Synthesis and Oxidant Properties of Phase 1 Benzepine N-Oxides of Common Antipsychotic Drugs

Jochen Körber,^a Stefan Löffler,^b Dieter Schollmeyer,^a Udo Nubbemeyer*^a

^a Institut f
ür Organische Chemie, Johannes Gutenberg-Universit
ät, 55128 Mainz, Germany Fax +49(6131)3924533; E-mail: nubbemey@uni-mainz.de

^b Department of Psychiatry and Psychotherapy, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, 63069 Offenbach, Germany

Received: 28.05.2013; Accepted after revision: 20.07.2013

Abstract: There is increasing evidence that cell constituents are oxidized by widely used antipsychotic drugs but until now the underlying chemistry has remained unclear. It is well known that such drugs readily undergo N-oxidation as a first key metabolic step. To gain insight into the problem, the tertiary phase 1 N-oxides of clozapine, olanzapine, quetiapine, and zotepine were synthesized, together with the N,S-dioxides of quetiapine and zotepine. These Noxides were then subjected to well-established chemical transformations to test their oxidant properties in group VIII transitionmetal-catalyzed reactions. In the osmium tetroxide catalyzed dihydroxylation of styrene or cinnamyl alcohol and in the tetrapropylammonium perruthenate catalyzed oxidation of cinnamyl alcohol, the benzepine N-oxides could be used as replacements for the standard oxidant, N-methylmorpholine N-oxide (NMO) with varying degrees of efficiency. From a chemical point of view, clozapine Noxide displayed a comparable oxidation power to NMO, characterizing the benzepines as oxygen carriers. Moreover, quetiapine was found to be an excellent double oxygen acceptor, undergoing initial N-oxidation and subsequent S-oxidation. It is therefore worthwhile considering whether oxidative damage to the human body might be related to the potential redox properties of common antipsychotic drugs.

Key words: oxidations, catalysis, transition metals, benzepines, dihydroxylations, medicinal chemistry, drugs

Antipsychotic drugs are used to alleviate psychotic symptoms. Despite their metabolic side effects, the benzepines clozapine (CN), olanzapine (ON), quetiapine (QN), and zotepine (ZN) represent one of the most beneficial groups of such drugs. For example, CN is uniquely effective in treatment-refractory schizophrenia and suicidal ideation. The other drugs, ON, QN, and ZN, were developed as analogues of CN with the aim of retaining its pharmacological design and superior efficacy while eliminating its potential to cause adverse reactions (for example, potentially life-threatening agranulocytosis occurs in about 1% of patients). Although these aims were only partly achieved, the CN analogues are nevertheless useful as real alternatives or co-medicaments in current psychopharmacotherapeutic practice.¹

Oxidative damage to DNA, proteins, or lipids are forms of cellular injury that can cause cellular dysfunction without necessarily leading to cell death or tissue degeneration.²

SYNTHESIS 2013, 45, 2875–2887 Advanced online publication: 15.08.2013 DOI: 10.1055/s-0033-1338519; Art ID: SS-2013-T0380-OP © Georg Thieme Verlag Stuttgart · New York **CN** and other antipsychotics can induce oxidative stress and injury to mammalian cells by increasing levels of oxidation of lipids and proteins.^{3,4}

Recently, a further central role has been found for CN, in the form of its second major phase 1 intermediate clozapine N^4 -oxide (CNO),⁵ in the designer receptors exclusively activated by designer drugs (DREADD) technique. In this technique, muscarinic G protein-coupled receptors (GPCRs) are mutated so that their ability to bind to their natural ligands is lost. This induces nanomolar potency for the xenobiotic CNO, which otherwise displays weak pharmacological activity. This procedure allows the creation of examinable specific synthetic pathways in vivo with minimal invasiveness. Although GPCR drugs, gene knockouts, and other techniques provided diverse insights, many basic lessons can only be learned by building new GPCR signaling pathways in intact cells or in freely behaving animals.⁶ CNO is often selected as the synthetic ligand, because: (i) the parent compound CN has a high affinity with muscarinic receptors and, hence, relatively few mutations are required to render CNO a potent agonist; (ii) CNO appears to be highly bioavailable in rodents and humans;^{5c,7} and (iii), importantly, CNO lacks appreciable affinities (<1 µM) for neuroreceptors.⁸ Despite the limited number of studies, contrary findings,^{5b,c} and one critical comment by a DREADD pioneer,⁶ DREADD researchers continue to treat CNO as a compound that is almost biologically and pharmacologically inert.9

To examine this presumed inertness in the context of clozapine-associated oxidative modifications of cellular key constituents, we first synthesized the tertiary phase 1 Noxides of **CN** and its congeners **ON**, **QN**, and **ZN**. Next, we compared the *N*-oxides with the established oxidant *N*methylmorpholine-*N*-oxide (NMO)¹⁰ in terms of their cooxidative effects in two well-known specific chemical oxidation reactions catalyzed by two transition-metal catalysts: osmium tetroxide¹¹ and tetrapropylammonium perruthenate (TPAP).¹² The resulting insight into the reactivity/inertness of benzepines and their *N*-oxides might be helpful as a basis for rationalizing the biotransformations of benzepine drugs in the human body.

Oxidation of Benzodiazepines and Dibenzothiepines

Our first investigations focused on the oxidation of the benzepines under defined conditions (Scheme 1 and Scheme 2).

By using reaction conditions similar to those described by VanRheenen in 1978,¹⁰ the benzepines were treated with an excess of 35% aqueous hydrogen peroxide. Despite the poor solubility of **ON** in water, its oxidation was highly exothermic and the mixture boiled after some minutes. QN is moderately soluble in water, and its oxidation was accompanied by modest warming of the solution. In contrast, CN dissolved immediately, but its oxidation was not accompanied by a significant change in temperature. Workup of the respective reaction mixtures permitted the isolation of CNO and quetiapine N^{19} -oxide (QNO), albeit in low yields (12% for CNO and trace amounts for QNO). Olanzapine N-oxide (ONO) could not be isolated. In contrast, direct oxidation of **QN** gave quetiapine N^{19} , S-dioxide $(QNSO_2)$ in 87% yield, showing that a stable and isolable product is obtained under the oxidation conditions used.

Scheme 1 Oxidation of diazepine neuroleptics: clozapine (CN), clozapine N^4 -oxide (CNO), olanzapine (ON), olanzapine N^4 -oxide (ONO). *Reaction conditions*: i) 35% aq H₂O₂ (~40 equiv), H₂O, 0– 23 °C, 18 h; yields: CNO, 12%; ONO, 0%; ii) 35% aq H₂O₂ (~2–3 equiv), MeOH, 23 °C, 20 h; yields: CNO, 79%; ONO, 17%; iii) MCPBA (1 equiv), MeOH (CN) or CHCl₃ (ON), 23 °C, 10 min; yields: CNO, 94%; ONO, 79%.

With the intention of suppressing the formation of multiple products, we performed a second series of experiments by using a slight excess (2–3 equivalents) of aqueous 35% hydrogen peroxide in methanol. Again, **ON**, the most reactive substrate, underwent rapid oxidative degradation and the desired *N*-oxide **ONO** was isolated in only 17% yield.¹³ Thiepane-substituted **QN** and **ZN** gave the corresponding *N*-oxides **QNO** and **ZNO** in 61% and 56% yield, respectively.^{14,15} Furthermore, S-oxidation

Scheme 2 Oxidation of thiepine neuroleptics: quetiapine (QN), quetiapine N^{19} -oxide (QNO), quetiapine N^{19} ,S-dioxide (QNSO₂), zotepine (ZN), zotepine N^{20} -oxide (ZNO), zotepine N,S-dioxide (ZNSO₂). *Reaction conditions*: i) 35% aq H₂O₂ (~40 equiv), H₂O, 0–23 °C, 18 h; yields: QNO, 0%; QNSO₂, 87%; ii) 35% aq H₂O₂ (~2–3 equiv), MeOH, 23 °C, 20 h; yields: QNO, 61%; ZNO, 56%; QNSO₂, 35%; ZNSO₂, 11%; iii) MCPBA (1 equiv), MeOH (QN) or CHCl₃ (ZN), 23 °C, 10 min.; yields: QNO, 97%; ZNO, 81%; QNSO₂, 83%; ZNSO₂, 92%.

also occurred in the case of thiepines, and quetiapine N^{19} ,S-dioxide (QNSO₂) and zotepine N^{20} ,S-dioxide (ZNSO₂) were isolated in yields of 35% and 11%, respectively. Finally, CN, the least-sensitive substrate, gave the best results, and CNO was isolated in 79% yield (Schemes 1 and 2).¹⁶

Unregulated oxidation of benzepines could be avoided by the use of one equivalent of *m*-chloroperoxybenzoic acid (MCPBA) in an appropriate solvent.¹⁷ The reaction of **ON**, the most sensitive substrate, gave the desired oxide ONO in 79% yield. The less reactive dibenzodiazepine CN gave the corresponding oxide CNO in 94% yield.¹⁸ The oxidations of the thiepane-derived compounds gave the corresponding *N*-oxides as the primary products; QNO was isolated in 97% yield and ZNO in 81% yield. Furthermore, treatment of these N-oxides with a second equivalent of MCPBA gave the corresponding N,S-dioxides QNSO₂ and ZNSO₂ in 86% and 92% yield, respectively. CNO and ONO decomposed on treatment with two equivalents of MCPBA. Overall, the oxidation of benzepines with MCPBA gave the best results in terms of selectivity and yield. Detailed information is provided in Table 1.

