Hz, 1H, OCH₂O), 5.16 (d, ${}^{2}J = 5.7$ Hz, 1H, OCH₂O), 6.53 (br.d, ${}^{3}J = 7.8$ Hz, 1H, Ar), 6.81 (br.d, ${}^{3}J = 8.2$ Hz, 1H, Ar), 6.94 (dd, ${}^{3}J = 8.2$, ${}^{3}J = 7.8$ Hz, 1H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 18.8$ (${}^{1}J_{CH} = 165$ Hz, CH₂), 28.0 (${}^{1}J_{CH} = 168$ Hz, CH), 37.3 (C), 52.1 (${}^{1}J_{CH} = 147$ Hz, CH₃O), 52.6 (${}^{1}J_{CH} = 147$ Hz, CH₃O), 55.7 (${}^{1}J_{CH} = 144$ Hz, CH₃O), 57.3 (${}^{1}J_{CH} = 143$ Hz, CH₃O), 98.9 (${}^{1}J_{CH} = 167$ Hz, OCH₂O), 111.7 (CH, Ar), 118.8 (CH, Ar), 123.5 (CH, Ar), 128.8 (C, Ar), 146.3 (C, Ar), 152.2 (C, Ar), 167.0 (CO₂Me), 170.1 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₀NaO₇⁺ 347; Found 347; Anal. Calcd for C₁₆H₂₀O₇: C, 59.25; H, 6.22. Found: C, 59.07; H, 6.37.

General Procedure for the Synthesis of Cyclopropanes 1g,j

Cyclopropanes **1g,j** were synthesized *via* acidic deprotection of **1h,j**'. To 0.25 M solution of the corresponding protected cyclopropane in methanol aq HCl (2 M for EOM, 1 M for MOM; 1 mL/mmol) was added dropwise under cooling (ice-water bath). Resulting mixture was stirred at ambient temperature for 24 h, quenched with water and extracted with ethyl acetate. Combined organic fractions were washed with brine, once with aq NaHCO₃, then dried with Na₂SO₄ and concentrated under reduced pressure. Residue was purified by column chromatography on silica gel.

Dimethyl 2-(2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1g)⁵⁰

1g was synthesized *via* deprotection of **1h** (3.11 g, 10.1 mmol). Yield 2.26 g (90%); white crystals; mp 89–90 °C; $R_f = 0.22$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.81$ (dd, ²J = 5.1, ³J = 9.2 Hz, 1H, CH₂), 2.21 (dd, ²J = 5.1, ³J = 8.2 Hz, 1H, CH₂), 3.15 (dd, ³J = 9.2, ³J = 8.2 Hz, 1H, CH), 3.41 (s, 3H, CH₃O), 3.83 (s, 3H, CH₃O), 5.54 (br.s, 1H, OH), 6.83–6.89 (m, 2H, Ar), 7.03 (br.d, ³J = 7.5 Hz, 1H, Ar), 7.14–7.18 (m, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 18.4$ (¹ $J_{CH} = 166$ Hz, CH₂), 28.2 (¹ $J_{CH} = 166$ Hz, CH), 36.2 (C), 52.4 (¹ $J_{CH} = 147$ Hz, CH₃O), 52.9 (¹ $J_{CH} = 147$ Hz, CH₃O), 115.7 (CH, Ar), 120.2 (CH, Ar), 121.1 (C, Ar), 128.6 (CH, Ar), 128.9 (CH, Ar), 155.8 (C, Ar), 167.5 (CO₂Me), 170.3 (CO₂Me); MS

(MALDI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{13}H_{14}O_5Na^+$ 273; Found 273; Anal. Calcd for $C_{13}H_{14}O_5$: C, 62.39; H, 5.64. Found: C, 62.72; H, 5.93.

Dimethyl 2-(2-hydroxy-3-methoxyphenyl)cyclopropane-1,1-dicarboxylate (1j)

1j was synthesized *via* deprotection of **1j**² (5.09 g, 15.7 mmol). Yield 3.88 g (88%); white solid; $R_f = 0.27$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.76$ (dd, ²J = 5.0, ³J = 9.3 Hz, 1H, CH₂), 2.21 (dd, ²J = 5.0, ³J = 8.3 Hz, 1H, CH₂), 3.33 (dd, ³J = 9.3, ³J = 8.3Hz, 1H, CH), 3.39 (s, 3H, CH₃O), 3.79 (s, 3H, CH₃O), 3.86 (s, 3H, CH₃O), 5.82 (s, 1H, OH), 6.59 (dd, ³J = 7.6, ⁴J = 1.6 Hz, 1H, Ar), 6.74 (dd, ³J = 8.1, ³J = 7.6 Hz, 1H, Ar), 6.77 (dd, ³J = 8.1, ⁴J = 1.6 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 18.8$ (¹ $J_{CH} = 166$ Hz, CH₂), 27.9 (¹ $J_{CH} = 168$ Hz, CH), 36.3 (C), 52.1 (¹ $J_{CH} = 148$ Hz, CH₃O), 52.6 (¹ $J_{CH} = 148$ Hz, CH₃O), 56.0 (¹ $J_{CH} = 145$ Hz, CH₃O), 109.9 (CH, Ar), 118.9 (CH, Ar), 120.1 (CH, Ar), 120.6 (C, Ar), 145.5 (C, Ar), 146.2 (C, Ar), 167.3 (CO₂Me), 170.3 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₆NaO₆⁺ 303; Found 303; Anal. Calcd for C₁₄H₁₆O₆: C, 59.99; H, 5.75. Found: C, 59.74; H, 5.73.

Dimethyl 2-[2-(methoxycarbonyl)phenyl]cyclopropane-1,1-dicarboxylate (1m)

Im was synthesized from alkene **S4** (1.41 g, 5.1 mmol); reaction time 24h. Conversion 85%, yield 0.69 g (47%); colorless oil; $R_f = 0.36$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.80$ (dd, ²J = 5.1, ³J = 9.0 Hz, 1H, CH₂), 2.18 (dd, ²J = 5.1, ³J = 8.5 Hz, 1H, CH₂), 3.28 (s, 3H, CH₃O), 3.76 (dd, ³J = 9.0, ³J = 8.5 Hz, 1H, CH), 3.80 (s, 3H, CH₃O), 3.85 (s, 3H, CH₃O), 7.23 (br.d, ³J = 7.8 Hz, 1H, Ar), 7.29–7.33 (m, 1H, Ar), 7.40–7.44 (m, 1H, Ar), 7.93 (dd, ³J = 7.8, ⁴J = 1.4 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 19.8$ (¹ $J_{CH} = 165$ Hz, CH₂), 32.8 (¹ $J_{CH} = 170$ Hz, CH), 35.9 (C), 51.9 (¹ $J_{CH} = 147$ Hz, CH₃O), 52.0 (¹ $J_{CH} = 147$ Hz, CH₃O), 52.5 (¹ $J_{CH} = 147$ Hz, CH₃O), 127.5 (CH, Ar), 129.6 (CH, Ar), 130.7 (CH, Ar), 131.5 (C, Ar), 131.8 (CH, Ar), 135.8 (C, Ar), 167.1 (CO₂Me), 167.3 (CO₂Me), 170.1 (CO₂Me); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆NaO₆⁺ 315; Found 315; Anal. Calcd for C₁₅H₁₆O₆: C, 61.64; H, 5.52. Found: C, 61.30; H, 5.56.

1-(Methoxycarbonyl)-2-(3,4,5-trimethoxyphenyl)cyclopropanecarboxylic acid (1y)

Dimethyl 2-(3,4,5-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate (**1**) (1.78 g, 5.5 mmol) was dissolved in the mixture of MeOH (4 mL) and 1.7 M aq NaOH (1.25 equiv, 4 mL). The solution was stirred for 1.5 h, then was diluted with EtOAc and water to separate layers. The aqueous layer was acidified with 5% HCl (pH 1), then extracted three times with EtOAc. The combined organic layers were washed with brine, dried with Na₂SO₄ and concentrated under reduced pressure. Yield 1.4 g (82%); white crystals, mp 122–123 °C; $R_f = 0.47$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.24$ (dd, ²J = 4.8, ³J = 9.4 Hz, 1H, CH₂), 2.35 (dd, ²J = 4.8, ³J = 8.6 Hz, 1H, CH₂), 3.35 (dd, ³J = 9.4, ³J = 8.5 Hz, 1H, CH), 3.37 (s, 3H, CH₃O), 3.82 (s, 3H, CH₃O), 3.84 (s, 6H, 2×CH₃O), 6.45 (s, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 21.4$ (CH₂), 34.0 (C), 40.2 (CH), 52.7 (CH₃O), 56.2 (2×CH₃O), 60.9 (CH₃O), 106.1 (2×CH, Ar), 129.7 (C, Ar), 137.7 (C, Ar), 153.0 (2×C, Ar), 170.9 (CO), 172.8 (CO); MS (MALDI–TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₇⁺ 333; Found 333; Anal. Calcd for C₁₅H₁₈O₇: C, 58.06; H, 5.85. Found: C, 57.62; H, 5.92.

Methyl (1RS,2SR)-2-phenyl-1-(pyridin-2-yl)cyclopropane-1-carboxylate (1ad)

1ad was synthesized from methyl 3-phenyl-2-(pyridin-2-yl)acrylate (510 mg, 2.13 mmol). Yield 426 mg (79%); colorless oil; $R_f = 0.51$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.82$ (dd, ²J = 4.9, ³J = 9.1 Hz, 1H, CH₂), 2.42 (dd, ²J = 4.9, ³J = 7.8 Hz, 1H, CH₂), 3.35(s, 3H, CH₃), 3.41 (dd, ³J = 9.1, ³J = 7.8 Hz, 1H, CH), 7.17–7.19 (m, 1H, Py), 7.22–7.24 (m, 1H, Ph), 7.29–7.31 (m, 2H, Ph), 7.33–7.34 (m, 2H, Ph), 7.56–7.57 (m, 1H, Py), 7.65–7.68 (m, 1H, Py), 8.56-8.58 (m, 1H, Py); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.0$ (CH₂), 33.7 (CH), 39.6 (C), 51.7 (CH₃), 121.7 (CH, Ar), 123.6 (CH, Ar), 126.8 (CH, Ar), 128.0 (2×CH, Ar), 128.9 (2×CH, Ar), 136.1 (CH, Ar), 136.4 (C, Ar), 149.0 (CH, Ar), 158.1 (C, Ar), 170.4 (CO₂Me); Anal. Calcd for C16H15NO2: C, 75.87; H, 5.97; N, 5.53. Found: C, 76.25; H, 5.75; N, 5.57.

General Procedure for the Reductive Ring Opening of Cyclopropanes 1

 To 0.1 M solution of cyclopropane **1** (0.5 mmol) in the corresponding alcohol zinc dust (325 mg, 5 mmol) and acetic acid (150 μ L, 2.5 mmol) were sequentially added. The mixture was heated under reflux for specified time. After cooling to the ambient temperature, remaining zinc was filtered off and washed with ethyl acetate (5 mL). Filtrate was diluted with water (10 mL) and extracted with ethyl acetate (2×20 mL), combined organic fractions were dried with Na₂SO₄ and concentrated under reduced pressure. Product **2** was purified by column chromatography on silica gel.

