

Organic Preparations and Procedures International

The New Journal for Organic Synthesis

ISSN: 0030-4948 (Print) 1945-5453 (Online) Journal homepage: http://www.tandfonline.com/loi/uopp20

A Practical Synthesis of Indole-2-carboxylic Acid

Ting Jiang, Ning Liu, Yi-Wen Jiang, Ping-Ping Ye & Wei-Ming Xu

To cite this article: Ting Jiang, Ning Liu, Yi-Wen Jiang, Ping-Ping Ye & Wei-Ming Xu (2017) A Practical Synthesis of Indole-2-carboxylic Acid, Organic Preparations and Procedures International, 49:5, 476-478, DOI: 10.1080/00304948.2017.1374138

To link to this article: <u>http://dx.doi.org/10.1080/00304948.2017.1374138</u>

Published online: 29 Sep 2017.

🕼 Submit your article to this journal 🗗

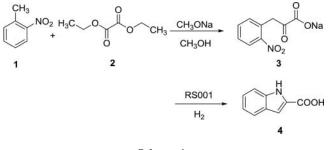
View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uopp20

Check for updates

OPPI BRIEF


A Practical Synthesis of Indole-2-carboxylic Acid

Ting Jiang, Ning Liu, Yi-Wen Jiang, Ping-Ping Ye, and Wei-Ming Xu

College of Material Chemistry and Chemical Engineering, Hangzhou Normal University (Xiasha Campus), Hangzhou 310036, China

Indole-2-carboxylic acid (4) is a versatile intermediate in the preparation of many pharmaceutically active agents.¹ A review of the literature and patents indicates that several synthesis procedures^{2–5} already exist for this useful molecule. Among these, the reduction of 3-(2-nitrophenyl)-2-oxopropanoic sodium salt (3) prepared from 1-methyl-2-nitrobenzene (1) and diethyl oxalate (2) is generally used. For example, Wang *et al.*³ developed a method using ferrous sulfate and ammonium hydroxide as the reducing agents to obtain indole-2-carboxylic acid. But the crude product needed to be recrystallized because of the precipitation of a large amount of iron mud. In addition, Kong *et al.*⁴ developed a ferrous hydroxide-catalyzed method with 80% (w/w) hydrazine hydrate as a reductant to obtain indole-2-carboxylic acid. And Kong *et al.*⁵ also developed a Raney-Ni catalyzed hydrogen reduction process to obtain indole-2-carboxylic acid, albeit in only moderate isolated yield. However, environmental concerns have led to increased interest in alternate processes.

As a continuation of our interest in the study of medicinal compounds and the need for the title compound,⁶⁻⁷ we have developed a practical hydrogen reduction process with Pd-loaded Al-MCM-41 mesoporous catalyst (RS001)⁸ for the synthesis of indole-2-carboxylic acid (4) (*Scheme 1*).

Scheme 1

Received September 14, 2016; in final form April 19, 2017. Address correspondence to Wei-Ming Xu, College of Material Chemistry and Chemical

Engineering, Hangzhou Normal University (Xiasha Campus), Hangzhou, 310036, China. E-mail: wmxu@hznu.edu.cn It is noteworthy that in this procedure RS001 is immobilized and used as a catalyst which can be easily reused. The process is environmentally benign, easy to work up and leads to product of excellent purity in 56% yield.

Experimental Section

Mp of product was uncorrected. The HPLC purity of product was established on an Agilent 1260. ¹H NMR spectra were recorded in DMSO- d_6 on a Bruker 400 (400 MHz) instrument with TMS as internal standard. All chemicals were reagent grade and available commercially.