Entry	Reactant	Product	aq H_2O_2 (~40 equiv) Xield (%)	aq H ₂ O ₂ (~2–3 equiv), MeOH Yield (%)	MCPBA (1 equiv) Yield (%)
	CN	CNO	12	70	04
1	CN	CNU	12	19	94
2	ON	ONO	_	17	79 ^a
3	QN	QNO	_	61	97
		QNSO ₂	87	35	_
4	QNO	QNSO ₂	-	_	83
5	ZN	ZNO	b	56	81ª
		ZNSO ₂	_b	11	_
6	ZNO	ZNSO ₂	-	-	92

Table 1 Synthesis of N-Oxides and N,S-dioxides

^a Solvent CHCl₃.

^b Zotepine was not available.

The *N*-oxides and the *N*,*S*-dioxides were characterized by means of ¹H, ¹³C, COSY, HSQC, and HMBC NMR experiments and by high-resolution mass spectrometry.

Oxidation at the 4-position of the piperazine in CNO and **ONO** led to significant changes in the ¹³C NMR shifts at the adjacent carbon centers. Both CNO and ONO showed a downfield shift of the methyl group by about 14 ppm, and the α-ring CH₂ groups underwent a downfield shift of nearly 10 ppm. In contrast, the β -ring CH₂ groups were shifted upfield by about 4 ppm in CNO and 5 ppm in **ONO**. The signals of the other carbon centers of the bicyclic cores showed little, if any, change. The N-oxides of the thiepines QN and ZN showed a related shift pattern. The α -side chain CH₂ group of **QNO** showed a downfield shift of nearly 13 ppm, and the signal of the α -ring CH₂ group moved about 12 ppm downfield. Again, the β -ring CH₂ groups were shifted upfield by about 4 ppm in the side chain and by about 3 to 6.5 ppm in the ring. In contrast, ZNO was characterized by α -carbon downfield shifts only (CH₃: 16 ppm, CH₂: 13.5 ppm); the β -CH₂ group attached to the oxygen in **ZNO** remained in almost the original position found in **ZN**. In addition, ¹H NMR spectra of all *N*-oxides showed a downfield shift of the α -CH group by about 1 ppm and of the β -CH group by about 0.3 ppm. Finally, X-ray analyses of **QNO** and **ZNO** unequivocally confirmed their structures and the chemoselectivity of the N-oxidation reactions (Figure 1 and Figure 2).¹⁹

As expected, the thiepine *N*,*S*-dioxides showed additional characteristic ¹³C shifts in the tricyclic core fragment. Furthermore, the NMR spectra of **QNSO**₂ showed a double set of peaks as a result of the presence of two slowly interconverting conformers.²⁰ In **QNSO**₂ (both conformers) and **ZNSO**₂, the aromatic α -carbon atoms directly bound to the *S*-oxide moiety showed downfield shifts of about 7 ppm. All the β -carbon atoms showed upfield shifts. The

Figure 1 X-ray crystal structure of QNO (2c) © Georg Thieme Verlag Stuttgart · New York

Figure 2 X-ray crystal structure of ZNO (2d)

Synthesis 2013, 45, 2875-2887

Figure 3 X-ray crystal structure of ZNSO₂ (2f)

aromatic CH-groups in ZNSO2 and QNSO2 (conformer 1) were shifted upfield by about 11-12 ppm. The corresponding C atoms in QNSO₂ (conformer 2) were shifted only 5 and 8 ppm upfield, respectively. The aromatic C atoms next to the thiepine side chain showed a downfield shift of about 11 to 14 ppm in all the dioxides. Significant differences were observed in the upfield shifts for the aromatic C-N centers in the two conformers of QNSO₂ (conformer 1: 7 ppm, conformer 2: 4 ppm). The aromatic carbon atom adjacent to the enol ether carbon in $ZNSO_2$ showed an upfield shift of about 9 ppm, whereas the enol ether carbon (γ - position) showed a shift of about 4 ppm. In addition, the ¹H NMR spectra showed a downfield shift of the aromatic β -(SO)-CH group by about 0.3 ppm. Finally, the structure of ZNSO2 was unequivocally confirmed by X-ray crystal structure analysis (Figure 3).¹⁹

Oxidant Reactivity of Benzepine N-Oxides

We surmised that the benzepine *N*-oxides might be useful as oxidants, as they share features with structurally related well-known chemical reagents such as *N*-methylmorpholine *N*-oxide (NMO) and trimethylamine *N*-oxide (Figure 4). These reagents participate in such oxidation reactions as the osmium tetroxide (OsO_4)-catalyzed dihydroxylation of olefins or allylic alcohols and the TPAP-catalyzed oxidation of primary or secondary alcohols to give aldehydes and ketones, respectively. Consequently, we tested the benzepine *N*-oxides as replacements for the original *N*-oxide oxidants (Figure 4).^{11,12}

In most cases, the benzodiazepine *N*-oxide derivatives **CNO** and **ONO** regenerated the corresponding amines **CN** and **ON**, respectively, and therefore displayed a similar reactivity to that of NMO. In contrast, the dibenzothi-

Synthesis 2013, 45, 2875-2887

Figure 4 Well-known chemical reagents *N*-methylmorpholine *N*-oxide (NMO) and trimethylamine *N*-oxide and structurally and functionally related benzodiazepine *N*-oxides

epine *N*-oxides **QNO** and **ZNO** underwent a more complex oxygen transfer. In addition to the expected amines **QN** and **ZN**, the corresponding *S*-oxides **QSO**²¹ and **ZSO**, as well as smaller amounts of the dioxides **QNSO**₂ and **ZNSO**₂, were produced in the osmium- and ruthenium-catalyzed oxygen-transfer reactions. An overview of these reactions is given in Scheme 3.

Our first series of experiments focused on the use of benzepine *N*-oxides as a replacement for NMO in the osmium tetroxide catalyzed dihydroxylation of styrene (1) (Scheme 3 and Scheme 4).²²

All reactions were carried out on a 0.2-mmol scale of styrene (1) with a 2.5-fold excess of the *N*-oxide 2 to give 1phenylethane-1,2-diol (3) and the corresponding products 4. In all cases the conversion was terminated after about 20 hours, and the resulting product mixture was analyzed by NMR spectroscopy and by high-performance liquid chromatography. Diol 3 was obtained in all the experiments (Scheme 4; for a HPLC chromatogram, see the Supporting Information), indicating that all the *N*-oxides are active oxidants.²³ The fate and behavior of the *N*-oxides was investigated by analyzing the HPLC chromatograms in a qualitative fashion. The semiquantitative details are presented in Schemes 3 and 4 and in Table 2.

In the dihydroxylation of styrene, CNO was the most efficient oxidant in terms of conversion of the olefin and regeneration of the benzepine. In contrast, ONO showed slow reaction rates and poor regeneration of ON, and it is possible that some unreacted ONO remained. The thiepine derivatives QNO and ZNO behaved as oxidants of medium activity. Despite the consumption of the starting oxidant, QNO regenerated no QN. Instead, QSO (major) and QNSO₂ (minor) were the predominant products, indicating that an efficient N-S oxygen shift had occurred. The reaction of **ZNO** showed a less distinctive oxygen shift. Here, regenerated ZN was the major product, and ZNSO₂ and ZSO were detected as minor products. Additionally, **ZNSO**₂ (as a mixture containing ~13% of **ZNO**) could also be used as the oxidant. The regeneration of **ZSO** showed that the *N*-oxide moiety is the most reactive oxygen donor. However, the minor reactant ZNO remained untouched, demonstrating the superior reactivity of the dioxide **ZNSO**₂ in terms of its oxidation power.

Scheme 3 Product patterns obtained by using benzepine *N*-oxides as oxidants in osmium- and ruthenium-catalyzed oxygen-transfer reactions. *Reaction conditions*: i) styrene (1; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; ii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (2.5 equiv), *t*-BuOH–H₂O; iii) cinnamyl alcohol (5; 1 equiv), OsO_4 (0.2 mol%), *N*-oxide (1.5 equiv), *M*S, CH₂Cl₂.

Scheme 4 OsO_4 /benzepine *N*-oxide oxidation of styrene (1); for products 4, see Scheme 3. The thiepine *N*-oxides underwent partial S-oxidation to give the *N*,*S*-dioxides 2e and 2f; these gave the corresponding *S*-oxides 4e and 4f on oxygen transfer.

Having derived a qualitative reactivity chart, we repeated the sequence in a more quantitative manner using cinnamyl alcohol [5; (2*E*)-3-phenylprop-2-en-1-ol] as the starting material.²⁴ All reactions were carried out on a 0.2mmol scale of alcohol 5 with a 2.5-fold excess of the appropriate *N*-oxide 2 to give 1-phenylpropane-1,2,3-triol (6) and the corresponding products 4. In all cases, the conversion was terminated after about 20 hours and the outcome of the reaction was analyzed by preparative HPLC. In each experiment, triol 6, benzepine 4, and unreacted benzepine *N*-oxide 2 were separated from the side products; details are presented in Scheme 3, Scheme 5 and Table 3.

Entry ^a	<i>N</i> -Oxide	Yield (%) of 3	Yield (%) of 2	Yield (%) of benzepine 4	Other products
1	CNO	8	36	53	
2	ONO	4			13% 54% 21%
3	QNO	6	21	_	9% QNSO ₂ 62% QSO
4	ZNO	4	50	28	7% ZNSO ₂ 5% ZSO
5	ZNSO ₂ ^a	6	25	38	13% ZNO
6 ^b	NMO	65	_	_	_

 Table 2
 Oxidation of Styrene (1) by Osmium Tetroxide and an N-Oxide

^a An 87:13 mixture of **ZNSO**₂ and **ZNO** was used as the starting material. Obviously, the reactant **ZNO** remained unchanged in this experiment. ^b The NMO-mediated oxidation proved the usefulness of the reaction conditions.