Dimethyl [2-(4-methylphenyl)ethyl]malonate (2a)

MeOH, 5 min. Yield 96 mg (77%) (1.83 g, 73% for 10 mmol run); colorless oil; $R_f = 0.20$ (petroleum ether : diethyl ether, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.20-2.26$ (m, 2H, C(2)H₂), 2.33 (s, 3H, CH₃), 2.61–2.65 (m, 2H, C(3)H₂), 3.39 (t, ³*J* = 7.6 Hz, 1H, CH), 3.75 (s, 6H, 2×CH₃O), 7.08 (d, ³*J* = 7.9 Hz, 2H, Ar), 7.11 (d, ³*J* = 7.9 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.9$ (¹*J*_{CH} = 126 Hz, CH₃), 30.4 (¹*J*_{CH} = 132 Hz, C(2)H₂), 32.8 (¹*J*_{CH} = 127 Hz, C(3)H₂), 50.8 (¹*J*_{CH} = 132 Hz, CH), 52.4 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 128.3 (2×CH, Ar), 129.1 (2×CH, Ar), 135.6 (C, Ar), 137.3 (C, Ar), 169.7 (2×CO₂Me); MS (MALDI–TOF) m/z: [M + K]⁺ Calcd for C₁₄H₁₈KO₄⁺ 289; Found 289. Anal. Calcd for C₁₄H₁₈O₄: C, 67.18; H, 7.25. Found: C, 67.26; H, 7.22.

Dimethyl (2-phenylethyl)malonate (2b)^{26,59}

EtOH, 70 min. Yield 94 mg (80%); colorless oil; $R_f = 0.54$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.23-2.28$ (m, 2H, CH₂), 2.65–2.69 (m, 2H, CH₂), 3.40 (t, ³J = 7.5 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 7.18–7.23 (m, 3H, Ph), 7.28–7.32 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.2$ (¹ $J_{CH} = 132$ Hz, CH₂), 33.2 (¹ $J_{CH} = 127$ Hz, CH₂), 50.7 (¹ $J_{CH} =$ 130 Hz, CH), 52.3 (¹ $J_{CH} = 148$ Hz, 2×CH₃O), 126.1 (CH, Ph), 128.34 (2×CH, Ph), 128.37 (2×CH, Ph), 140.4 (C, Ar), 169.6 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇O₄⁺ 237.1121; Found 237.1120.

Dimethyl [2-(4-fluorophenyl)ethyl]malonate (2c)

EtOH, 70 min. Yield 104 mg (82%); colorless oil; $R_f = 0.33$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.17-2.22$ (m, 2H, CH₂), 2.60–2.64 (m, 2H, CH₂), 3.36 (t, ³J = 7.4 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 6.96 (dd, ³J_{HH} = 8.7, ³J_{HF} = 8.8 Hz, 2H, Ar), 7.12 (dd, ³J_{HH} = 8.7, ⁴J_{HF} = 5.4 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.4$ (¹J_{CH} = 133 Hz, CH₂), 32.4 (¹J_{CH} = 128 Hz, CH₂), 50.7 (¹J_{CH} = 132 Hz, CH), 52.4 (¹J_{CH} = 148 Hz, 2×CH₃O), 115.1 (²J_{CF} = 21 Hz, 2×CH, Ar), 129.8 (³J_{CF} = 8 Hz, 2×CH, Ar), 136.0 (⁴J_{CF} = 3 Hz, C, Ar), 161.4 (¹J_{CF} = 243 Hz, C, Ar), 169.5 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆FO₄⁺ 255.1027; Found 255.1032.

Dimethyl [2-(4-chlorophenyl)ethyl]malonate (2d)

EtOH, 10 min. Yield 3.74 g (72% for 19 mmol run); colorless oil; $R_f = 0.53$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.18-2.23$ (m, 2H, CH₂), 2.61–2.65 (m, 2H, CH₂), 3.36 (t, ³*J* = 7.4 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 7.11 (d, ³*J* = 8.3 Hz, 2H, Ar), 7.26 (d, ³*J* = 8.3 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.2$ (¹*J*_{CH} = 132 Hz, CH₂), 32.6 (¹*J*_{CH} = 127 Hz, CH₂), 50.7 (¹*J*_{CH} = 132 Hz, CH), 52.5 (¹*J*_{CH} = 147 Hz, 2×CH₃O), 128.6 (2×CH, Ar), 129.8 (2×CH, Ar), 132.0 (C, Ar), 138.9 (C, Ar), 169.5 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆ClO₄⁺ 271.0732; Found 271.0737.

Dimethyl [2-(4-bromophenyl)ethyl]malonate (2e)

MeOH, 5 min. Yield 117 mg (74%); colorless oil; $R_f = 0.24$ (petroleum ether : diethyl ether, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.17-2.23$ (m, 2H, CH₂), 2.58–2.63 (m, 2H, CH₂), 3.35 (t, ³J = 7.4 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 7.05 (d, ³J = 8.4 Hz, 2H, Ar), 7.40 (d, ³J = 8.4 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.1$ (¹ $J_{CH} = 132$ Hz, CH₂), 32.6 (¹ $J_{CH} = 128$ Hz, CH₂), 50.7 (¹ $J_{CH} = 132$ Hz, CH), 52.5 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 120.0 (C, Ar), 130.2 (2×CH, Ar), 131.5 (2×CH, Ar), 139.4 (C, Ar), 169.5 (2×CO₂Me); Anal. Calcd for C₁₃H₁₅BrO₄: C, 49.54; H, 4.80. Found: C, 49.56; H, 4.91.

Dimethyl [2-(4-methoxyphenyl)ethyl]malonate (2f)

MeOH, 5 min. Yield 98 mg (74%); colorless oil; $R_f = 0.28$ (petroleum ether : diethyl ether, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.18-2.23$ (m, 2H, CH₂), 2.58–2.62 (m, 2H, CH₂), 3.38 (t, ³J =7.5 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 3.79 (s, 3H, CH₃O), 6.83 (d, ³J = 8.7 Hz, 2H, Ar), 7.10 (d, ³J = 8.7 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta =$ 30.6 (¹ $J_{CH} =$ 132 Hz, CH₂), 32.3 (¹ $J_{CH} =$ 128 Hz, CH₂), 50.8 (¹ $J_{CH} =$ 132 Hz, CH), 52.4 (¹ $J_{CH} =$ 148 Hz, 2×CH₃O), 55.2 (¹ $J_{CH} =$ 144 Hz, CH₃O), 113.8 (2×CH, Ar), 129.4 (2×CH, Ar), 132.4 (C, Ar), 158.0 (C, Ar), 169.7 (2×CO₂Me); Anal. Calcd for C₁₄H₁₈O₅: C, 63.15; H, 6.81. Found: C, 63.17; H, 6.90.

Dimethyl [2-(2-hydroxyphenyl)ethyl]malonate (2g)

EtOH, 10 min. Yield 87 mg (69%); colorless oil; $R_f = 0.47$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.17-2.21$ (m, 2H, CH₂), 2.66–2.68 (m, 2H, CH₂), 3.40 (t, ³J = 7.1 Hz, 1H, CH), 3.77 (s, 6H, 2×CH₃O), 6.19 (s, 1H, OH), 6.84 (d, ³J = 7.8 Hz, 1H, Ar), 6.84– 6.86 (m, 1H, Ar), 7.08 (dd, ³J = 7.9, ⁴J = 1.7 Hz, 1H, Ar), 7.12 (ddd, ³J = 7.8, ³J = 7.6, ⁴J = 1.7Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.8$ (¹ $J_{CH} = 128$ Hz, CH₂), 28.8 (¹ $J_{CH} = 132$ Hz, CH₂), 50.5 (¹ $J_{CH} = 132$ Hz, CH), 52.8 (¹ $J_{CH} = 148$ Hz, 2×CH₃O), 115.9 (CH, Ar), 120.4 (CH, Ar), 126.1 (C, Ar), 127.9 (CH, Ar), 130.2 (CH, Ar), 154.2 (C, Ar), 170.2 (2×CO₂Me); HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaO₅⁺ 275.0890; Found 275.0891.

Dimethyl {2-[2-(ethoxymethoxy)phenyl]ethyl}malonate (2h)

EtOH, 70 min. Yield 101 mg (65%); colorless oil; $R_f = 0.45$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.24$ (t, ³J = 7.1 Hz, 3H, CH₃), 2.20–2.25 (m, 2H, CH₂), 2.66–2.70 (m, 2H, CH₂), 3.40 (t, ³J = 7.4 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 3.74 (q, ³J = 7.1Hz, 2H, CH₂O), 5.24 (s, 2H, OCH₂O), 6.93 (ddd, ³J = 7.5, ³J = 7.4, ⁴J = 1.0 Hz, 1H, Ar), 7.10 (dd, ³J = 8.2, ⁴J = 1.0 Hz, 1H, Ar), 7.12 (dd, ³J = 7.5, ⁴J = 1.7 Hz, 1H, Ar), 7.17 (ddd, ³J = 8.2, ³J= 7.4, ⁴J = 1.7 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 15.0$ (¹ $J_{CH} = 126$ Hz, CH₃), 28.0 (¹ $J_{CH} = 130$ Hz, CH₂), 28.9 (¹ $J_{CH} = 132$ Hz, CH₂), 51.1 (¹ $J_{CH} = 132$ Hz, CH), 52.3 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 64.2 (¹ $J_{CH} = 142$ Hz, CH₂O), 93.0 (¹ $J_{CH} = 165$ Hz, OCH₂O), 113.8 (CH, Ar), 121.4 (CH, Ar), 127.5 (CH, Ar), 129.3 (C, Ar), 130.1 (CH, Ar), 155.3 (C, Ar), 169.8 $(2 \times CO_2Me)$; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{22}NaO_6^+$ 333.1309; Found 333.1325.

Dimethyl {2-[5-chloro-2-(methoxymethoxy)phenyl]ethyl}malonate (2i)

EtOH, 70 min. Yield 109 mg (66%); colorless oil; $R_f = 0.56$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.18-2.23$ (m, 2H, CH₂), 2.62–2.66 (m, 2H, CH₂), 3.38 (t, ³J = 7.4 Hz, 1H, CH), 3.46 (s, 3H, CH₃O), 3.73 (s, 6H, 2×CH₃O), 5.16 (s, 2H, OCH₂O), 7.00 (br.d, ³J = 8.2 Hz, 1H, Ar), 7.10 (d, ⁴J = 2.6 Hz, 1H, Ar), 7.11 (dd, ³J = 8.2, ⁴J = 2.6 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.9$ (¹ $J_{CH} = 129$ Hz, CH₂), 28.6 (¹ $J_{CH} = 132$ Hz, CH₂), 51.0 (¹ $J_{CH} = 132$ Hz, CH), 52.4 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 56.0 (¹ $J_{CH} = 142$ Hz, CH₃O), 94.4 (¹ $J_{CH} = 165$ Hz, OCH₂O), 115.0 (CH, Ar), 126.4 (C, Ar), 127.2 (CH, Ar), 129.9 (CH, Ar), 131.3 (C, Ar), 153.7 (C, Ar), 169.6 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₀ClO₆⁺ 331.0943; Found 331.0949.

Dimethyl [2-(2-hydroxy-3-methoxyphenyl)ethyl]malonate (2j)

EtOH, 10 min. Yield 102 mg (72%); colorless oil; $R_f = 0.49$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.22-2.28$ (m, 2H, CH₂), 2.68–2.72 (m, 2H, CH₂), 3.42 (t, ³J = 7.5 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 3.87 (s, 3H, CH₃O), 5.76 (s, 1H, OH), 6.71–6.80 (m, 3H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.3$ (¹ $J_{CH} = 128$ Hz, CH₂), 28.6 (¹ $J_{CH} = 133$ Hz, CH₂), 51.0 (¹ $J_{CH} = 132$ Hz, CH), 52.4 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 55.9 (¹ $J_{CH} = 144$ Hz, CH₃O), 108.8 (CH, Ar), 119.3 (CH, Ar), 122.4 (CH, Ar), 126.2 (C, Ar), 143.6 (C, Ar), 146.3 (C, Ar), 169.8 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉O₆⁺ 283.1176; Found 283.1185.