Pd-loaded Al-MCM-41 Mesoporous Catalyst (RS001)

One g of PdCl₂ was dissolved in a mixture of 2 mL hydrochloric acid (37%) and 15 mL of deionized water. Ten g of Al-MCM-41 mesoporous molecular sieve was poured into the solution with rigorous stirring at 75°C for 30 min. Then 8 mL of 0.7 M sodium formate was added. The mixture was kept under stirring at the same temperature for another 2 h and then filtered at the pump. The filter cake was washed with 15 mL water, collected, dried *in vacuo* at 100°C for 4 h, then calcined at 500°C for 3 h with a heat rate 1.5°C/min in air to afford the Pd-loaded Al-MCM-41 mesoporous catalyst, RS001.

Indole-2-carboxylic acid (4)

In a 150 mL round-bottomed flask was placed of a solution of 5.94 g (0.11 mol) sodium methylate in 20 mL methyl alcohol, and a mixture of 13.7 g (0.10 mol) nitrotoluene (1) and 14.6 g (0.10 mol) of diethyl oxalate (2) was added. The mixture was kept stirring at 65°C for 2 h and then poured into 500 mL ice water. The aqueous solution was purified through steam distillation until no emulsion dropped out. Then the mother liquor was decolorized with 10 g actived carbon and concentrated to a solution (70 g) of 3-(2-nitrophenyl)-2-oxopropanoic sodium salt (3), directly used in the next step. In a 250 mL pressure reactor was placed the above sodium salt (3) and 70 g methyl alcohol. Then 1.5 g RS001 was added while the pH of the mixture was adjusted to 7.5 with ammonium hydroxide. Under a hydrogen pressure of 1.5 Mpa, the mixture was stirred at 70° C for 4 h. Then the mixture was cooled and filtered at the pump. The filtrate was acidified with 4 M hydrochloric acid to pH 3 which led to precipitation. The precipitated solid was collected and dried in vacuo to afford 9.05 g (56%) product (4) (HPLC >97%), ¹H NMR $(DMSO-d_6)$: δ 12.93 (1 H, s), 11.76 (1 H, s), 7.65 (1 H, d, J = 8.0 Hz), 7.48-7.42 (1 H, m), 7.28-7.20 (1 H, m), 7.13-7.03 (2 H, m). An analytical sample was prepared by recrystallization from methanol, mp 204–205°C, lit mp 204°C.⁹

Acknowledgments

We thank the Science and Technology Foundation of Hangzhou (20170533B02) and the Program for Changjiang Scholars and Innovative Research Team in Chinese University (IRT 1231).

References

 S. Narsimha, N. S. Kumar, K. S. Battula, V. R. Nagavelli, S. K. A. Hussain and M. S. Rao, Bioorg. Med. Chem. Lett., 26, 1639 (2016).

- 2. Z. Jin, S. X. Guo, L. L. Qiu and G. P. Wu, Appl. Organometal. Chem., 25, 502 (2011).
- 3. L. M. Wang, Q. J. Xia and H. Chen, CN102432524 2011; Chem. Abstr., 156, 588143 (2012).
- X. J. Kong, L. H. Kong, R. Q. Ma, Q. C. Cui, J. H. Chen L. X. Kong, W. D. Xu, B. Han and B. L. Jia, *CN102020600* **2010**; *Chem. Abstr.*, **154**, 459648 (2010).
- X. J. Kong, Z. X. Cai, L. X. Kong, D. M. Kong, X. Y. Xue, G. Z. Gu and Y. F. Fan, *CN101823993* 2010; Chem. Abstr., 154, 437568 (2010).
- 6. H. Q. He, Y. W. Chang and W. M. Xu, Lett. in Org. Chem., 12, 280 (2015).
- 7. P. P. Ye, N. Liu, Y.W. Chang and W. M. Xu, Org. Prep. Proced. Int., 48, 421 (2016).
- X. L. Li, J. S. Wang, X. K. Zhang, G. D. He, L. Chen and H. N. Gu, *CN10177022* 2013; *Chem. Abstr.*, 159, 385597 (2013).
- 9. J. A. Elvidge and F. S. Spring, *J. Chem. Soc. Suppl. Issue*, **1**, 135 (1949), the melting point (205–208°C) was also obtained from Syracuse Research Corporation of Syracuse, New York (US).