© Georg Thieme Verlag Stuttgart · New York

Entry	N-Oxide	Yield (%) of triol 6	Yield ^a (%) of <i>N</i> -oxide 2	Yield ^a (%) of benzepine 4	Other products
1	CNO	73	38	84	_
2	ONO	0 ^b	53	30	_
3	QNO	29	0	71	QSO (32%)
4	ZNO	42	32	71	_
5 ^c	NMO	78	-	-	-

Table 3 Oxidation of Cinnamyl Alcohol (5) by Osmium Tetroxide and an N-Oxide

^a Yields based on recovered starting material.

^b 60% of cinnamyl alcohol (5) was recovered.

^c The NMO-mediated oxidation proved the usefulness of the reaction conditions.

Scheme 5 OsO_4/N -oxide oxidation of cinnamyl alcohol (5); for products 4, see Scheme 3. **QNO** underwent partial S-oxidation to give 2e, which was converted into S-oxide 4e upon oxygen transfer.

Overall, the results for the dihydroxylation of cinnamyl alcohol (5) confirmed the findings from the oxidation of styrene (1). Again, CNO showed nearly the same oxidant quality as NMO. ONO gave only moderate amounts of ON, indicating that its oxidation power is weak. QNO underwent complete N-deoxygenation and QN (major) and QSO (minor) were isolated as product thiazepines. In contrast to the first series, ZNO was reduced to ZN, and none of the S-oxide ZSO was detected.

In a third series of experiments, we tested the TPAP/N-oxide oxidation of cinnamyl alcohol (5) to cinnamaldehyde (7) as second type of reaction to ensure that oxidations by benzepine N-oxides have a broad scope.²⁵ All the reactions were carried out on a 0.25-mmol scale of the alcohol **5** with a 1.5-fold excess of the appropriate *N*-oxide **2** to give cinnamaldehyde (7) and the corresponding products **4**. In each case, the conversion was terminated after 19 hours and the outcome of the reaction was analyzed by ¹H and ¹³C NMR spectroscopy. All runs were characterized by smooth conversions, and no side-products were found. The ratio of residual cinnamyl alcohol (5), cinnamaldehyde (7), and the product benzepine **4** were determined by integrating the characteristic peaks ($\delta = 4.27$ for **5**, $\delta = 9.67$ for **7**, and the characteristic signals for **4**) in the ¹H NMR spectra. Details are given in Scheme 3, Scheme 6 and Table 4.

Scheme 6 Pr_4NRuO_4/N -oxide oxidation of cinnamyl alcohol (5); for products 4, see Scheme 3. **QNO** underwent partial S-oxidation to form 2e; this gave the *S*-oxide 4e upon oxygen transfer.

	opyrighted ma
	Õ
	site Laval.
	Univer
	ž
	20
	loaded
	Noo

aterial

 Table 4
 Oxidation of Cinnamyl Alcohol (5) by Tetrapropylammonium Perruthenate and an N-Oxide

Entry	<i>N</i> -Oxide	Proportion of alcohol 5 ^a	Proportion of aldehyde 7 ^a	Proportion of benzepine 4 ^a	Proportion of other products ^a
1	CNO	1	50	90	_
2	ONO	1.5	1	2	_
3	QNO	1	1.7	1.9	1.4 QSO
4	ZNO	1	7	14	_
5 ^b	NMO	1	35	_	_

^a Ratios based on recovered starting material.

^b The NMO-mediated oxidation confirmed the usefulness of the reaction conditions.

The results for the oxidation of cinnamyl alcohol (5) with TPAP to give cinnamaldehyde (7) confirmed the trend in reactivity of the benzepine N-oxides. CNO was the most reactive reagent, giving a nearly quantitative conversion of the alcohol after 19 hours. ONO was the least potent oxidant and only 40% of alcohol 5 was converted into the corresponding aldehyde 7 after the standard reaction time. Analogously to the second series, the ZNO-supported reaction showed a nearly 90% consumption of the reactant alcohol 5 after 19 hours, and ZN was the sole detectable benzepine; no S-oxide ZSO was formed. QNO displayed moderate activity; presumably, the competing oxygen transfer of oxygen from nitrogen to sulfur to form QSO reduced the rate of formation of the aldehyde 7. However, the absence of any QNSO₂ indicated that QNO has an excellent oxidation power with respect to the N-oxide moiety. Obviously, the formation of QNSO₂ as an intermediate provides much more efficient N-deoxygenation in comparison with the reactant QNO.

These highly efficient N-deoxygenation reactions permitted the isolation and characterization of the thiepine S-oxides. In the ¹³C NMR spectra of **QSO** and **ZSO**, the carbon shifts for the piperazine moiety were nearly the same as those found in the original **QN**, indicating the presence of a tertiary amine function. For **ZSO**, the chemical shifts of the carbon centers around the dimethylamine moiety were nearly consistent with those of **ZN**, indicating the presence of a nonoxygenated nitrogen center. In contrast, the peak pattern of the thiepine core containing an S-oxide moiety showed carbon shifts that were nearly identical with those of **QNSO**₂ and **ZNSO**₂, demonstrating conservation of the sulfoxide functions.

Four standard benzepine antipsychotic drugs CN, ON, QN, and ZN were subjected to selected oxidizing conditions. The use of excess of hydrogen peroxide caused almost complete degradation of benzepines other than QN, which was converted into the almost-stable dioxide QNSO₂. Milder conditions gave the N-oxides CNO, QNO, and ZNO as the major products; the thiepines QN and ZN additionally gave a proportion of the corresponding dioxides QNSO₂ and ZNSO₂. Again, most of the sensitive ON was destroyed, and only 17% of the desired **ONO** was obtained. Stepwise selective oxidations with an equimolar ratio of the stronger oxidant, MCPBA, gave the oxides CNO, ONO, QNO, and ZNO in 81-97% yield. Furthermore, the thiepines QNO and ZNO could be subjected to a second oxidation step to give the corresponding dioxides QNSO₂ and ZNSO₂ chemoselectively. In all cases, the exocyclic nitrogen [the alkylated nitrogen in the 4-position of the piperazines in CN, ON, and QN and the (dimethylamino)methyl group in ZN] was the best nucleophile; the initial (kinetic) attack of the oxidant occurred on the lone pair of this basic amine center in accordance with the scale of nucleophilicity proposed by Mayr.²⁶

In the case of the benzodiazepines, the second oxidation showed a critical difference. **CN** and **ON** underwent rapid cleavage/degradation in the presence of excess oxidant (Scheme 7). Presumably, the NH center of the antiaromatic benzodiazepine core was converted into the hydroxylamine (CNO_2), which underwent subsequent elimination of water. Any resulting amidinium salt might have undergone final hydrolysis with nucleophile addition/rearomatization,²⁷ ring opening, and irreversible degradation.²⁸ Comparison of the reaction rates of **CN** and **ON** showed that the latter undergoes more rapid degradation. It seems reasonable, that the 4-chloroaniline moiety in **CN** decreases the nucleophilicity of the NH, leading to a somewhat slower second oxidation. In contrast, the electronrich **ON** undergoes exothermic multiple oxidation with immediate ring cleavage (Scheme 7).

The dibenzothiepine neuroleptics **QNO** and **ZNO** undergo a second oxidation to give stable dioxides. Obviously, the thiepine sulfur atom is converted into the corresponding sulfoxide, delivering the *N*,*S*-dioxides **QNSO**₂ and **ZNSO**₂ (Scheme 8). Analogously to the benzodiazepine series, the electron-rich **QNO** undergoes rapid S-oxidation whereas the less electron-rich 4-chlorophenyl-substituted **ZNO** shows slower formation of the *S*-oxide. Because of the bulk of the sulfoxide group, no elimination of water occurs to induce further cleavage. Presumably, a third oxidation is necessary to achieve final cleavage,

cleavage/nucleophile addition

Scheme 7 Stepwise oxidation of benzodiazepines CN and ON and reduction of the *N*-oxide moieties in CNO and ONO

which might take place either through formation of the sulfone or through attack by oxygen at the amidine $(QNSO_2)$ or the enol ether $(ZNSO_2)$ group (Scheme 8).²⁹ Analysis of the experiments in which the benzepine *N*-oxides were used as oxidants in osmium- and ruthenium-catalyzed reactions gave a reasonable reactivity pattern. In the case of the benzodiazepine *N*-oxides **CNO** and **ONO**, the latter was found to be a very weak oxidant and only low conversion rates were observed in the osmium tetroxide-catalyzed dihydroxylations and the ruthenium-catalyzed formation of aldehyde 7. In several runs, a dark color formed suggesting some reduction of the metal oxides to the elemental metals. Overall, **ON** underwent easy

Scheme 8 Stepwise oxidation/cleavage of benzothiepines QN and ZN and reduction of the *N*-oxide moieties in QNO, ZNO, QNSO₂, and ZNSO₂

Synthesis 2013, 45, 2875–2887

and rapid oxidation, and the resulting **ONO** showed slow deoxygenation. In contrast, the less easily oxidized clozapine **CN** proved to be a much better oxidant, and **CNO** showed an oxidant behavior similar to that of NMO in an artificial chemical environment. However, simple variation of the conditions permitted the use of **CN** as a reductant (the presence of an oxygen donor) and of **CNO** as an oxidant (in the presence of an oxygen acceptor).³⁰

ZNO can be regarded as an analogue of **CNO**. As a result of the presence of the chloro substituent on the dibenzothiepine core, the sulfur atom is less electron-rich and therefore less easily oxidized. Consequently, **ZNO** acts as an oxygen donor in the dihydroxylation of cinnamyl alcohol (5) to give triol 6 and in the oxidation of 5 to give enal 7. The oxidation of the less-reactive styrene (1) results in the formation of a more complicated product pattern. Obviously, the sulfur atom of **ZNO** is a better oxygen acceptor than is the double bond of styrene. Therefore, some dioxide **ZNSO**₂ is formed as a result of disproportionation of **ZNO** to form **ZN** and **ZNSO**₂. Because **ZNSO**₂ also displays *N*-oxygen donor properties, the dioxide undergoes N-deoxygenation to give the corresponding *S*-oxide **ZSO**.³¹