Dimethyl [2-(1,3-benzodioxol-5-yl)ethyl]malonate (2k)

MeOH, 5 min. Yield 98 mg (70%); colorless oil; $R_f = 0.22$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 400 MHz) $\delta = 2.14-2.20$ (m, 2H, CH₂), 2.54–2.58 (m, 2H, CH₂), 3.36 (t, ³J = 7.5 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 5.91 (s, 2H, CH₂O), 6.61 (dd, ³J = 7.9, ⁴J = 1.6 Hz, 1H, Ar), 6.66 (d, ⁴J = 1.6 Hz, 1H, Ar), 6.71 (d, ³J = 7.9 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 100 MHz) δ = 30.5 (CH₂), 32.9 (CH₂), 50.6 (CH), 52.4 (2×CH₃O), 100.7 (CH₂O), 108.1 (CH, Ar), 108.8 (CH, Ar), 121.2 (CH, Ar), 134.1 (C, Ar), 145.8 (C, Ar), 147.6 (C, Ar), 169.6 ($2 \times CO_2Me$); MS (MALDI–TOF) m/z: [M + K]⁺ Calcd for C₁₄H₁₆KO₆⁺ 319; Found 319; Anal. Calcd for C₁₄H₁₆O₆: C, 59.99; H, 5.75. Found: C, 60.04; H, 5.77.

Dimethyl [2-(3,4,5-trimethoxyphenyl)ethyl]malonate (21)

MeOH, 5 min. Yield 116 mg (71%); colorless oil; $R_f = 0.40$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.19-2.24$ (m, 2H, CH₂), 2.57–2.61 (m, 2H, CH₂), 3.39 (t, ³J = 7.4 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 3.81 (s, 3H, CH₃O), 3.84 (s, 6H, 2×CH₃O), 6.39 (s, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.4$ (¹ $J_{CH} = 133$ Hz, CH₂), 33.7 (¹ $J_{CH} = 128$ Hz, CH₂), 50.8 (¹ $J_{CH} = 132$ Hz, CH), 52.4 (¹ $J_{CH} = 148$ Hz, 2×CH₃O), 56.0 (¹ $J_{CH} = 144$ Hz, 2×CH₃O), 60.7 (¹ $J_{CH} = 144$ Hz, CH₃O), 105.5 (2×CH, Ar), 136.1 (C, Ar), 136.5 (C, Ar), 153.2 (2×C, Ar), 169.6 (2×CO₂Me);

MS (MALDI–TOF) m/z: $[M + K]^+$ Calcd for C₁₆H₂₂KO₇ 365; Found 365; Anal. Calcd for C₁₆H₂₂O₇: C, 58.89; H, 6.80. Found: C, 58.90; H, 6.79.

Dimethyl {2-[2-(methoxycarbonyl)phenyl]ethyl}malonate (2m)

EtOH, 70 min. Yield 75 mg (51%); colorless oil; $R_f = 0.40$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 400 MHz) $\delta = 2.17-2.25$ (m, 2H, CH₂), 2.96–3.02 (m, 2H, CH₂), 3.43 (t, ³J =7.4 Hz, 1H, CH), 3.72 (s, 6H, 2×CH₃O), 3.87 (s, 3H, CH₃O), 7.22–7.28 (m, 2H, Ar), 7.38–7.44 (m, 1H, Ar), 7.88 (br.d, ³J = 7.7 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 100 MHz) $\delta =$ 30.4 (¹ $J_{CH} =$ 133 Hz, CH₂), 31.8 (¹ $J_{CH} =$ 128 Hz, CH₂), 51.3 (¹ $J_{CH} =$ 132 Hz, CH), 51.9 (¹ $J_{CH} =$ 148 Hz, CH₃O), 52.4 (¹ $J_{CH} =$ 144 Hz, 2×CH₃O), 126.3 (CH, Ar), 129.3 (C, Ar), 130.8 (CH, Ar), 131.1 (CH, Ar), 132.0 (CH, Ar), 142.5 (C, Ar), 167.6 (CO₂Me), 169.6 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₉O₆⁺ 295.1176; Found 295.1182.

Dimethyl [2-(pyridin-3-yl)ethyl]malonate (2n)

EtOH, 270 min. Yield 77 mg (65%); colorless oil; $R_f = 0.24$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.18-2.24$ (m, 2H, CH₂), 2.62–2.66 (m, 2H, CH₂), 3.36 (t, ³J = 7.4 Hz, 1H, CH), 3.71 (s, 6H, 2×CH₃O), 7.20 (dd, ³J = 7.8, ³J = 4.8 Hz, 1H, Py), 7.50 (ddd,

 ${}^{3}J = 7.8$, ${}^{4}J = 2.2$, ${}^{4}J = 1.7$ Hz, 1H, Py), 8.43 (d, ${}^{4}J = 2.2$ Hz, 1H, Py), 8.44 (dd, ${}^{3}J = 4.8$, ${}^{4}J = 1.7$ Hz, 1H, Py); ${}^{13}C$ NMR (CDCl₃, 150 MHz) $\delta = 29.9$ (${}^{1}J_{CH} = 133$ Hz, CH₂), 30.3 (${}^{1}J_{CH} = 128$ Hz, CH₂), 50.7 (${}^{1}J_{CH} = 132$ Hz, CH), 52.5 (${}^{1}J_{CH} = 147$ Hz, 2×CH₃O), 123.4 (CH, Py), 135.8 (C, Py), 135.9 (CH, Py), 147.7 (CH, Py), 149.8 (CH, Py), 169.3 (2×CO₂Me); Anal. Calcd for C₁₂H₁₅NO₄: C, 60.75; H, 6.37; N, 5.90. Found: C, 60.65; H, 6.33; N, 5.60.

Dimethyl [2-(naphthalen-1-yl)ethyl]malonate (20)

EtOH, 70 min. Yield 96 mg (67%); colorless oil; $R_f = 0.20$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.38-2.44$ (m, 2H, CH₂), 3.14–3.19 (m, 2H, CH₂), 3.54 (t, ³*J* = 7.4 Hz, 1H, CH), 3.79 (s, 6H, 2×CH₃O), 7.36 (dd, ³*J* = 7.0, ⁴*J* = 1.0 Hz, 1H, Ar), 7.43 (dd, ³*J* = 8.2, ³*J* = 7.0 Hz, 1H, Ar), 7.49–7.54 (m, 1H, Ar), 7.55–7.59 (m, 1H, Ar), 7.77 (br.d, ³*J* = 8.2 Hz, 1H, Ar), 7.89 (br.d, ³*J* = 8.0 Hz, 1H, Ar), 8.11 (br.d, ³*J* = 8.5 Hz, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 29.7$ (¹*J*_{CH} = 132 Hz, CH₂), 30.6 (¹*J*_{CH} = 128 Hz, CH₂), 51.2 (¹*J*_{CH} = 132 Hz, CH), 52.4 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 123.6 (CH, Ar), 125.4 (CH, Ar), 125.5 (CH, Ar), 126.0 (CH, Ar), 126.3 (CH, Ar), 127.0 (CH, Ar), 128.7 (CH, Ar), 131.7 (C, Ar), 133.8 (C, Ar), 136.6 (C, Ar), 169.6 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₉O₄⁺ 287.1278; Found 287.1283.

Dimethyl [2-(1-methyl-1*H*-pyrrol-2-yl)ethyl]malonate (2p)

MeOH, 5 min. Yield 81 mg (67%); colorless oil; $R_f = 0.54$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.22-2.27$ (m, 2H, CH₂), 2.62–2.66 (m, 2H, CH₂), 3.50 (t, ³J = 7.3 Hz, 1H, CH), 3.56 (s, 3H, CH₃N), 3.76 (s, 6H, 2×CH₃O), 5.92 (br.d, ³J = 3.4 Hz, 1H, Ar), 6.06 (br.d, ³J = 3.4 Hz, 1H, Ar), 6.57 (br. s, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 23.8$ (¹ $J_{CH} = 127$ Hz, CH₂), 27.9 (¹ $J_{CH} = 133$ Hz, CH₂), 33.3 (¹ $J_{CH} = 138$ Hz, CH₃N), 50.7 (¹ $J_{CH} = 132$ Hz, CH), 52.4 (¹ $J_{CH} = 148$ Hz, 2×CH₃O), 106.1 (CH, Ar), 106.5 (CH, Ar), 121.4 (CH, Ar), 130.9 (C, Ar), 169.5 (2×CO₂Me); MS (MALDI–TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₈NO₄ 240; Found 240; Anal. Calcd for C₁₂H₁₇NO₄: C, 60.24; H, 7.16; N, 5.85. Found: C, 60.02; H, 7.10; N, 5.89.

Dimethyl [2-(1-methyl-1*H*-pyrazol-4-yl)ethyl]malonate (2q)

 EtOH, 10 min. Yield 77 mg (64%); colorless oil; $R_f = 0.10$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.07-2.12$ (m, 2H, CH₂), 2.43–2.47 (m, 2H, CH₂), 3.35 (t, ³J =7.5 Hz, 1H, CH), 3.68 (s, 6H, 2×CH₃O), 3.80 (s, 3H, CH₃N), 7.13 (s, 1H, Ar), 7.25 (s, 1H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 21.6$ (¹ $J_{CH} = 128$ Hz, CH₂), 29.9 (¹ $J_{CH} = 132$ Hz, CH₂), 38.6 (¹ $J_{CH} = 141$ Hz, CH₃N), 50.6 (¹ $J_{CH} = 132$ Hz, CH), 52.3 (¹ $J_{CH} = 148$ Hz, 2×CH₃O), 119.6 (C, Ar), 128.4 (CH, Ar), 138.5 (CH, Ar), 169.5 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₇N₂O₄⁺ 241.1183; Found 241.1183.

Dimethyl [2-(5-methylfuran-2-yl)ethyl]malonate (2r)

MeOH, 5 min. Yield 44 mg (37%); colorless oil; $R_f = 0.67$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.20-2.25$ (m, 2H, CH₂), 2.24 (br. s, 3H, CH₃), 2.61–2.66 (m, 2H, CH₂), 3.42 (t, ³*J* = 7.4 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 5.83 (dq, ³*J* = 2.9, ⁴*J* = 1.0 Hz, 1H, Fu), 5.88 (d, ³*J* = 2.9 Hz, 1H, Fu); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 13.4$ (¹*J*_{CH} = 128 Hz, CH₃), 25.6 (¹*J*_{CH} = 128 Hz, CH₂), 27.3 (¹*J*_{CH} = 133 Hz, CH₂), 50.7 (¹*J*_{CH} = 132 Hz, CH), 52.4 (¹*J*_{CH} = 147 Hz, 2×CH₃O), 105.8 (CH, Fu), 106.3 (CH, Fu), 150.7 (C, Fu), 152.1 (C, Fu), 169.5 (2×CO₂Me).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{17}O_5^+$ 241.1071; Found 241.1067.

Dimethyl [2-(thien-2-yl)ethyl]malonate (2s)

EtOH, 10 min. Yield 83 mg (68%); colorless oil; $R_f = 0.77$ (Al₂O₃, petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.25-2.30$ (m, 2H, CH₂), 2.86–2.91 (m, 2H, CH₂), 3.43 (t, ³*J* = 7.5 Hz, 1H, CH), 3.73 (s, 6H, 2×CH₃O), 6.79–6.81 (m, 1H, Th), 6.91 (dd, ³*J* = 5.1, ³*J* = 3.4 Hz, 1H, Th), 7.14 (dd, ³*J* = 5.1, ⁴*J* = 1.2 Hz, 1H, Th); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.3$ (¹*J*_{CH} = 130 Hz, CH₂), 30.5 (¹*J*_{CH} = 133 Hz, CH₂), 50.5 (¹*J*_{CH} = 132 Hz, CH), 52.5 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 123.5 (¹*J*_{CH} = 186 Hz, CH, Th), 124.8 (¹*J*_{CH} = 166 Hz, CH, Th), 126.8 (¹*J*_{CH} = 167 Hz, CH, Th), 142.9 (C, Th), 169.4 (2×CO₂Me); MS (MALDI–TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₅O₄S 243; Found 243; Anal. Calcd for C₁₁H₁₄O₄S: C, 54.53; H, 5.82. Found: C, 54.47; H, 5.50.