In the case of **QNO**, the more electron-rich sulfur tends to act as a much more efficient oxygen acceptor. Consequently, in all the oxidations of styrene (1) and cinnamyl alcohol (5) using QNO, the formation of QNSO₂ is the major competing process, occurring through disproportionation of QNO into QN and QNSO₂).³² Analogously to the zotepine ZN series, the N-oxide moiety of QNSO₂ also acts as an oxidant, giving the corresponding QSO efficiently through N-oxygen transfer.^{31,33} Because the Soxide QSO was obtained as a major product in all the test oxidation reactions, QNSO₂ must have oxidant qualities that are comparable to those of NMO, CNO, and ZNO. From a chemical point of view, QN can behave as an excellent double oxygen acceptor, undergoing a cascade of sequential N-oxidation and S-oxidation reactions. QNO is a medium-strength oxygen donor, as the TPAP-catalyzed oxidation of cinnamyl alcohol (5) to cinnamaldehyde (7) resulted in more efficient N-deoxygenation (the ratio of N-deoxygenation to S-oxidation was 1.9:1.4). In contrast, the corresponding dioxide QNSO₂, with a less electronrich dibenzothiazepine S-oxide core, is a much more efficient oxidant, undergoing N-deoxygenation in both the osmium- and ruthenium-catalyzed oxidation reactions.

In comparing the chemical reactivity of these benzepine drugs with reported results for their xenobiotic transformations in mammals, some analogies and differences become apparent. Whereas the *N*-oxides **CNO**, **ONO**, and **ZNO** are known to be more-or-less stable metabolites of the parent drugs, only traces of metabolic **QNO** have been reported.¹⁴ In contrast, only **QSO** has been described as a predominant oxidation product of **QN**.³⁴ Correlation of these findings with the present results suggests that the *S*-oxide might be formed as a result of a rapid N,S-dioxygenation of **QN** and efficient N-deoxygenation of the reactive **QNSO**₂.

In accord with the reports of Henning and co-workers,³⁵ both oxidation of CN and deoxygenation of CNO can occur: clozapine can be easily oxidized to give one major metabolite, CNO, but retroreduction can also be a favored process in the presence of a catalyst and an appropriate oxygen acceptor. In principle, analogous behavior was found for all of the antipsychotic drugs studied, despite some differences in their reactivities. In our hands, none of the N-oxides was a stable metabolite under chemical conditions and we can hazard a guess that some related instability of the N-oxides might also occur in the human body. Given that (i) clozapine CN and (at least) its major metabolites (N⁴-desmethylclozapine and CNO) can cross biological membranes;³⁵ (ii) some of the benzepine N-oxides represent major catabolites¹⁵ or minor metabolic routes in mammals;^{15,17,36} and (iii) transition-metal ions are present in most compartments of the mammalian body, the potential activities of the N-oxides CNO, ONO, QNO, and ZNO (as well as those of QNSO₂ and ZNSO₂) as oxygen donors (oxidants) might shed light on the degradation of these compounds and extend the range of sources of oxygen for oxygen-dependent processes in mammalian tissues.5c,37,38

Furthermore, a careful reassessment is required of the assumption that *N*-oxides such as **CNO** represent biologically inert synthetic ligands that display reliable and selective receptor-activation properties. Multiple functions, for example, those occurring after **CN** regeneration and oxygen transfer, have to be excluded to maintain the prerequisites of the DREADD technique on a firm basis.

When necessary, reaction solvents were dried by standard procedures before use. All reactions that involved moisture- or air-sensitive reagents were carried out under argon. ¹H NMR, ¹³C NMR, and 2D spectra (COSY, HSQC, HMBC, and NOESY) were recorded at r.t. on a Bruker ARX400 or AV400 spectrometer in CDCl₃ with residual CHCl₃ as the internal standard or in CD₃OD with residual CH₃OD as the internal standard. IR spectra were recorded with a Jasco FT/IR-400 plus spectrometer with a single-reflection horizontal ATR (ZnSe) window. FD mass spectra were recorded by using a Finnigan MAT 95 spectrometer. High-resolution mass spectra were recorded with a Waters Q Tof Ultima 3 Micromass spectrometer. The progress of reactions was monitored by TLC on Al sheets coated with 60 F254 silica gel (Merck or Macherey & Nagel).

The analytical HPLC systems used to analyze the products were a Knauer HPLC pump 64 connected to a Phenomenex Gemini-NX C18 (110-4, 6 × 250 mm) column, a Knauer UV/VIS-FILTER photometer ($\lambda = 254$ nm), and a Knauer differential refractometer (System A1) or a Knauer Smartline Pump 1000 connected to a Knauer Smartline Autosampler 3950, a Phenomenex Gemini-NX C18 (110-5 4, 6 × 250 mm) column, a Knauer Smartline UV Detector 2550 ($\lambda = 254$ nm), and a Knauer Smartline RI-Detector 2300 (System A2). Other conditions for analytical chromatography are noted below.

Various preparative HPLC Systems were used to purify the substances. System P1 consisted of a Knauer MPLC pump connected to a Phenomenex Gemini C18 (110–5 21, 2 × 250 mm) column, a Knauer Variable Wavelength Monitor (λ = 254 nm), and a Bischoff RI-detector 8110. System P2 consisted of a Knauer WellChrom Preparative Pump K-1800 connected to a Phenomenex Gemini-NX C18 (110–5, 30 × 250mm) column, a Knauer Variable Wavelength Monitor (λ = 254 nm), and a Knauer Differential Refractometer. System P3 consisted of two Knauer Smartline 1000 pumps connected to a Knauer Smartline Autosampler 3950, a Phenomenex Gemini C18 (110–5 21, 2 × 250 mm) column, a Knauer Smartline UV Detector 2550 (λ = 254 nm), and a Knauer Smartline RI-Detector 2300. Other conditions for preparative chromatography are noted below.

Oxidation of the Benzepines

General Procedure A (Neat 35% Aqueous H_2O_2): 35% aq H_2O_2 (5 mL) was added to the appropriate benzepine (500 mg, 1.3–1.6 mmol), and the mixture was stirred at r.t. In the case of highly exothermic reactions, the temperature rise was modulated by cooling with ice–water after about 50 min. The mixture was stirred for 18 h, cooled to 0 °C, and treated with Na₂SO₃ (5 g) to destroy excess H_2O_2 After 4 h, H_2O (10 mL) and MeOH (10 mL) were added, and any remaining solid Na₂SO₃ was removed by filtration. The solvents were removed under reduced pressure and the crude product was purified by HPLC. The yields are reported in Table 1. HPLC data are given below.

General Procedure B [35% Aqueous H_2O_2 (2–3 Equivalents) in MeOH]: A soln of the benzepine (0.50 mmol) in MeOH (5 mL) was cooled to 0 °C and 35% aq H_2O_2 (0.1 mL, 1.2 mmol) was added slowly. The mixture was stirred at r.t. for 20 h and then the solvents were removed under reduced pressure. The crude product was purified by HPLC. The yields are reported in Table 1. HPLC data are given below.

General Procedure C (MCPBA in CHCl₃ or MeOH): The benzepine or corresponding N-oxide (\leq 8.9 mmol) was dissolved CHCl₃ or MeOH (75 mL). A soln of MCPBA (1 equiv) in CHCl₃ or MeOH (10 mL) was added dropwise and the mixture was stirred for 10 min at r.t. Et₃N (2 equiv) was added, and the mixture was stirred for a further 10 min. The solvents were then removed under reduced pressure and the crude product was purified by HPLC. The yields are reported in Table 1. HPLC data are given below.

Clozapine N⁴-Oxide (CNO)

Pale yellow slowly crystallizing oil; mp 199–206 °C with decomposition (colour changed to red).

Prepared from CN (508 mg, 1.55 mmol) by following General Procedure A; yield: 62 mg (0.18 mmol, 12%).

Prepared from CN (164 mg, 0.5 mmol) by following General Procedure B; yield: 126 mg (0.4 mmol, 79%).

Prepared from CN (2.00 g, 6.1 mmol) by following General Procedure C; yield: 1.97 g (5.8 mmol, 94%).

Analytical HPLC: System A1; flow rate: 1 mL/min; mobile phase: MeOH-H₂O- 25% aq NH₄OH (60:40:0.35); t_R = 10.08 min; System A1; flow rate: 2 mL/min; mobile phase MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 2.47 min.

Preparative HPLC: System P1; flow rate: 15 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 5.6 min.

IR (ATR): 3262 (br w), 2944 (w), 2819 (w), 1604 (m), 1566 (m), 1461 (m), 1430 (w), 1401 (w), 11378 (w), 1303 (w), 1282 (w), 1260 (w), 1232 (m), 1215 (w), 1159 (w), 1120 (w), 1099 (w), 1083 (w), 1031 (m), 970 (m), 930 (w), 879 (w), 845 (w), 816 (m), 749 (s), 695 (w), 669 (w) cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 3.08–3.15 (m, 2 H, H-2), 3.18 (s, 3 H, H-1), 3.48–3.59 (m, 2 H, H-2), 3.65–3.77 (m, 2 H, H-3), 3.71–3.93 (m, 2 H, H-3), 6.81 (d, *J* = 8.4 Hz, 1 H, H-12), 6.86 (dd, *J* = 8.4, 2.3 Hz, 1 H, H-13), 6.98 (d, *J* = 2.3 Hz, 1 H, H-15), 7.00 (dd, *J* = 7.9, 1.0 Hz, 1 H, H-9), 7.02 (dt, *J* = 7.5, 7.5, 1.0 Hz, 1 H, H-7), 7.27 (dd, *J* = 7.7, 1.3 Hz, 1 H, H-6), 7.34 (dt, *J* = 7.8, 7.7, 1.5 Hz, 1 H, H-8).

¹³C NMR (100 MHz, CD₃OD): δ = 43.2 (br, C-3), 60.1 (C-1), 65.8 (C-2), 121.4 (C-9), 121.6 (C-12), 123.8 (C-5), 124.2 (C-7), 124.9 (C-13), 127.4 (C-15), 129.5 (C-14), 131.1 (C-6), 133.7 (C-8), 142.8 (C-16), 143.2 (C-11), 155.4 (C-10), 164.0 (C-4).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{18}H_{20}ClN_4O$: 343.1326; found: 343.1333.

Olanzapine N^4 -Oxide (ONO)

Orange solid; mp 183–187 °C with decomposition (colour changed to violet).

Prepared from **ON** (501 mg, 1.6 mmol) by following General Procedure A: no **ONO** found.

Prepared from **ON** (156 mg (0.5 mmol) by following General Procedure B; yield: 28 mg (0.09 mmol, 17%).

Prepared from **ON** (1.0 g, 3.2 mmol) by following General Procedure C; yield: 759 mg (2.3 mmol, 72%). In the absence of Et_3N , the corresponding 3-chlorobenzoic acid salt (**ONO HOBz'**) was isolated; yield: 124 mg (0.26 mmol, 78%). For details of the purification and analytical data for **ONO-HOBz'**, see the Supporting Information.

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 2.10 min.

Preparative HPLC: System P1; flow rate: 12 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (60:40:0.35); t_R = 10.0 min; System P1; flow rate: 21 mL/min; mobile phase: MeOH-H₂O (70:30); t_R = 4.0 min.

IR (ATR): 3223 (br m), 2920 (w), 2818 (w), 1590 (s), 1509 (w), 1467 (m), 1396 (m), 1285 (w), 1263 (m), 1219 (m), 1175 (w), 1137 (m), 1119 (w), 1032 (s), 981 (w), 950 (m), 927 (m), 837 (w), 817 (w), 757 (s), 674 (w) cm⁻¹.

¹H NMR (400 MHz, CD₃OD): $\delta = 2.30$ (d, J = 1.1 Hz, 3 H, H-15), 3.14 (br d, J = 11.4 Hz, 2 H, H-2eq), 3.19 (s, 3 H, H-1), 3.51 (dt, J = 11.7, 11.7, 3.1 Hz, 2 H, H-2ax), 3.65–3.74 (m, 2 H, H-3), 3.91 (br d, J = 13.9 Hz, 2 H, H-3), 6.38 (d, J = 1.2 Hz, 1 H, H-6), 6.67– 6.72 (m, 1 H), 6.87–6.94 (m, 3 H).

¹³C NMR (100 MHz, CD₃OD): δ = 15.3 (C-15), 42.9 (C-3), 60.1 (C-1), 66.0 (C-2), 119.0 (C-5), 120.1 (C-10), 123.6 (C-6), 125.3 (C-12), 125.8 (C-11), 128.9 (C-13), 130.7 (C-7), 141.6 (C-14), 145.6 (C-9), 156.4 (C-8), 159.3 (C-4).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{17}H_{21}N_4OS$: 329.1436; found: 329.1432.

Quetiapine N¹⁹-Oxide (QNO)

Colourless foam; mp 106-110°C.

Prepared from **QN** (506 mg, 1.32 mmol) by following General Procedure A: no **QNO** found.

Prepared from **QN** (235 mg, 0.61 mmol) by following General Procedure B; yield: 149 mg (0.37 mmol, 61%).

Prepared from **QN** (3.40 g, 8.9 mmol) by following General Procedure C; yield: 3.45 g (8.6 mmol, 97%).

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 2.56 min.

Preparative HPLC: System P1; flow rate: 15 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); $t_R = 6.0$ min.

Recrystallization from toluene–H₂O–MeOH (~40:1:1) gave **QNO** ·2MeOH as a colorless block; mp 114 °C. The structure of **QNO** ·2MeOH was confirmed by X-ray crystallography.¹⁹

IR (ATR): 3056 (w), 3000 (w), 2952 (w), 2869 (w), 1597 (m), 1577 (m), 1557 (m), 1473 (w), 1454 (w), 1397 (m, br), 1303 (m), 1261 (m), 1245 (m), 1216 (w), 1166 (w), 1123 (m, br), 1079 (m, br), 1038 (m), 947 (w), 922 (w), 832 (w), 741 (s), 687 (w), 664 (m) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.10–3.30 (m, 3 H, H-5), 3.28– 3.35 (m, 2 H, H-4), 3.45–3.58 (m, 3 H, H-2, H-5), 3.61–3.67 (m, 2 H, H-1), 3.84–3.96 (m, 1 H, H-6), 3.96–4.14 (m, 3 H, H-3, H-6), 4.39–4.85 (m, 2 H, H6), 6.88 (dt, *J* = 7.6, 7.6, 1.2 Hz, 1 H, H-16), 7.03 (dd, *J* = 7.9, 1.1 Hz, 1 H, H-18), 7.15 (dt, *J* = 7.6, 7.6, 1.2 Hz, 1 H, H-17), 7.23–7.34 (m, 3 H, H-9, H-10,H-11), 7.37 (dd, *J* = 7.7, 1.1 Hz, 1 H, H-15), 7.47 (d, *J* = 7.1 Hz, 1 H, H-12).

¹³C NMR (100 MHz, CDCl₃): δ = 39.6 (br, C-6''), 43.2 (br, C-6'), 60.4 (C-1), 63.6 (C-3), 64.1 (br, C-5''), 65.0 (C-5'), 70.7 (C-4), 72.4 (C-2), 123.2 (C-16), 125.0 (C-18), 127.6 (C-14), 128.5 (C-9 or C-10), 128.7 (C-9 or C-10), 129.1 (C-17), 131.1 (C-11), 132.0 (C-12 or C-15), 132.1 (C-12 or C-15), 133.3 (C-8), 139.6 (C-13), 148.2 (C-19), 159.8 (C-7).

Quetiapine N¹⁹,S-Dioxide (QNSO₂)

Colourless sticky foam (no defined melting point).

Prepared from **QN** (506 mg, 1.32 mmol) by following General Procedure A; yield: 475 mg (1.14 mmol, 87%).

Prepared from **QN** (235 mg, 0.61 mmol) by following General Procedure B; yield: 90 mg (0.22 mmol, 35%).

Prepared from **QN** (461 mg, 1.15 mmol) by following General Procedure C; yield: 399 mg (0.96 mmol, 83%).

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 1.63 min.

Preparative HPLC: System P3; flow rate: 16 mL/min; mobile phase: MeOH-H₂O- 25% aq NH₄OH (60:40:0.35); t_R = 5.55 min (major conformer), 6.05 min (minor conformer); System P1; flow rate: 16 mL/min, mobile phase: MeOH-H₂O-25% aq NH₄OH (50:50:0.35); t_R = 11.3 min (major conformer), 12.8 min (minor conformer).

IR (ATR): 3356 (br w), 2935 (w), 2820 (w), 1592 (m), 1577 (s), 1556 (s), 1451 (m), 1420 (m), 1303 (m), 1284 (w), 1265 (m), 1244 (w), 1166 (w), 1113 (m), 1079 (s), 1028 (s), 949 (w), 922 (w), 829 (w), 767 (s), 741 (m), 713 (w), 685 (m), 668 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ (major conformer) = 2.95–3.41 (m, 2 H, H-5), 3.26-3.50 (m, 2 H, H-5'), 3.30-3.42 (m, 2 H, H-4), 3.50-3.57 (m, 2 H, H-2), 3.63-3.70 (m, 2 H, H-1), 3.99-4.13 (m, 2 H, H-3), 6.96 (dd, *J* = 1.0, 7.8 Hz, 1 H, H-18), 7.14 (dt, *J* = 1.0, 7.6, 7.6 Hz, 1 H, H-16), 7.22 (dt, J = 1.4, 7.7, 7.7 Hz, 1 H, H-17), 7.33 (dd, J = 0.8, 7.6 Hz, 1 H, H-10), 7.41 (dt, J = 0.8, 7.4, 7.4 Hz, 1 H, H-9), 7.56 (dd, J = 1.2, 7.6 Hz, 1 H, H-15), 7.60 (t, J = 7.6, 7.6 Hz, 1 H, H-11), 7.80 (d, J = 7.7 Hz, 1 H, H-12); δ (minor conformer) = 2.93-3.01 (m, H-5), 3.12-3.21 (m, H-5'), 3.26-3.30 (m, H-4), 3.27-3.38 (m, H-6), 3.42-3.52 (m, H-5), 3.45-3.50 (m, H-2), 3.54-3.64 (m, H-5'), 3.57-3.63 (m, H-1), 3.92-3.97 (m, H-3), 3.95-4.07 (m, H-6'), 4.14-4.25 (m, H-6), 4.69-4.79 (m, H-6'), 6.92-7.00 (m, 1 H, H-16), 7.09 (dd, *J* = 0.8, 8.0 Hz, 1 H, H-18), 7.30 (dt, *J* = 1.5, 7.8, 7.8 Hz, 1 H, H-17), 7.41–7.51 (m, 2 H, H-9, H-15), 7.51–7.54 (m, 2 H, H-10, H-11), 7.62 (d, J = 8.5 Hz, 1 H, H-12); H6 (major conformer) occurred as a very broad 4 H integral between 3.4 and 5.0 ppm. Because of extensive overlaps with the major conformer, the integrations of the minor conformer peaks are omitted.