Dimethyl [2-(thien-3-yl)ethyl]malonate (2t)

EtOH, 10 min. Yield 65 mg (54%); colorless oil; $R_f = 0.59$ (petroleum ether : ethyl acetate, 4:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.22-2.27$ (m, 2H, CH₂), 2.67–2.72 (m, 2H, CH₂), 3.39 (t, ³J = 7.4 Hz, 1H, CH), 3.74 (s, 6H, 2×CH₃O), 6.94 (dd, ³J = 5.0, ⁴J = 1.3 Hz, 1H, Th), 6.96–6.98 (m, 1H, Th), 7.26 (dd, ³J = 5.0 Hz, ³J = 3.0 Hz, 1H, Th); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.7$ (¹ $J_{CH} = 128$ Hz, CH₂), 29.5 (¹ $J_{CH} = 132$ Hz, CH₂), 50.9 (¹ $J_{CH} = 133$ Hz, CH), 52.4 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 120.8 (CH, Th), 125.6 (CH, Th), 128.0 (CH, Th), 140.7 (C, Th), 169.6 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₅O₄S⁺ 243.0686; Found 243.0687.

Dimethyl [2-(1-methyl-1*H*-indol-2-yl)ethyl]malonate (2u)

MeOH, 5 min. Yield 106 mg (73%), yellow crystals; mp 72–73 °C; $R_f = 0.31$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.33-2.38$ (m, 2H, CH₂), 2.84 (t, ³J = 7.9 Hz, 2H, CH), 3.56 (t, ³J = 7.3 Hz, 1H, CH₂), 3.69 (s, 3H, CH₃N), 3.77 (s, 6H, 2×CH₃O), 6.31 (br.s, 1H, Ind), 7.11 (dd, ³J = 7.9 Hz, ³J = 7.8 Hz, 1H, Ind), 7.20 (dd, ³J = 8.1 Hz, ³J = 7.9 Hz, 1H, Ind), 7.30 (d, ³J = 8.1 Hz, 1H, Ind), 7.57 (d, ³J = 7.8 Hz, 1H, Ind); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 24.3$ (CH₂), 27.7 (CH₂), 29.3 (CH), 50.6 (CH₃), 52.5 (2×CH₃O), 99.5 (CH, Ind), 108.8 (CH, Ind), 119.3 (CH, Ind), 119.8 (CH, Ind), 120.8 (CH, Ind), 127.6 (C, Ind), 137.4 (C, Ind), 138.8 (C, Ind), 169.5 (2×CO₂Me); MS (MALDI–TOF) m/z: [M]⁺ Calcd for C₁₆H₁₉NO₄ 289; Found 289; Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.52; H, 6.47; N, 4.85.

Dimethyl [2-(1-methyl-1*H*-indol-3-yl)ethyl]malonate (2v)

MeOH, 5 min. Yield 97 mg (67%); colorless oil; $R_f = 0.66$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.32-2.37$ (m, 2H, CH₂), 2.81–2.86 (m, 2H, CH₂), 3.50 (t, ³J = 7.5 Hz, 1H, CH₂), 3.758 (s, 6H, 2×CH₃O), 3.763 (s, 3H, CH₃N), 6.88 (s, 1H, Ind), 7.12–7.16 (m, 1H, Ind), 7.23–7.27 (m, 1H, Ind), 7.31 (br.d, ³J = 8.1 Hz, 1H, Ind), 7.62 (br.d, ³J = 7.9 Hz, 1H, Ind); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 22.6$ (CH₂), 29.4 (CH₂), 32.5 (CH), 51.0 (CH₃), 52.4 (2×CH₃O), 109.1 (CH, Ind), 113.0 (C, Ind), 118.7 (CH, Ind), 118.9 (CH, Ind), 121.5 (CH, Ind), 126.5 (CH, Ind), 127.6 (C, Ind), 137.0 (C, Ind), 169.9 (2×CO₂Me); MS (MALDI–TOF) m/z: [M]⁺ Calcd for C₁₆H₁₉NO₄ 289; Found 289; Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N,
4.84. Found: C, 66.59; H, 6.40; N, 4.85.

Dimethyl [2-(1-methyl-1*H*-indol-4-yl)ethyl]malonate (2w)

MeOH, 5 min. Yield 109 mg (75%); colorless oil; $R_f = 0.49$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.38-2.43$ (m, 2H, CH₂), 2.97-3.01 (m, 2H, CH₂), 3.49 (t, ³J = 7.4 Hz, 1H, CH₂), 3.77 (s, 6H, 2×CH₃O), 3.80 (s, 3H, CH₃N), 6.57 (dd, ³J = 3.1, ⁴J = 0.9 Hz, 1H, Ind), 6.94-6.97 (m, 1H, Ind), 7.07 (d, ³J = 3.1 Hz, 1H, Ind), 7.19 (dd, ³J = 8.2, ³J = 6.9 Hz, 1H, Ind), 7.23 (br.d, ³J = 8.2 Hz, 1H, Ind); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 29.5$ (¹ $J_{CH} = 132$ Hz, CH₂), 30.9 (¹ $J_{CH} = 127$ Hz, CH₂), 32.8 (¹ $J_{CH} = 138$ Hz, CH₃), 51.1 (¹ $J_{CH} = 132$ Hz, CH), 52.3 (¹ $J_{CH} = 147$ Hz, 2×CH₃O), 99.1 (CH, Ind), 107.5 (CH, Ind), 118.9 (CH, Ind), 121.6 (CH, Ind), 127.7 (C, Ind), 128.4 (CH, Ind), 132.7 (C, Ind), 136.7 (C, Ind), 169.8 (2×CO₂Me); MS (MALDI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₉NNaO₄ 312; Found 312; Anal. Calcd for C₁₆H₁₉NO₄: C, 66.42; H, 6.62; N, 4.84. Found: C, 66.51; H, 6.63; N, 4.87.

2-(Methoxycarbonyl)-4-phenylbutanoic acid (2x)

MeOH, 5 min. Yield 93 mg (84%); colorless oil; $R_f = 0.34$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.25-2.35$ (m, 2H, CH₂), 2.71–2.75 (m, 2H, CH₂), 3.48 (t, ³J = 7.4 Hz, 1H, CH), 3.78 (s, 3H, CH₃O), 7.21–7.26 (m, 3H, Ph), 7.31–7.35 (m, 2H, Ph), 11.48 (br.s, 1H, CO₂H); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.2$ (¹J_{CH} = 132 Hz, CH₂), 33.1 (¹J_{CH} = 127 Hz, CH₂), 50.8 (¹J_{CH} = 132 Hz, CH), 52.5 (¹J_{CH} = 147 Hz, CH₃O), 126.2 (CH, Ph), 128.4 (4×CH, Ph), 140.2 (C, Ph), 169.5 (CO₂Me), 175.1 (CO₂H); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₅O₄⁺ 223.0965; Found 223.0964.

2-(Methoxycarbonyl)-4-(3,4,5-trimethoxyphenyl)butanoic acid (2y)

MeOH, 5 min. Yield 121 mg (77%); colorless oil; $R_f = 0.11$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.19-2.29$ (m, 2H, CH₂), 2.61–2.66 (m, 2H, CH₂), 3.44 (t, ³J = 7.4 Hz, 1H, CH), 3.77 (s, 3H, CH₃O), 3.82 (s, 3H, CH₃O), 3.84 (s, 6H, 2×CH₃O), 6.40 (s, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 30.4$ (CH₂), 33.6 (CH₂), 50.7 (CH), 52.6 (CH₃), 56.0 (2×CH₃O), 60.8 (CH₃O), 105.5 (2×CH, Ar), 136.0 (C, Ar), 136.4 (C, Ar), 153.2 (2×C, Ar), 169.5

 (CO_2Me) , 174.4 (CO_2H) ; MS (MALDI-TOF) m/z: $[M]^+$ Calcd for $C_{15}H_{20}O_7^+$ 312; Found 312;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{21}O_7^+$ 313.1282; Found 313.1284.

Methyl 3-oxo-2-(2-phenylethyl)butanoate (2z)⁴²

EtOH, 10 min. Yield 79 mg (72%); colorless oil; $R_f = 0.37$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.13-2.25$ (m, 2H, CH₂), 2.20 (s, 3H, CH₃), 2.57–2.69 (m, 2H, CH₂), 3.43–3.48 (m, 1H, CH), 3.73 (s, 3H, CH₃O), 7.16–7.23 (m, 3H, Ph), 7.27–7.31 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 28.8$ (¹ $J_{CH} = 128$ Hz, CH₃), 29.5 (¹ $J_{CH} = 132$ Hz, CH₂), 33.2 (¹ $J_{CH} = 127$ Hz, CH₂), 52.2 (¹ $J_{CH} = 147$ Hz, CH₃O), 58.5 (¹ $J_{CH} = 131$ Hz, CH), 126.1 (CH, Ph), 128.33 (2×CH, Ph), 128.36 (2×CH, Ph), 140.5 (C, Ph), 170.0 (CO₂Me), 202.6 (COMe).

Methyl 2-cyano-4-phenylbutanoate (2aa)⁴¹

EtOH, 10 min. Yield 70 mg (69%); colorless oil; $R_f = 0.25$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.28$ (dddd, ²J = 13.7, ³J = 8.4, ³J = 8.2, ³J = 6.3 Hz, 1H, CH₂), 2.31 (dddd, ²J = 13.7, ³J = 8.1, ³J = 7.8, ³J = 6.1 Hz, 1H, CH₂), 2.82 (ddd, ²J = 14.0, ³J = 8.2, ³J =7.8 Hz, 1H, CH₂), 2.91 (ddd, ²J = 14.0, ³J = 8.1, ³J = 6.3 Hz, 1H, CH₂), 3.49 (dd, ³J = 8.4, ³J =6.1 Hz, 1H, CH), 3.80 (s, 3H, CH₃O), 7.22–7.28 (m, 3H, Ph), 7.32–7.36 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 31.1$ (¹ $J_{CH} = 134$ Hz, CH₂), 32.5 (¹ $J_{CH} = 128$ Hz, CH₂), 36.4 (¹ $J_{CH} = 136$ Hz, CH), 53.3 (¹ $J_{CH} = 148$ Hz, CH₃O), 116.1 (CN), 126.6 (CH, Ph), 128.4 (2×CH, Ph), 128.6 (2×CH, Ph), 138.8 (C, Ph), 166.3 (CO₂Me).