¹³C NMR (100 MHz, CDCl₃): δ (major conformer) = 39.2 (br, C-6'), 43.3 (br, C-6), 60.4 (C-1), 63.6 (C-3), 64.2 (C-5'), 64.9 (C-5), 70.5 (C-4), 72.5 (C-2), 119.8 (C-12), 120.1 (C-15), 121.9 (C-8), 124.3 (C-16), 124.6 (C-18), 128.0 (C-10), 130.3 (C-9), 130.3 (C-17), 132.1 (C-11), 135.1 (C-14), 141.7 (C-19), 147.5 (C-13), 156.6 (C-7); δ (minor conformer) = 39.3 (C-6'), 44.5 (C-6), 60.6 (C-1), 63.5 (C-5'), 63.8 (C-3), 65.9 (C-5), 71.0 (C-4), 72.4 (C-2), 122.4 (C-16), 124.3 (C-8), 124.4 (C-12), 126.9 (C-18), 127.2 (C-15), 129.5 (C-10), 130.9 (C-9), 132.1 (C-11), 132.6 (C-17), 133.0 (C-14), 144.3 (C-19), 146.9 (C-13), 157.7 (C-7).

HRMS (ESI): $m/z \ [M + Na]^+$ calcd for $C_{21}H_{25}N_3NaO_4S$: 438.1436; found: 438.1464.

Zotepine N²⁰-Oxide (ZNO)

Colourless solid; mp 110–115 °C.

Prepared from **ZN**·**xHCl** (1.7 g, 4.6 mmol) by following General Procedure B; yield: 898 mg (2.6 mmol, 56%).

Prepared from **ZN** (1.97 g, 6.0 mmol) by following General Procedure C; yield: 1.69 g (4.9 mmol, 81%).

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 4.29 min.

Preparative HPLC: System P1; flow rate: 20 mL/min; mobile phase MeOH–H₂O (70:30); $t_R = 12.8$ min.

Recrystallization from toluene– H_2O (~40:1) gave **ZNO**·2 H_2O as colorless plates; mp 117.5 °C. The structure of **ZNO**·2 H_2O was confirmed by X-ray crystallography.¹⁹

IR (ATR): (**ZNO**·2H₂O): 3311 (br m), 2940 (w), 2826 (w), 1622 (m), 1577 (w), 1550 (w), 1463 (m), 1432 (w), 1396 (w), 1357 (w), 1277 (w), 1256 (w), 1226 (m), 1199 (s), 1140 (m), 1116 (s), 1099 (s), 1059 (w), 1028 (s), 956 (w), 917 (w), 889 (w), 816 (s), 754 (s), 735 (w), 715 (w), 689 (w), 658 (m) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.37 (s, 6 H, H-1), 3.78–3.81 (m, 2 H, H-2), 4.68–4.72 (m, 2 H, H-3), 6.48 (s, 1 H, H-17), 7.20 (ddd, *J* = 2.6, 6.3, 7.5 Hz, 1 H, H-13), 7.22–7.27 (m, 2 H, H-14, H-15), 7.29 (dd, *J* = 2.4, 8.3 Hz, 1 H, H-8), 7.44 (s, 1 H, H-6), 7.46 (d, *J* = 6.6 Hz, 1 H, H-9), 7.47 (dd, *J* = 1.2, 7.6 Hz, 1 H, H-12).

¹³C NMR (100 MHz, CDCl₃): δ = 60.0 (C-1), 62.4 (C-3), 69.7 (C-2), 108.7 (C-17), 127.4 (C-6), 127.9 (C-13), 128.5 (C-14), 129.4 (C-15), 130.1 (C-8), 132.2 (C-12), 133.3 (C-11), 133.7 (C-9), 134.3 (C-7 or C-10), 134.5 (C-7 or C-10), 138.1 (C-16), 139.3 (C-5), 155.2 (C-4).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₉ClNO₂S: 348.0825; found: 348.0818.

Zotepine N^{20} , S-Dioxide (ZNSO₂)

Pale brownish solid; mp 105–110 °C.

Prepared from **ZN**·**xHCl** (1.7 g, 4.6 mmol) by following General Procedure B; yield: 188 mg (0.5 mmol, 11%).

Prepared from **ZNO** (515 mg, 1.4 mmol) by following General Procedure C; yield: 471 mg (1.3 mmol, 93%).

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); $t_R = 1.97$ min.

Preparative HPLC: System P1; flow rate: 12 mL/min; mobile phase: MeOH-H₂O (60:40); t_R = 12.1 min; System P1; flow rate: 20 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 5.2 min.

Recrystallization from toluene–H₂O (~40:1) gave **ZNSO**₂·2H₂O as colorless plates; mp 111 °C. The structure of **ZNSO**₂·2H₂O was confirmed by X-ray crystallography.¹⁹

IR (ATR): 3223 (br m), 3052 (w), 2953 (w), 1615 (m), 1583 (w), 1552 (m), 1471 (m), 1458 (m), 1434 (w), 1395 (w), 1355 (m), 1260 (m), 1226 (m), 1202 (s), 1119 (s), 1095 (s), 1077 (s), 1038 (s), 955 (m), 889 (m), 825 (s), 757 (s), 734 (s), 710 (s), 657 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.28 (s, 3 H, H-1), 3.36 (s, 3 H, H-1), 3.73 (t, *J* = 4.5, 4.5 Hz, 2 H, H-2), 4.60–4.66 (m, 1 H, H-3), 4.72–4.78 (m, 1 H, H-3), 6.51 (s, 1 H, H-17), 7.26 (dd, *J* = 1.4, 7.7 Hz, 1 H, H-15), 7.30 (dt, *J* = 1.3, 7.4, 7.4 Hz, 1 H, H-14), 7.44 (dt, *J* = 1.4, 7.5, 7.5 Hz, 1 H, H-13), 7.49 (d, *J* = 2.0 Hz, 1 H, H-6), 7.53 (dd, *J* = 2.1, 8.5 Hz, 1 H, H-8), 7.72 (dd, *J* = 1.1, 7.9 Hz, 1 H, H-12), 7.76 (d, *J* = 8.4 Hz, 1 H, H-9).

¹³C NMR (100 MHz, CDCl₃): δ = 59.9 (C-1), 62.5 (C-3), 69.2 (C-2), 105.2 (C-17), 120.8 (C-12), 122.2 (C-9), 126.6 (C-6), 128.5 (C-13), 128.6 (C-16), 128.8 (C-15), 129.2 (C-5), 129.5 (C-14), 131.0 (C-8), 135.7 (C-7), 140.1 (C-11), 141.4 (C-10), 152.4 (C-4).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₉ClNO₃S: 364.0774; found: 364.0768.

Osmium Tetroxide-Catalyzed Dihydroxylations With *N*-Oxides as Co-oxidants: General Procedure D

Styrene (1) or (*E*)-cinnamyl alcohol (5) (0.2 mmol) and *N*-oxide 2 (0.5 mmol) were dissolved or suspended in *t*-BuOH–H₂O (1:1; 5 mL), and the mixture was stirred for 15 min at r.t. A 4% aq soln of OsO_4 (5 µL) was injected into the mixture, which was then stirred

© Georg Thieme Verlag Stuttgart · New York

for 19 h at r.t. 10% aq Na₂SO₃ (1 mL) was added and stirring was continued for 1–2 h. The aqueous layer was extracted with CH_2Cl_2 (3 × 3 mL) and the organic layers were combined, dried (MgSO₄), and concentrated under reduced pressure.

The yields of 1-phenylethane-1,2-diol (3) obtained by using the various *N*-oxides **2** were compared by means of analytical HPLC. Aliquots were injected and the resulting peak areas were integrated to provide qualitative information.

Analytical HPLC (qualitative): System A2; flow rate; 1 mL/min; mobile phase: MeOH-H₂O (50:50); System A2; flow rate: 1 mL/min; mobile phase: MeOH-H₂O (70:30).

The products of the styrene reactions were determined by means of analytical HPLC with co-injection of reference substances, and by ¹H and ¹³C NMR of the crude product; yields were determined integrating peak areas obtained from the RI detector.

Analytic HPLC (quantitative): System A1; flow rate: 2 mL/min; mobile phase: MeOH $-H_2O-25\%$ aq NH₄OH (70:30:0.35).

The yields from (E)-cinnamyl alcohol (5) were measured after preparative HPLC.

Preparative HPLC: System P2; flow rate: 20 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (70:30:0.35).

For details of the use of the benzepine *N*-oxides as oxidants, see the Supporting Information.

Tetrapropylammonium Perruthenate-Catalyzed Oxidation of (*E*)-Cinnamyl Alcohol (5) by Using *N*-Oxides 2 as Co-oxidants: General Procedure E

(*E*)-Cinnamyl alcohol (**5**; 34 mg, 0.25mmol) was added to a soln of *N*-oxide **2** (375 µmol) in CH₂Cl₂ (2 mL) containing 4-Å MS (100 mg) under argon, and the mixture was stirred for 30 min. 1 mL of a soln of Pr₄N(RuO₄) (105 mg) in anhyd CH₂Cl₂ (10 mL) containing 4-Å MS (750 mg) was added and the mixture was stirred for 19 h at r.t. 10% aq Na₂SO₃ (2 mL) was added, and the mixture was stirred for a further 1–2 h. The aqueous layer was then extracted with CH₂Cl₂ (3 × 3 mL), and the organic layers were combined, dried (MgSO₄), and concentrated under reduced pressure. The yield was determined by analyzing the ¹H NMR spectra by integration of the characteristic peaks for cinnamyl alcohol (**5**) (δ = 4.3 ppm, 2 H, CH₂OH) and cinnamaldehyde (**7**) (δ = 9.7 ppm, 1 H, CH=O) and one signal for the corresponding amine **4**. If necessary, signals for the residual *N*-oxide **2** and any *S*-oxide were also integrated.