2-Cyano-4-phenylbutanamide (2ab)

EtOH, 270 min. Yield 80 mg (85%); yellowish solid; mp 148–149 °C. ¹H NMR (DMSO-d₆, 600 MHz) $\delta = 2.03-2.14$ (m, 2H, CH₂), 2.64 (ddd, ²J = 13.8, ³J = 9.9, ³J = 6.6 Hz, 1H, CH₂), 2.71 (ddd, ²J = 13.8, ³J = 9.8, ³J = 5.9 Hz, 1H, CH₂), 3.63 (dd, ³J = 8.1, ³J = 6.6 Hz, 1H, CH), 7.20–7.23 (m, 3H, Ph), 7.30–7.32 (m, 2H, Ph), 7.47 (br.s, 1H, NH₂), 7.78 (br.s, 1H, NH₂); ¹³C NMR (DMSO-d₆, 150 MHz) $\delta = 31.1$ (¹J_{CH} = 133 Hz, CH₂), 32.4 (¹J_{CH} = 128 Hz, CH₂), 37.2 (¹J_{CH} =

 137 Hz, CH), 118.6 (CN), 126.3 (CH), 128.3 (2×CH, Ph), 128.5 (2×CH, Ph), 140.1 (C, Ph), 166.6 (CONH₂); HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₁H₁₃N₂O⁺ 189.1022; Found 189.1015. (2-Phenylethyl)propanedinitrile (2ac)³⁹

MeOH, 5 min. Yield 41 mg (48%); colorless oil; $R_f = 0.38$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.34-2.40$ (m, 2H, CH₂), 2.93–2.98 (m, 2H, CH₂), 3.59 (t, ³J = 7.3 Hz, 1H, CH), 7.23 (br.d, ³J = 7.4 Hz, 2H, Ph), 7.28–7.33 (m, 1H, Ph), 7.35–7.40 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 21.5$ (¹J_{CH} = 142 Hz, CH), 32.1 (¹J_{CH} = 128 Hz, CH₂), 32.4 (¹J_{CH} = 136 Hz, CH₂), 112.4 (2×CN), 127.3 (CH, Ph), 128.4 (2×CH, Ph), 129.1 (2×CH, Ph), 137.2 (C, Ph).

Methyl 4-phenyl-2-(pyridin-2-yl)butanoate (2ad)

EtOH, 10 min. Yield 71 mg (55%); colorless oil; $R_f = 0.64$ (diethyl ether). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.28$ (dddd, ²J = 13.6, ³J = 9.2, ³J = 7.4, ³J = 6.3 Hz, 1H, CH₂), 2.47 (dddd, ²J = 13.6, ³J = 8.8, ³J = 7.8, ³J = 6.8 Hz, 1H, CH₂), 2.59 (ddd, ²J = 13.8, ³J = 8.8, ³J = 6.3 Hz, 1H, CH₂), 2.62 (ddd, ²J = 13.8, ³J = 9.2, ³J = 6.8 Hz, 1H, CH₂), 3.66 (s, 3H, CH₃O), 3.86 (dd, ³J = 7.8, ³J = 7.4 Hz, 1H, CH), 7.13–7.19 (m, 4H, Ph + Py), 7.23–7.29 (m, 3H, Ph + Py), 7.62 (ddd, ³J = 7.7, ³J = 7.7, ⁴J = 1.9 Hz, 1H, Py), 8.57 (ddd, ³J = 4.8, ⁴J = 1.8, ⁵J = 0.9 Hz, 1H, Py); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 33.4$ (¹ $J_{CH} = 126$ Hz, CH₂), 33.6 (¹ $J_{CH} = 130$ Hz, CH₂), 51.8 (¹ $J_{CH} = 147$ Hz, CH₃O), 53.0 (¹ $J_{CH} = 130$ Hz, CH), 122.0 (CH, Py), 122.5 (CH, Py), 125.8 (CH, Ph), 128.2 (2×CH, Ph), 128.3 (2×CH, Ph), 136.5 (CH, Py), 141.1 (C, Ph), 149.3 (CH, Py), 158.3 (C, Py), 173.0 (CO₂Me); Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.19; H, 6.76; N, 5.31.

3-[2-(4-Methoxyphenyl)ethyl]-1-methyl-1,3-dihydro-2*H*-indol-2-one (2ae)

EtOH, 270 min. Yield 99 mg (70%); yellowish oil; $R_f = 0.53$ (petroleum ether : ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.21-2.26$ (m, 2H, CH₂), 2.61 (ddd, ²*J* = 13.7, ³*J* = 8.5, ³*J* = 7.1 Hz, 1H, CH₂), 2.70 (ddd, ²*J* = 13.7, ³*J* = 8.6, ³*J* = 8.2 Hz, 1H, CH₂), 3.20 (s, 3H, CH₃N), 3.48 (t, ³*J* = 6.1 Hz, 1H, CH), 3.78 (s, 3H, CH₃O), 6.82 (d, ³*J* = 8.7 Hz, 2H, PMP), 6.84 (br.d, ³*J* = 7.8 Hz, 1H, Ind), 7.07–7.10 (m, 1H, Ind), 7.11 (d, ${}^{3}J$ = 8.7 Hz, 2H, PMP), 7.27–7.32 (m, 2H, Ind); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ = 26.1 (${}^{1}J_{CH}$ = 139 Hz, CH₃N), 31.0 (${}^{1}J_{CH}$ = 127 Hz, CH₂), 32.5 (${}^{1}J_{CH}$ = 130 Hz, CH₂), 44.8 (${}^{1}J_{CH}$ = 132 Hz, CH), 55.2 (${}^{1}J_{CH}$ = 143 Hz, CH₃O), 107.9 (CH, Ind), 113.7 (2×CH, PMP), 122.3 (CH, Ind), 123.7 (CH, Ind), 127.8 (CH, Ind), 128.9 (C, Ind), 129.4 (2×CH, PMP), 133.2 (C, PMP), 144.3 (C, Ind), 157.8 (C, PMP), 177.6 (CO); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀NO₂⁺ 282.1489; Found 282.1490.

Methyl 9-methyl-4-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-3-carboxylate (5)⁴³

Polyphosphoric acid (PPA) (500 mg) was added to the solution of diester **2u** (144 mg, 0.5 mmol) in 1,2-dichloroethane (5 mL) and the resulting mixture was heated under reflux for 2 h. Then the mixture was diluted with water and the organic layer was separated. The aqueous layer was extracted with ethyl acetate. Combined organic fractions were washed with brine, dried with Na₂SO₄ and concentrated under reduced pressure. The product **5** was purified by column chromatography on silica gel. Yield 91 mg (71%); colorless oil; $R_f = 0.32$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.36-2.41$ (m, 1H, CH₂), 2.55–2.61 (m, 1H, CH₂), 2.84 (ddd, ²J = 17.0, ³J = 7.7, ³J = 5.3 Hz, 1H, CH₂), 2.84 (ddd, ²J = 17.0, ³J = 6.7, ³J = 5.3 Hz, 1H, CH₂), 3.53 (dd, ³J = 8.5, ³J = 4.7 Hz, 1H, CH), 3.63 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 7.25–7.26 (m, 3H, Ind), 8.19–8.21 (m, 1H, Ind); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.4$ (¹ $I_{CH} =$ 129 Hz, CH₂), 26.1 (¹ $I_{CH} = 134$ Hz, CH₂), 29.8 (¹ $I_{CH} = 140$ Hz, CH₃N), 52.1 (¹ $I_{CH} = 148$ Hz, CH₃O), 53.0 (¹ $I_{CH} = 132$ Hz, CH), 109.2 (¹ $I_{CH} = 162$ Hz, CH, Ind), 111.6 (C, Ind), 121.5 (¹ $I_{CH} =$ 165 Hz, CH, Ind), 122.7 (¹ $I_{CH} = 160$ Hz, CH, Ind), 123.2 (¹ $I_{CH} = 160$ Hz, CH, Ind), 124.8 (C, Ind), 137.5 (C, Ind), 151.3 (C, Ind), 171.1 (C=O), 187.3 (C=O).

General Procedure for the Synthesis of Malonates 6 via Michael Addition⁴⁶

To a 0.1 M solution of malonate **2** (0.5 mmol) and Michael acceptor (0.7–1.0 mmol) in acetonitrile $NaB(OMe)_4$ (4 mg, 0.025 mmol) was added under argon atmosphere. The resulting mixture was stirred at room temperature for 12 h and concentrated under reduced pressure. Product **6** was purified by column chromatography on silica gel.

Dimethyl [2-(4-methylphenyl)ethyl](3-oxopropyl)malonate (6a)

6a was synthesized from **2a** and acrolein. Yield 86 mg (56%); colorless oil; $R_f = 0.21$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.15-2.20$ (m, 2H, CH₂), 2.27–2.32 (m, 2H, CH₂), 2.32 (s, 3H, CH₃), 2.47–2.53 (m, 4H, CH₂), 3.74 (s, 6H, 2×CH₃O), 7.06 (d, ³*J* = 7.9 Hz, 2H, Ar), 7.10 (d, ³*J* = 7.9 Hz, 2H, Ar), 9.75 (s, 1H, CHO); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.9$ (¹*J*_{CH} = 126 Hz, CH₃), 25.3 (¹*J*_{CH} = 132 Hz, CH₂), 30.1 (¹*J*_{CH} = 127 Hz, CH₂), 35.6 (¹*J*_{CH} = 131 Hz, CH₂), 39.2 (¹*J*_{CH} = 126 Hz, CH₂), 52.5 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 56.8 (C), 128.1 (2×CH, Ar), 129.1 (2×CH, Ar), 135.6 (C, Ar), 137.8 (C, Ar), 171.4 (2×CO₂Me), 200.6 (CHO); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₃O₅⁺ 307.1540; Found 307.1545.

Dimethyl [2-(4-methylphenyl)ethyl](3-oxobutyl)malonate (6b)

6b was synthesized from **2a** and methyl vinyl ketone. Yield 141 mg (88%); colorless crystals, mp 63–64 °C; $R_f = 0.25$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta =$ 2.13 (s, 3H, CH₃), 2.14–2.18 (m, 2H, CH₂), 2.22–2.26 (m, 2H, CH₂), 2.31 (s, 3H, CH₃), 2.45– 2.51 (m, 4H, CH₂), 3.72 (s, 6H, 2×CH₃O), 7.06 (d, ³*J* = 8.1 Hz, 2H, Ar), 7.09 (d, ³*J* = 8.1 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.8$ (¹*J*_{CH} = 127 Hz, CH₃), 26.7 (¹*J*_{CH} = 133 Hz, CH₂), 29.8 (¹*J*_{CH} = 127 Hz, CH₃), 30.1 (¹*J*_{CH} = 127 Hz, CH₂), 35.6 (¹*J*_{CH} = 132 Hz, CH₂), 38.6 (¹*J*_{CH} = 125 Hz, CH₂), 52.3 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 56.7 (C), 128.1 (2×CH, Ar), 129.0 (2×CH, Ar), 135.4 (C, Ar), 137.9 (C, Ar), 171.5 (2×CO₂Me), 207.0 (COMe); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₅O₅⁺ 321.1697; Found 321.1702.

Dimethyl [2-(4-methoxyphenyl)ethyl](3-oxobutyl)malonate (6c)

6c was synthesized from 9.4 mmol **2f** and methyl vinyl ketone. Yield 2.61 g (83%); colorless crystals, mp 51–52 °C; $R_f = 0.30$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.12-2.16$ (m, 2H, CH₂), 2.13 (s, 3H, CH₃), 2.21–2.26 (m, 2H, CH₂), 2.44–2.49 (m, 4H, CH₂), 3.72 (s, 6H, 2×CH₃O), 3.77 (s, 3H, CH₃O), 6.82 (d, ³*J* = 8.4 Hz, 2H, PMP), 7.08 (d, ³*J* = 8.4 Hz, 2H, PMP); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 26.8$ (¹*J*_{CH} = 133 Hz, CH₂), 29.7 (¹*J*_{CH} = 126 Hz, CH₂), 29.9 (¹*J*_{CH} = 127 Hz, CH₃), 35.8 (¹*J*_{CH} = 132 Hz, CH₂), 38.7 (¹*J*_{CH} = 125 Hz, CH₂),

 52.4 (${}^{1}J_{CH}$ = 148 Hz, 2×CH₃O), 55.2 (${}^{1}J_{CH}$ = 144 Hz, CH₃O), 56.8 (C), 113.8 (2×CH, PMP),

129.2 (2×CH, PMP), 133.0 (C, PMP), 157.9 (C, PMP), 171.6 (2×CO₂Me), 207.1 (COMe);

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{25}O_6^+$ 337.1646; Found 337.1636.