Quetiapine S-Oxide (QSO)

Analytical HPLC: System Á1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 2.03 min; System A1; flow rate: 2 mL/min, mobile phase: MeOH-H₂O-25% aq NH₄OH (60:40:0.35); t_R = 4.11 min; System A1; flow rate: 2 mL/min; mobile phase MeOH-H₂O-25% aq NH₄OH (50:50:0.35); t_R = 9.90 min.

Preparative HPLC: System P1; flow rate: 18 mL/min; mobile phase MeOH–H₂O (50:50); $t_R = 28.0$ min.

Pale green viscous oil.

IR (ATR): 3437 (br w), 3054 (w), 2928 (w), 2858 (w), 2821 (w), 1591 (m), 1577 (s), 1554 (s), 1452 (m), 1422 (m), 1367 (w), 1352 (w), 1306 (m), 1286 (w), 1259 (m), 1243 (m), 1122 (m), 1085 (m), 1038 (m), 1014 (s), 909 (w), 831 (w), 767 (m), 739 (m), 687 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 2.55$ (br s, 1 H, H-5), 2.64 (br s, 1 H, H-5), 2.64 (t, J = 5.3, 5.3 Hz, 2 H, H-4), 3.61 (m, 2 H, H-2), 3.66 (t, J = 5.3, 5.3 Hz, 2 H, H-3), 3.70 (m, 2 H, H-1), 7.00 (dd, J = 0.8, 7.8 Hz, 1 H, H-18), 7.16 (dt, J = 1.0, 7.5, 7.5 Hz, 1 H, H-16), 7.26 (dt, J = 1.5, 7.7, 7.7 Hz, 1 H, H-17), 7.34 (dd, J = 0.8, 7.6 Hz, 1 H, H-9), 7.44 (dt, J = 0.9, 7.5, 7.5 Hz, 1 H, H-10), 7.58 (dd, J = 1.4, 7.8 Hz, 1 H, H-15), 7.62 (dt, J = 0.9, 7.6, 7.6 Hz, 1 H, H-11), 7.84 (dd, J = 0.7, 7.9 Hz, 1 H, H-12); remaining H5 and H6 occurred as a very broad 6 H integral between 2.8 and 4.0 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 45.8 (br, C-6), 52.9 (br, C-5), 57.8 (C-4), 61.8 (C-1), 67.4 (C-3), 72.4 (C-2), 119.7 (C-12), 120.2 (C-15), 122.6 (C-8), 123.8 (C-16), 124.8 (C-18), 128.0 (C-9), 130.0 (C-10), 130.3 (C-17), 131.8 (C-11), 135.5 (C-14), 142.4 (C-19), 147.7 (C-13), 157.3 (C-7).

HRMS (ESI): $m\!/\!z~[M+H]^+$ calcd for $C_{21}H_{26}N_3O_3S;$ 400.1695; found: 400.1690.

Zotepine S-Oxide (ZSO)

Analytical HPLC: System A1; flow rate: 2 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); t_R = 4.68 min.

Preparative HPLC: System P1; flow rate: 21 mL/min; mobile phase: MeOH-H₂O-25% aq NH₄OH (75:25:0.35); $t_R = 10.22$ min.

Colourless solid; mp 128–130 $^{\circ}\mathrm{C}$ (very slow decomposition, colour changed to brown).

IR (ATR): 3054 (w), 2976 (w), 2946 (w), 2821 (m), 2771 (m), 1613 (m), 1583 (w), 1552 (m), 1470 (m), 1400 (w), 1353 (m), 1261 (m), 1227 (m), 1202 (m), 1141 (m), 1119 (s), 1096 (m), 1078 (s), 1039 (s), 992 (w), 963 (w), 914 (w), 875 (w), 827 (s), 756 (m), 735 (m), 710 (m), 688 (w) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.81 (d, *J* = 8.5 Hz, 1 H, H-9), 7.78 (dd, *J* = 1.0, 8.0 Hz, 1 H, H-12), 7.66 (d, *J* = 2.1 Hz, 1 H, H-6), 7.58 (dd, *J* = 2.1, 8.5 Hz, 1 H, H-8), 7.49 (dt, *J* = 1.1, 7.6, 7.6 Hz, 1 H, H-13), 7.35 (dt, *J* = 1.3, 7.4, 7.5 Hz, 1 H, H-14), 7.27 (d, *J* = 7.4 Hz, 1 H, H-15), 6.41 (s, 1 H, H-17), 4.18 (t, *J* = 5.7, *J* = 5.7 Hz, 2 H, H-3), 2.93–2.78 (m, 2 H, H-2), 2.40 (s, 6 H, H-1).

¹³C NMR (100 MHz, CDCl₃): δ = 153.7 (C-4), 141.3 (C-10), 140.4 (C-11), 135.8 (C-7), 131.0 (C-8), 129.8 (C-5), 129.4 (C-14), 129.2 (C-16), 128.6 (C-15), 128.3 (C-13), 127.3 (C-6), 122.1 (C-9), 121.0 (C-12), 104.4 (C-17), 66.7 (C-3), 57.9 (C-2), 45.9 (C-1).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₉ClNO₂S: 348.0825; found: 348.0836.

Acknowledgment

We are grateful to Christa Sick, Erik Sick, and Peter Sick for their financial support of this work.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) (a) Pirmohamed, P.; Park, K. *CNS Drugs* 1997, *2*, 139.
 (b) Müller, W. E. In *Therapie Psychischer Erkrankungen*; Möller, H.-J., Ed.; 3rd ed.; Thieme: Stuttgart, 2006, 182.
- (2) Nishioka, N.; Arnold, S. E. Am. J. Geriatr. Psychiatry 2004, 12, 167.
- (3) (a) Reinke, A.; Martins, M. R.; Lima, M. S.; Moreira, J. C.; Dal-Pizzol, F.; Quevedo, J. *Neurosci. Lett.* 2004, *372*, 157.
 (b) Walss-Bass, C.; Weintraub, S. T.; Hatch, J.; Mintz, J.; Chaudhuri, A. R. *Int. J. Neuropsychopharmacol.* 2008, *11*, 1097. (c) Baig, M. R.; Navaira, E.; Escamilla, M.; Raventos, H.; Walss-Bass, C. J. Psychiatr. Pract. 2010, *16*, 325.
- (4) Moreover, CN induced up-regulation of the proapoptotic gene bax α and the production of an excess of superoxide anion in circulating granulocytes from all treated patients, whereas neither septicemia-induced respiratory bursts in neutrophils nor ON induced such effects; see: (a) Loeffler, S.; Fehsel, K.; Henning, U.; Fischer, J.; Agelink, M.; Kolb-Bachofen, V.; Klimke, A. *Pharmacopsychiatry* 2003, *36*, 37. (b) Fehsel, K.; Loeffler, S.; Krieger, K.; Henning, U.; Agelink, M.; Kolb-Bachofen, V.; Klimke, A. *J. Clin. Psychopharmacol.* 2005, *25*, 419.

- (5) (a) Gauch, R.; Michaelis, W. Farmaco, Ed. Prat. 1971, 26, 667. (b) Pirmohamed, M.; Williams, D.; Madden, S.; Templeton, E.; Park, B. K. J. Pharmacol. Exp. Ther. 1995, 272, 984. (c) Chang, W. H.; Lin, S. K.; Lane, H. Y.; Wei, F. C.; Hu, W. H.; Lam, Y. W.; Jann, M. W. Prog. Neuropsychopharmacol. Biol. Psychiatry 1998, 22, 723. (d) Bun, H.; Disdier, B.; Aubert, C.; Catalin, J. Fundam. Clin. Pharmacol. 1999, 13, 577. (e) Aitchison, K. J.; Jann, M. W.; Zhao, J. H.; Sakai, T.; Zaher, H.; Wolff, K.; Collier, D. A.; Kerwin, R. W.; Gonzalez, F. J. J. Psychopharmacol. (London U. K.) 2000, 14, 353. (f) Heiser, P.; Schüler-Springorum, M.; Schulte, E.; Hausmann, C.; Remschmidt, H.; Krieg, J.-C.; Vedder, H. Eur. J. Pharmacol. 2003, 476, 167.
- (6) Conklin, B. R. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 4777.
- (7) (a) Bender, D.; Holschbach, M.; Stöcklin, G. *Nucl. Med. Biol.* 1994, *21*, 921. (b) Ray, R. S.; Corcoran, A. E.; Brust, R. D.; Kim, J. C.; Richerson, G. B.; Nattie, E.; Dymecki, S. M. *Science (Washington D.C.)* 2011, *333*, 637. For a comment on (b), see: (c) Löffler, S.; Körber, J.; Nubbemeyer, U.; Fehsel, K. *Science (Washington D.C.)* 2012, *337*, 646. For the response to the comment, see: (d) Dymecki, S. M.; Ray, R. R.; Brust, R. D.; Corcoran, A. E.; Kim, J. C.; Richerson, G. B.; Nattie, E. *Science* (*Washington D.C.)* 2012, *337*, 646.
- (8) Armbruster, B. N.; Li, X.; Pausch, M. H.; Herlitze, S.; Roth, B. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 5163.
- (9) Some authors have even mentioned the presumed inertness of **CNO** in the title of a publication: see ref. 8.
- (10) (a) VanRheenen, V.; Cha, D. Y.; Hartley, W. M. Org. Synth. Coll. Vol. VI; Wiley: London, 1988. (b) Chappuis, G.; Tamm, C. Helv. Chim. Acta 1982, 65, 521.
- (11) (a) Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schröder, G.; Sharpless, K. B. *J. Am. Chem. Soc.* **1988**, *110*, 1968.
 (b) Wai, J. S. M.; Marko, L.; Svendsen, J. S.; Finn, M. G.; Jacobsen, E. N.; Sharpless, K. B. *J. Am. Chem. Soc.* **1989**, *111*, 1123; see also ref. 10.
- (12) (a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. *J. Chem. Soc., Chem. Commun.* **1987**, 1625. (b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. *Synthesis* **1994**, 639.
- (13) For a synthesis of **ONO**, see: Thatipalli, P.; Kumar, R.; Bulusu, C.; Chakka, R.; Padi, P. R.; Yerra, A.; Bollikonda, S. *ARKIVOC* **2008**, *(xi)*, 195.
- (14) For a synthesis of QNO under neutral conditions, see: Kumar, S. K.; Reddy, K. T.; Kanth, A. V.; Omprakash, G.; Dubey, P. K. Org. Chem.: Indian J. 2012, 8, 164.
- (15) For a synthesis of ZNO, see: Shiraga, T.; Kaneko, H.; Iwasaki, K.; Tozuka, Z.; Suzuki, A.; Hata, T. *Xenobiotica* 1999, 29, 217.
- (16) For a synthesis of CNO, see: Garipelli, N.; Reddy, B. M.; Jithan, A. V. Int. J. Pharm. Sci. Nanotechnol. 2010, 2, 762.
- (17) Calligaro, D. O.; Fairhurst, J.; Hotten, T. M.; Moore, N. A.; Tupper, D. E. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 25.
- (18) The oxidation of CNO and ONO with MCPBA at 50% conversion gave unknown polar oxidation products, mostly through decomposition.
- (19) Crystallographic data for compounds QNO, ZNO, and ZNSO₂ have been deposited with the accession numbers CCDC 907672, 907670, and 907671, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
- (20) If we consider the exocyclic C–N bond between the C atom of the thiazepine and N atom of the piperazine as a partial