Dimethyl [2-(4-chlorophenyl)ethyl](3-oxo-3-phenylpropyl)malonate (6d)

6d was synthesized from 0.61 mmol **2d** and phenyl vinyl ketone (which generated separately by treatment of the trimethyl 3-oxo-3-phenyl-1-propyl ammonium iodide⁶⁰ with aq NaHCO₃ at 40 °C). Yield 182 mg (75%); colorless oil; $R_f = 0.52$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.19-2.24$ (m, 2H, CH₂), 2.40–2.44 (m, 2H, CH₂), 2.53–2.58 (m, 2H, CH₂), 3.00–3.05 (m, 2H, CH₂), 3.74 (s, 6H, 2×CH₃O), 7.11 (d, ³*J* = 8.4 Hz, 2H, Ar), 7.23 (d, ³*J* = 8.4 Hz, 2H, Ar), 7.43–7.47 (m, 2H, Ph), 7.54–7.57 (m, 1H, Ph), 7.93–7.97 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 27.5$ (¹*J*_{CH} = 133 Hz, CH₂), 30.1 (¹*J*_{CH} = 127 Hz, CH₂), 33.7 (¹*J*_{CH} = 126 Hz, CH₂), 35.7 (¹*J*_{CH} = 132 Hz, CH₂), 52.5 (¹*J*_{CH} = 148 Hz, 2×CH₃O), 56.9 (C), 127.9 (2×CH, Ar), 128.4 (2×CH, Ar), 128.5 (2×CH, Ar), 129.6 (2×CH, Ar), 131.8 (C, Ar), 133.1 (CH, Ph), 136.5 (C, Ph), 139.5 (C, Ar), 171.5 (2×CO₂Me), 198.6 (COPh); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₄ClO₅⁺ 403.1307; Found 403.1314.

Dimethyl 2-(2-benzoyl-5-oxo-5-phenylpentyl)-2-(4-chlorophenethyl)malonate (6d')

The product of double Michael addition **6d'** was isolated in 5% yield (16 mg) from the reaction of **2d** with phenyl vinyl ketone. Colorless oil; $R_f = 0.46$ (petroleum ether : ethyl acetate, 3:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.85$ (ddd, ²J = 21.6, ³J = 7.6, ³J = 5.9 Hz, 1H, C(3')H₂), 1.94 (ddd, ²J = 14.1, ³J = 12.3, ³J = 5.0 Hz, 1H, C(1")H₂), 2.13–2.21 (m, 3H, C(1")H₂+C(1')H₂+C(3')H₂), 2.39 (ddd, ²J = 13.6, ³J = 12.3, ³J = 4.8 Hz, 1H, C(2")H₂), 2.54 (ddd, ²J = 13.6, ³J = 12.2, ³J = 5.0 Hz, 1H, C(2")H₂), 2.85 (dd, ²J = 14.6, ³J = 9.5 Hz, 1H, C(1')H₂), 3.00 (ddd, ²J = 17.9, ³J = 7.4, ³J = 5.9 Hz, 1H, C(4')H₂), 3.13 (ddd, ²J = 17.9, ³J = 7.6, ³J = 7.2 Hz, 1H, C(4')H), 3.45 (s, 3H, CH₃O), 3.65 (s, 3H, CH₃O), 3.75–3.81 (m, 1H, C(2')H), 7.02 (d, ³J = 8.5 Hz, 2H, Ar), 7.19 (d, ³J = 8.5 Hz, 2H, Ar), 7.42–7.49 (m, 4H, Ph+Ph), 7.53–7.58 (m, 2H, Ph+Ph), 7.89–7.92 (m, 2H, Ph), 8.04–8.07 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 28.2$ (C(3')H₂), 30.0

(C(2")H₂), 33.3 (C(1')H₂), 34.8 (C(4')H₂), 36.0 (C(1")H₂), 40.7 (C(2')H), 52.3 (CH₃O), 52.5 (CH₃O), 57.2 (C(2)), 127.9 (2×CH, Ar), 128.4 (2×CH, Ar), 128.5 (2×CH, Ar), 128.6 (2×CH, Ar), 128.8 (2×CH, Ar), 129.7 (2×CH, Ar), 131.7 (C, Ar), 133.1 (CH, Ph), 133.3 (CH, Ph), 136.2 (C, Ph), 136.7 (C, Ph), 139.5 (C, Ar), 171.4 (CO₂Me), 171.6 (CO₂Me), 199.1 (COPh), 202.1 (COPh); HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₁H₃₂ClO₆⁺ 535.1882; Found 535.1890.

Methyl 3-[2-(4-methylphenyl)ethyl]-2-oxotetrahydro-2H-pyran-3-carboxylate (7)

To solution of **6a** (100 mg, 0.33 mmol) in MeOH (3 mL) NaBH₄ (25 mg, 0.66 mmol) was added in one portion. Resulting mixture was stirred at ambient temperature for 3 h, yielding desired lactone **7** and half-product **I-6** in 10:90 ratio. To achieve complete conversion into **7**, reaction mixture was concentrated under reduced pressure, redissolved in benzene (5 mL) and heated under reflux for additional 3 h. Resulting mixture was concentrated under reduced pressure. Product **7** was purified by column chromatography on silica gel. Yield 64 mg (70%); colorless oil; $R_f = 0.25$ (petroleum ether : diethyl ether, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.87-2.04$ (m, 3H, CH₂), 2.16–2.25 (m, 2H, CH₂), 2.32 (s, 3H, CH₃), 2.47–2.52 (m, 1H, CH₂), 2.54–2.60 (m, 1H, CH₂), 2.68–2.75 (m, 1H, CH₂), 3.78 (s, 3H, CH₃O), 4.29–4.37 (m, 2H, CH₂O), 7.10 (br.s, 4H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 20.6$ (¹ $J_{CH} = 132$ Hz, CH₂), 20.9 (¹ $J_{CH} = 126$ Hz, CH₃), 28.5 (¹ $J_{CH} = 133$ Hz, CH₂), 30.5 (¹ $J_{CH} = 127$ Hz, CH₂), 38.5 (¹ $J_{CH} = 132$ Hz, CH₂), 53.0 (¹ $J_{CH} = 148$ Hz, CH₃O), 54.1 (C), 68.8 (¹ $J_{CH} = 150$ Hz, CH₂O), 128.3 (2×CH, Ar), 129.1 (2×CH, Ar), 135.6 (C, Ar), 138.0 (C, Ar), 169.9 (CO), 171.8 (CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₁O4⁺ 277.1434; Found 277.1437.

General Procedure for the Synthesis of *p*-Lactams 8 and Amine 9

To a solution of **6** (0.5 mmol) in MeOH (5mL) AcONH₄ (385 mg, 5 mmol) or BnNH₂ (110 μ L, 1 mmol) was added. Resulting mixture was stirred at ambient temperature for 10 min and then heated under reflux for 3 h. The mixture was cooled, diluted with water and extracted with ethyl acetate. Combined organic fractions were washed with brine, dried with Na₂SO₄ and evaporated

under reduced pressure. Products 8 and 9 were isolated after column chromatography on silica gel; dr's were determined from ¹H NMR spectra of the reaction mixtures.

Methyl 6-methyl-3-[2-(4-methylphenyl)ethyl]-2-oxopiperidine-3-carboxylate (8a)

dr 90:10. (3*RS*,6*RS*)-**8a** (major isomer): yield 91 mg (63%); yellowish crystals, mp 94–95 °C; R_f = 0.24 (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) δ = 1.22 (d, ³*J* = 6.4 Hz, 3H, CH₃), 1.49–1.57 (m, 1H, C(5)H₂), 1.92–1.98 (m, 1H, C(5)H₂), 1.99–2.04 (m, 1H, C(4)H₂), 2.14–2.20 (m, 1H, C(1')H₂), 2.21–2.27 (m, 2H, C(4)H₂+C(1')H₂), 2.31 (s, 3H, ArC*H*₃), 2.59–2.65 (m, 1H, C(2')H₂), 2.66–2.73 (m, 1H, C(2')H₂), 3.59–3.66 (m, 1H, C(6)H), 3.76 (s, 3H, CH₃O), 6.39 (s, 1H, NH), 7.09 (d, ³*J* = 7.9 Hz, 2H, Ar), 7.12 (d, ³*J* = 7.9 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ = 20.9 (¹*J*_{CH} = 126 Hz, ArCH₃), 22.5 (¹*J*_{CH} = 127 Hz, CH₃), 26.7 (¹*J*_{CH} = 131 Hz, C(5)H₂), 27.6 (¹*J*_{CH} = 133 Hz, C(4)H₂), 30.7 (¹*J*_{CH} = 128 Hz, C(2')H₂), 37.4 (¹*J*_{CH} = 132 Hz, C(1')H₂), 48.1 (¹*J*_{CH} = 140 Hz, C(6)H), 52.5 (¹*J*_{CH} = 147 Hz, CH₃O), 53.3 (C(3)), 128.2 (2×CH, Ar), 129.0 (2×CH, Ar), 135.3 (C, Ar), 138.7 (C, Ar), 170.9 (C(2)), 173.0 (CO₂Me); HRMS (ESI) m/z; [M + H]⁺ Calcd for C₁₇H₂₄NO₃⁺ 290.1751; Found 290.1758.

Methyl 3-[2-(4-methoxyphenyl)ethyl]-6-methyl-2-oxopiperidine-3-carboxylate (8b)⁵⁰

dr 90:10. (3*RS*,6*RS*)-**8b** (major isomer): yield 88 mg (58%); colorless crystals, mp 112–113 °C; $R_f = 0.53$ (ethyl acetate). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.21$ (d, ³J = 6.4 Hz, 3H, CH₃), 1.49– 1.55 (m, 1H, CH₂), 1.92–1.97 (m, 1H, CH₂), 1.98–2.02 (m, 1H, CH₂), 2.15 (ddd, ²J = 13.8, ³J =12.1, ³J = 5.0 Hz, 1H, CH₂), 2.19–2.26 (m, 2H, CH₂), 2.57–2.62 (m, 1H, CH₂), 2.64–2.69 (m, 1H, CH₂), 3.59–3.64 (m, 1H, CH), 3.75 (s, 3H, CH₃O), 3.78 (s, 3H, CH₃O), 6.34 (s, 1H, NH), 6.82 (d, ³J = 8.6 Hz, 2H, Ar), 7.14 (d, ³J = 8.6 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 150 MHz) $\delta =$ 22.5 (¹ $J_{CH} = 126$ Hz, CH₃), 26.8 (¹ $J_{CH} = 130$ Hz, CH₂), 27.6 (¹ $J_{CH} = 130$ Hz, CH₂), 30.2 (¹ $J_{CH} =$ 127 Hz, CH₂), 37.5 (¹ $J_{CH} = 131$ Hz, CH₂), 48.1 (¹ $J_{CH} = 139$ Hz, CH), 52.5 (¹ $J_{CH} = 147$ Hz, CH₃O), 53.3 (C), 55.2 (¹ $J_{CH} = 143$ Hz, CH₃O), 113.7 (2×CH, Ar), 129.3 (2×CH, Ar), 133.9 (C, Ar), 157.8 (C, Ar), 170.9 (CONH), 173.1 (CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₄NO₄⁺ 306.1700; Found 306.1692. Methyl 3-[2-(4-chlorophenyl)ethyl]-2-oxo-6-phenylpiperidine-3-carboxylate (8c)

dr 87:13.

(3*RS*,6*SR*)-**8c** (major isomer): yield 126 mg (68%); colorless crystals, mp 99–100 °C; $R_f = 0.31$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.84$ –1.90 (m, 1H, C(5)H₂), 1.92–1.98 (m, 1H, C(4)H₂), 2.18–2.28 (m, 4H, C(5)H₂+C(4)H₂+C(1')H₂), 2.62–2.75 (m, 2H, C(2')H₂), 3.78 (s, 3H, CH₃O), 4.69–4.73 (m, 1H, C(6)H), 6.42 (br.s, 1H, NH), 7.12 (br.d, ³*J* = 8.5 Hz, 2H, Ar), 7.23 (br.d, ³*J* = 8.5 Hz, 2H, Ar), 7.26–7.31 (m, 3H, Ph), 7.35–7.39 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 26.9$ (¹*J*_{CH} = 131 Hz, C(4)H₂), 28.2 (¹*J*_{CH} = 131 Hz, C(5)H₂), 30.6 (¹*J*_{CH} = 128 Hz, C(2')H₂), 37.5 (¹*J*_{CH} = 132 Hz, C(1')H₂), 52.6 (¹*J*_{CH} = 148 Hz, CH₃O), 53.6 (C(3)), 56.5 (¹*J*_{CH} = 141 Hz, C(6)H), 125.9 (2×CH, Ar), 127.9 (CH, Ar), 128.4 (2×CH, Ar), 128.8 (2×CH, Ar), 129.8 (2×CH, Ar), 131.6 (C, Ar), 140.1 (C, Ar), 142.1 (C, Ar), 170.9 (C(2)), 172.8 (CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClNO₃⁺ 372.1361; Found 372.1367.

(3RS,6RS)-8c (minor isomer): yield 15 mg (8%); colorless crystals, mp 156–157 °C; $R_f = 0.50$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.82$ –1.90 (m, 1H, C(5)H₂), 1.99–2.05 (m, 1H, C(4)H₂), 2.07–2.14 (m, 1H, C(5)H₂), 2.15–2.21 (m, 1H, C(1')H₂), 2.27–2.35 (m, 2H, C(4)H₂+C(1')H₂), 2.60–2.66 (m, 1H, C(2')H₂), 2.76–2.82 (m, 1H, C(2')H₂), 3.81 (s, 3H, CH₃O), 4.55 (dd, ³*J* = 10.6, ³*J* = 4.8 Hz, 1H, C(6)H), 5.97 (br.s, 1H, NH), 7.17 (br.d, ³*J* = 8.3 Hz, 2H, Ar), 7.25 (br.d, ³*J* = 8.3 Hz, 2H, Ar), 7.31–7.36 (m, 3H, Ph), 7.37–7.41 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 29.7$ (C(5or4)H₂), 29.8 (C(4or5)H₂), 30.6 (C(2')H₂), 37.6 (C(1')H₂), 52.7 (CH₃O), 53.6 (C(3)), 58.4 (C(6)H), 126.1 (2×CH, Ar), 128.3 (CH, Ar), 128.5 (2×CH, Ar), 129.0 (2×CH, Ar), 129.8 (2×CH, Ar), 131.7 (C, Ar), 140.1 (C, Ar), 142.0 (C, Ar), 170.3 (C(2)), 173.1 (CO₂Me).

Dimethyl [2-(4-methylphenyl)ethyl][3-(benzylamino)butyl]malonate (9)

Yield 171 mg (83%); colorless oil; $R_f = 0.18$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.12$ (d, ³J = 6.4 Hz, 3H, CH₃), 1.25–1.32 (m, 1H, CH₂), 1.38–1.44 (m,

1H, CH₂), 1.53 (br.s, 1H, NH), 2.00–2.05 (m, 2H, CH₂), 2.18–2.21 (m, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.47–2.50 (m, 2H, CH₂), 2.69–2.74 (m, 1H, CH), 3.73 (s, 3H, CH₃O), 3.74 (s, 3H, CH₃O), 3.75 (d, ${}^{2}J$ = 13.0 Hz, 1H, CH₂), 3.82 (d, ${}^{2}J$ = 13.0 Hz, 1H, CH₂), 7.08 (d, ${}^{3}J$ = 8.0 Hz, 2H, Ar), 7.11 (d, ${}^{3}J$ = 8.0 Hz, 2H, Ar), 7.24–7.27 (m, 1H, Ar), 7.32-7.36 (m, 4H, Ar); ¹³C NMR (CDCl₃, 150 MHz) δ = 20.2 (${}^{1}J_{CH}$ = 125 Hz, CH₃), 20.9 (${}^{1}J_{CH}$ = 127 Hz, CH₃), 29.0 (${}^{1}J_{CH}$ = 129 Hz, CH₂), 30.2 (${}^{1}J_{CH}$ = 127 Hz, CH₂), 30.9 (${}^{1}J_{CH}$ = 123 Hz, CH₂), 34.6 (${}^{1}J_{CH}$ = 131 Hz, CH₂), 51.2 (${}^{1}J_{CH}$ = 132 Hz, CH₂), 52.3 (${}^{1}J_{CH}$ = 148 Hz, 2×CH₃O), 52.4 (${}^{1}J_{CH}$ = 132 Hz, CH), 57.5 (C), 126.7 (CH), 128.1 (2×CH, Ar), 128.2 (2×CH, Ar), 128.4 (2×CH, Ar), 129.1 (2×CH, Ar), 135.5 (C, Ar), 138.1 (C, Ar), 140.5 (C, Ar), 172.0 (2×CO₂Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₃₄NO₄⁺ 412.2482; Found 412.2478.

Methyl 1-benzyl-3-[2-(4-methylphenyl)ethyl]-6-methyl-2-oxopiperidine-3-carboxylate (8d) Solution of amine 9 (171 mg, 0.4 mmol) and AcOH (24 µL, 0.4 mmol) in toluene (5 mL) was heated in microwave reactor at 150 °C for 2 h. Then, reaction mixture was concentrated under reduced pressure to give 8d as a sample of adequate purity. dr 66:34. Yield 135 mg (89%); vellowish oil; $R_f = 0.75$ (petroleum ether : ethyl acetate, 1:1). ¹H NMR (CDCl₃, 600 MHz) $\delta =$ 1.26 (d, ${}^{3}J = 6.4$ Hz, 3H **B**, CH₃), 1.28 (d, ${}^{3}J = 6.5$ Hz, 3H **B**, CH₃), 1.59–1.66 (m, 1H **A**, 1H **B**, CH₂), 1.89–1.94 (m, 1H B, CH₂), 1.95–2.01 (m, 1H B, CH₂), 2.06–2.12 (m, 2H A, 1H B, CH₂), 2.16-2.26 (m, 3H A, CH₂), 2.29-2.34 (m, 1H B, CH₂), 2.34 (s, 3H A, 3H B, CH₃), 2.36-2.41 (m, 1H A, 1H B, CH₂), 2.57–2.66 (m, 1H A, 1H B, CH₂), 2.72–2.78 (m, 1H A, 1H B, CH₂), 2.48– 2.57 (m, 1H A, 1H B, CH), 3.77 (s, 3H A, CH₃O), 3.80 (s, 3H B, CH₃O), 3.95 (d, ${}^{3}J = 15.1$ Hz, 1H A. NCH₂), 4.22 (d, ${}^{3}J$ = 15.2 Hz, 1H B, NCH₂), 5.26 (d, ${}^{3}J$ = 15.2 Hz, 1H B, NCH₂), 5.51 (d, ³*J* = 15.1 Hz, 1H **A**, NCH₂), 7.11–7.12 (m, 2H **A**, 2H **B**, Ar), 7.14–7.17 (m, 2H **A**, 2H **B**, Ar), 7.26–7.37 (m, 5H A, 5H B, Ar); (3RS,6RS)-8d (major isomer): ¹³C NMR (CDCl₃, 150 MHz) δ = 19.3 (${}^{1}J_{CH} = 128$ Hz, CH₃), 20.9 (${}^{1}J_{CH} = 124$ Hz, CH₃), 25.9 (${}^{1}J_{CH} = 129$ Hz, CH₂), 26.2 (${}^{1}J_{CH} = 124$ Hz, CH₃), 26.2 (${}^{1}J_{C$ 127 Hz, CH₂), 30.7 (${}^{1}J_{CH} = 127$ Hz, CH₂), 38.0 (${}^{1}J_{CH} = 132$ Hz, CH₂), 47.8 (${}^{1}J_{CH} = 139$ Hz, CH₂), 50.7 (${}^{1}J_{CH} = 141$ Hz, CH), 52.4 (${}^{1}J_{CH} = 147$ Hz, CH₃O), 54.1 (C), 127.12 (CH), 127.7 (2×CH,

Ar), 128.30 (2×CH, Ar), 128.4 (2×CH, Ar), 129.0 (2×CH, Ar), 135.2 (C, Ar), 137.6 (C, Ar), 138.7 (C, Ar), 168.8 (CONH), 173.8 (CO_2Me); (3RS,6SR)-8d (minor isomer): ¹³C NMR (CDCl₃, 150 MHz) δ = 20.3 (¹ J_{CH} = 124 Hz, CH₃), 20.9 (¹ J_{CH} = 124 Hz, CH₃), 27.3 (¹ J_{CH} = 129 Hz, CH₂), 27.5 (¹ J_{CH} = 129 Hz, CH₂), 31.0 (¹ J_{CH} = 127 Hz, CH₂), 38.5 (¹ J_{CH} = 131 Hz, CH₂), 47.5 (¹ J_{CH} = 140 Hz, CH₂), 51.9 (¹ J_{CH} = 142 Hz, CH), 52.4 (¹ J_{CH} = 147 Hz, CH₃O), 54.3 (C), 127.05 (CH), 127.6 (2×CH, Ar), 128.33 (2×CH, Ar), 128.5 (2×CH, Ar), 129.0 (2×CH, Ar), 135.2 (C, Ar), 137.8 (C, Ar), 138.9 (C, Ar), 169.1 (CONH), 173.6 (CO_2Me); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₀NO₃⁺ 380.2220; Found 380.2226.

Dimethyl (2,4-dinitrophenyl)[2-(4-methylphenyl)ethyl]malonate (10)

Sodium hydride (30 mg, 0.72 mmol) was added to a stirred solution of malonate 2a (150 mg, 0.6 mmol) in DMF (1.5 mL) under argon atmosphere. Mixture was stirred for 20 min; then 1-chloro-2,4-dinitrobenzene (122 mg, 0.6 mmol) was added in one portion. The reaction mixture was stirred at ambient temperature for 30 min, guenched with water (15 mL) and extracted with ethyl acetate (3×15 mL). The combined organic fractions were washed with brine (4×10 mL), dried with Na₂SO₄ and concentrated under reduced pressure. Product 10 was purified by column chromatography on silica gel. Yield 170 mg (68%); white crystals, mp 127–128 °C; $R_f = 0.14$ (petroleum ether : diethyl ether, 2:1). ¹H NMR (CDCl₃, 600 MHz) δ = 2.33 (s, 3H, CH₃), 2.50– 2.56 (m, 2H, CH₂), 2.79–2.85 (m, 2H, CH₂), 3.77 (s, 6H, 2×CH₃O), 7.06 (d, ${}^{3}J$ = 8.0 Hz, 2H, Ar), 7.11 (d, ${}^{3}J = 8.0$ Hz, 2H, Ar), 7.70 (d, ${}^{3}J = 8.8$ Hz, 1H, Ar), 8.49 (dd, ${}^{3}J = 8.8$, ${}^{4}J = 2.5$ Hz, 1H, Ar), 8.89 (d, ${}^{4}J$ = 2.5 Hz, 1H, Ar); ${}^{13}C$ NMR (CDCl₃, 150 MHz) δ = 21.0 (CH₃), 31.3 (CH₂), 37.5 (CH₂), 53.4 (2×CH₃O), 62.8 (C), 121.2 (CH, Ar), 126.7 (CH, Ar), 128.1 (2×CH, Ar), 129.3 (2×CH, Ar), 131.8 (CH, Ar), 136.1 (C, Ar), 137.0 (C, Ar), 138.7 (C, Ar), 147.1 (C, Ar), 149.9 (C, Ar), 168.5 ($2 \times CO_2Me$); MS (MALDI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{20}N_2NaO_8$) 439; Found 439. Anal. Calcd for C₂₀H₂₀N₂O₈: C, 57.69; H, 4.84; N, 6.73. Found: C, 57.71; H, 4.78; N, 6.75.