double bond (amidine mesomerism), the *N*-oxide-derived piperazine-thiazepine moiety can form a chiral axis (racemate). In combination with the chiral *S*-oxide (racemate), this led to the presence of two slowly interconverting diastereomeric conformers that appeared as a double set of peaks in the spectra. The two conformers were successfully separated by preparative HPLC. On standing, the separated conformers underwent slow equilibration to regenerate the original conformer mixture.

- (21) For syntheses of QSO, see: (a) Warawa, E. J.; Migler, B. M.; Ohnmacht, C. J.; Needles, A. L.; Gatos, G. C.; McLaren, F. M.; Nelson, C. L.; Kirkland, K. M. J. Med. Chem. 2001, 44, 372. (b) Sibinski, R. Cent. Eur. J. Chem. 2012, 10, 232.
- (22) (a) Moreno-Dorado, F. J.; Guerra, F. M.; Ortega, M. J.; Zubía, E.; Massanet, G. M. *Tetrahedron: Asymmetry* 2003, *14*, 503. (b) Branco, L. C.; Afonso, C. A. M. *J. Org. Chem.* 2004, *69*, 4381. (c) Kobayashi, S.; Endo, M.; Nagayama, S. *J. Am. Chem. Soc.* 1999, *121*, 11229. For data on diol 3, see, for example: (d) Huang, K.; Wang, H.; Stepanenko, V.; De Jesús, M.; Torruellas, C.; Correa, W.; Ortiz-Marciales, M. *J. Org. Chem.* 2011, *76*, 1883.
- (23) HPLC analyses showed that diol 3 was obtained in low yields. This might have been a consequence of the presence of residual styrene (1) (not analyzed), the long reaction time, or the presence of excess oxidant permitting subsequent transformations of 3, such as glycol cleavage. Our investigation focused on the fate and behavior of the *N*oxides.
- (24) (a) By analogy to: Kang, B.; Chang, S.; Decker, S.; Britton, R. Org. Lett. 2010, 12, 1716. For data on triol 6, see, for example: (b) Wang, Z.; Cui, Y.-T.; Xu, Z.-B.; Qu, J. J. Org. Chem. 2008, 73, 2270.
- (25) (a) By analogy to: Ley, S. V.; Ramarao, C.; Smith, M. D. *J. Chem. Soc. Chem. Commun.* 2001, 2278. For data on cinnamaldehyde (7), see, for example: (b) Koenning, D.; Hiller, W.; Christmann, M. *Org. Lett.* 2012, *14*, 5258.
- (26) For the nucleophilicity of piperazine, morpholine, piperidine, and anilines, see: (a) Botzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679. For the nucleophilicity of N-methylmorpholine and N-methylpiperidine, see: (b) Phan, T. B.; Brugst, M.; Mayr, H. Angew. Chem. Int. Ed. 2006, 45, 3869; Angew. Chem. 2006, 118, 3954.
 (c) Kanzian, T.; Nigst, T. A.; Maier, A.; Pichl, S.; Mayr, H. Eur. J. Org. Chem. 2009, 6379. (d) Ammer, J.; Baidya, M.; Kobayashi, S.; Mayr, H. J. Phys. Org. Chem. 2010, 23, 1029. In the presence of additional protons, the most nucleophilic and most basic position can be blocked (protonated). Oxidation might then be directed towards the N⁵ (diazepine) and S⁵ (thiepine) sites, inducing alternative reaction cascades.
- (27) Dragovic, S.; Gunness, P.; Ingelman-Sundberg, M.; Vermeulen, N. P. E.; Commandeur, J. N. M. *Drug Metab. Dispos.* **2013**, *41*, 651.
- (28) For oxidative metabolism of drugs, see: Poraj-Kobielska, M.; Kinne, M.; Ullrich, R.; Scheibner, K.; Kayser, G.; Hammel, K. E.; Hofrichter, M. *Biochem. Pharmacol.* 2011, 82, 789.

- (29) The third nucleophilic position in QN might be the dibenzothiepine ring nitrogen center, by analogy to Nalkylation; see: Noskov, V. G.; Kalinina, L. N.; Noskova, M. N.; Kruglyak, Y. L.; Strukov, O. G.; Kurochkin, V. K. *Pharm. Chem. J. (Engl. Trans.)* **1998**, *32*, 210.
- (30) Generally, deoxygenation might proceed by demethylation, following a competing pathway. In the presence of a metal oxide (especially Fe²⁺), a Polonovski-type elimination delivers an iminium salt, the final hydrolysis leads to the well-known desmethylclozapine through elimination of formaldehyde. For related demethylations, see:
 (a) Schildan, A.; Schirrmacher, R.; Samochocki, M.; Christner, C.; Maelicke, A.; Rösch, F. J. Labelled Compd. Radiopharm. 2001, 44, 247. (b) Rosenau, T.; Potthast, A.; Kosma, P. Tetrahedron 2002, 58, 9809. (c) Herlem, D.; Martin, M.-T.; Thal, C.; Guillou, C. Bioorg. Med. Chem. Lett. 2003, 13, 2389. (d) Mary, A.; Renko, D. Z.; Guillou, C.; Thal, C. Tetrahedron Lett. 1997, 38, 5151.
- (31) Because of their less electron-rich dibenzothiepine *S*-oxide tricyclic cores, **ZNSO**₂ and **QNSO**₂ could be rated as more powerful oxidants in relation to *N*-oxide deoxygenation than the less-oxidized **ZNO** and **QNO**.
- (32) Furthermore, QNSO₂, as the better oxygen donor, tends to convert QN into QNO as follows: $QNSO_2 + QN \rightarrow QSO + QNO$. The analogous process is possible within the ZN series: $ZNSO_2 + ZN \rightarrow ZSO + ZNO$.
- (33) Two S-oxides have been described; see: DeVane, C. L.; Nemeroff, C. B. *Clin. Pharmacokinet.* **2001**, *40*, 509.
- (34) We succeeded in oxidizing QN directly to QSO in the presence of a hemifumarate buffer. The N4-nitrogen underwent protonation–deactivation, and the oxidation was directed towards the still-nucleophilic sulfur atom; see: Mittapelli, V.; Vadali, L.; Sivalakshmi, D. A.; Suryanarayana, M. V. *Rasayan J. Chem.* **2010**, *3*, 677.
- (35) (a) Henning, U.; Krieger, K.; Loeffler, S.; Klimke, A. *Pharmacopsychiatry* 2003, *36*, 233; abstract 116.
 (b) Henning, U.; Krieger, K.; Klimke, A. *Pharmacopsychiatry* 2003, *36*, 233; abstract 115.
- (36) Dain, J. G.; Nicoletti, J.; Ballard, F. Drug Metab. Dispos. 1997, 25, 603.
- (37) (a) Meier, J. Br. J. Pharmacol. 1975, 53, 440. (b) Jann, M. W.; Lam, Y. W. F.; Chang, W.-H. Arch. Int. Pharmacodyn. Ther. 1994, 328, 243. (c) Pirmohamed, M.; Williams, D.; Madden, S.; Templeton, E.; Park, B. K. J. Pharmacol. Exp. Ther. 1995, 272, 984.
- (38) CNO and the other *N*-oxides can act as powerful oxidants and, hence, the parent drugs can be regarded as vehicles of varying efficiency for atomic oxygen. In this way, the current study might contribute to a basic understanding of oxidative effects of the antioxidant clozapine CN, see also:
 (a) Dalla Libera, A.; Scutari, G.; Boscolo, R.; Rigobello, M. P.; Bindoli, A. *Free Radical Res.* 1998, *29*, 151. For some examples of reductions, see: (b) Kitamura, S.; Sugihara, K.; Tatsumi, K. *Drug Metab. Dispos.* 1998, *27*, 92. (c) Parte, P.; Kupfer, D. *Drug Metab. Dispos.* 2005, *33*, 1446.