Methyl 6-amino-3-[2-(4-methylphenyl)ethyl]-2-oxo-2,3-dihydro-1*H*-indole-3-carboxylate

(11)

To a stirred solution of 10 (145 mg, 0.35 mmol) in EtOH (4 mL) Zn (455 mg, 7 mmol) and acetic acid (200 µL, 3.5 mmol) were sequentially added. The resulting suspension was heated under reflux for 3 h. The reaction mixture was cooled to room temperature. Unreacted zinc was filtered off and washed with ethyl acetate. The combined organic fractions were concentrated under reduced pressure; to the residue ag HCl (0.5 M) was slowly added. The resulting solution was washed with CH_2Cl_2 (5 mL). Then saturated aq NaHCO₃ was added portionwise until CO_2 evolution was ceased. The resulting mixture (pH 8) was extracted with ethyl acetate. The combined organic fractions were washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. Pure product 11 was obtained in 73% yield (82 mg) as viscous yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ = 2.28 (s, 3H, CH₃), 2.31–2.47 (m, 3H, CH₂), 2.49–2.56 (m, 1H, CH₂), 3.68 (s, 3H, CH₃O), 3.97 (br.s, 2H, NH₂), 6.35 (br.d, ${}^{4}J = 1.9$ Hz, 1H, Ind), 6.38 (dd, ${}^{3}J =$ 8.0, ${}^{4}J = 1.9$ Hz, 1H, Ind), 7.00 (d, ${}^{3}J = 7.9$ Hz, 2H, Ar), 7.04 (d, ${}^{3}J = 7.9$ Hz, 2H, Ar), 7.05 (d, ${}^{3}J$ = 8.0 Hz, 1H, Ind); ¹³C NMR (CDCl₃, 150 MHz) δ = 20.9 (CH₃), 29.5 (CH₂), 36.0 (CH₂), 52.9 (CH₃O), 59.3 (C), 97.8 (CH, Ar), 109.2 (CH, Ar), 117.8 (C, Ar), 124.5 (CH, Ar), 128.2 (2×CH, Ar), 129.0 (2×CH, Ar), 135.4 (C, Ar), 138.0 (C, Ar), 142.5 (C, Ar), 147.5 (C, Ar), 170.2 (CO₂Me), 177.2 (CONH); HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₂₁N₂O₃⁺ 325.1547; Found 325.1555.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Crystallographic data for 1g and (3RS,6RS)-8b (CIF)

Details of quantum chemical calculations

Copies of ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

2	
3	
4	
2 6	
07	
/ Q	
a a	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	1
2	8 0
2	9
ა ა	1
ວ 2	2
ວ ຈ	2 3
3	۵ ۵
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8
4	9
5	U 1
5	1
ט ב	2 2
5 5	J ⊿
5	- - 5
5	6
5	7
5	8
5	9
6	0
_	

Corresponding Author

*E-mail: ekatbud@kinet.chem.msu.ru

ACKNOWLEDGMENTS

The NMR measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University.

REFERENCES

- (1) Reissig, H.; Zimmer, R. Chem. Rev. 2003, 103 (4), 1151–1196.
- (2) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61 (2), 321–347.
- (3) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82 (9), 1797–1812.
- Mel'nikov, M. Ya.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. *Mendeleev Commun.* 2011, *21* (6), 293–301.
- (5) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43 (3), 804–818.
- (6) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem.
 Commun. 2014, 50 (75), 10912–10928.
- Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chemie Int. Ed. 2014, 53 (22), 5504–5523.
- (8) Novikov, R. A.; Tomilov, Yu. V. Mendeleev Commun. 2015, 25 (1), 1–10.
- (9) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13 (3), 655–671.
- (10) Chemistry of Donor–Acceptor Cyclopropanes and Cyclobutanes, Special Issue: *Isr. J. Chem.* 2016, *56* (6–7), 365.
- (11) Budynina, E. M.; Ivanov, K. L.; Sorokin, I. D.; Melnikov, M. Ya. Synthesis 2017, 49 (14), 3035–3068.
- (12) Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, (18), 2561–2567.
- (13) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117 (13), 9404–9432.
- (14) Avilov, D. V.; Malusare, M. G.; Arslancan, E.; Dittmer, D. C. Org. Lett. 2004, 6 (13),
 2225–2228.

- (15) Mangelinckx, S.; D'hooghe, M.; Peeters, S.; De Kimpe, N. Synthesis 2009, (7), 1105–1112.
- (16) Degueil-Castaing, M.; Rahm, A.; Dahan, N. J. Org. Chem. 1986, 51 (10), 1672–1676.
- (17) Gharpure, S. J.; Mane, S. P.; Nanda, L. N.; Shukla, M. K. *Isr. J. Chem.* 2016, *56* (6–7), 553–557.
- (18) Gharpure, S. J.; Nanda, L. N.; Kumari, D. Eur. J. Org. Chem. 2017, (27), 3917–3920.
- (19) Batey, R. A.; Motherwell, W. B. Tetrahedron Lett. 1991, 32 (43), 6211–6214.
- (20) Kim, Y. H.; Lee, I. S. Heteroat. Chem. 1992, 3 (5-6), 509-512.

- (21) Imamoto, T.; Hatajima, T.; Yoshizawa, T. *Tetrahedron Lett.* **1994**, *35* (42), 7805–7808.
- (22) Yamashita, M.; Okuyama, K.; Ohhara, T.; Kawasaki, I.; Sakai, K.; Nakata, S.; Kawabe,
 T.; Kusumoto, M.; Ohta, S. *Chem. Pharm. Bull.* 1995, *43* (12), 2075–2081.
- (23) Szostak, M.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2014, 136 (23), 8459-8466.
- (24) Lloyd, M. G.; Taylor, R. J. K.; Unsworth, W. P. Org. Biomol. Chem. 2016, 14 (38), 8971–
 8988.
- (25) Tanis, V. M.; Moya, C.; Jacobs, R. S.; Little, R. D. *Tetrahedron* 2008, 64 (47), 10649–10663.
- (26) Sone, Y.; Kimura, Y.; Ota, R.; Ito, J.; Nishii, Y.; Mochizuki, T. *Eur. J. Org. Chem.* 2017, (19), 2842–2847.
- (27) Murphy, W. S.; Wattanasin, S. *Tetrahedron Lett.* **1981**, *22* (7), 695–698.
- (28) Wurz, R. P.; Charette, A. B. J. Org. Chem. 2004, 69 (4), 1262–1269.
- (29) Kamimura, A.; Ikeda, K.; Moriyama, T.; Uno, H. *Tetrahedron Lett.* 2013, 54 (14), 1842–1844.
- (30) Luis-Barrera, J.; Laina-Martín, V.; Rigotti, T.; Peccati, F.; Solans-Monfort, X.; Sodupe,
 M.; Mas-Ballesté, R.; Liras, M.; Alemán, J. *Angew. Chemie Int. Ed.* 2017, *56* (27), 7826–7830.
- (31) Li, Z.-R.; Bao, X.-X.; Sun, J.; Shen, J.; Wu, D.-Q.; Liu, Y.-K.; Deng, Q.-H.; Liu, F. Org.

 Chem. Front. 2016, 3 (8), 934–938.

- (32) Garve, L. K. B.; Barkawitz, P.; Jones, P. G.; Werz, D. B. Org. Lett. 2014, 16 (21), 5804–5807.
- (33) Tanner, D. D.; Chen, J. J.; Luelo, C.; Peters, P. M. J. Am. Chem. Soc. 1992, 114 (2), 713–717.
- (34) Stevenson, J. P.; Jackson, W. F.; Tanko, J. M. J. Am. Chem. Soc. 2002, 124 (16), 4271–4281.
- (35) Tanko, J. M.; Gillmore, J. G.; Friedline, R.; Chahma, M. J. Org. Chem. 2005, 70 (10), 4170–4173.
- (36) Saveant, J. M. Acc. Chem. Res. 1993, 26 (9), 455–461.
- (37) Houmam, A. Chem. Rev. 2008, 108 (7), 2180–2237.
- (38) See Supporting Information.
- (39) Ohashi, M.; Nakatani, K.; Maeda, H.; Mizuno, K. Org. Lett. 2008, 10 (13), 2741–2743.
- (40) Krivenko, A. G.; Kotkin, A. S.; Kurmaz, V. A. Russ. J. Electrochem. 2005, 41 (2), 137–153.
- (41) Nakamura, S.; Sugimoto, H.; Ohwada, T. J. Org. Chem. 2008, 73 (11), 4219–4224.
- (42) Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132 (2), 807–815.
- (43) Hızlıateş, C. G.; Gülle, S.; Ergün, Y. J. Heterocycl. Chem. 2016, 53 (1), 249–254.
- (44) Borrell, J. I.; Teixidó, J.; Martínez-Teipel, B.; Matallana, J. L.; Copete, M. T.; Llimargas,
 A.; García, E. *J. Med. Chem.* 1998, *41* (18), 3539–3545.
- Borrell, J. I.; Teixidó, J.; Matallana, J. L.; Martínez-Teipel, B.; Colominas, C.; Costa, M.;
 Balcells, M.; Schuler, E.; Castillo, M. J. J. Med. Chem. 2001, 44 (14), 2366–2369.
- (46) Campaña, A. G.; Fuentes, N.; Gómez-Bengoa, E.; Mateo, C.; Oltra, J. E.; Echavarren, A.
 M.; Cuerva, J. M. *J. Org. Chem.* 2007, *72* (21), 8127–8130.
- (47) Siegel, U.; Mues, R.; Dönig, R.; Eicher, T. *Phytochemistry* **1991**, *30* (11), 3643–3646.

- (48) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93 (12), 2897–2904.
- (49) Ye, Z.; Gettys, K. E.; Shen, X.; Dai, M. Org. Lett. 2015, 17 (24), 6074–6077.
- (50) The CIF files have been deposited with the Cambridge Crystallographic Data Centre: CCDC 1547486 (1g) and 1547488 [(3RS,6RS)-8b].
- (51) Neese, F. WIREs Comput. Mol. Sci. 2012, 2 (1), 73–78.
- (52) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648–5652.
- (53) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98
 (45), 11623–11627.
- (54) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.
- (55) Zheng, J.; Xu, X.; Truhlar, D. G. Theor. Chem. Acc. 2011, 128 (3), 295–305.
- (56) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356 (1-3), 98-109.
- (57) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995–2001.
- (58) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24 (6), 669-681.
- (59) Curran, D. P.; Chen, M. H.; Spletzer, E.; Seong, C. M.; Chang, C. T. J. Am. Chem. Soc.
 1989, 111 (24), 8872–8878.
- (60) Trachtenberg, E. N.; Whall, T. J. J. Org. Chem. 1972, 37 (10), 1494–1499.