

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 14 (2006) 4958-4979

Bioorganic & Medicinal Chemistry

Toward the control of *Leptosphaeria maculans*: Design, syntheses, biological activity, and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin

M. Soledade C. Pedras* and Mukund Jha

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Canada SK S7N 5C9

Received 16 February 2006; revised 6 March 2006; accepted 7 March 2006 Available online 17 April 2006

Abstract—Brassinin (1), a crucial plant defense produced by crucifers, is detoxified by the phytopathogenic fungus *Leptosphaeria maculans* (*Phoma lingam*) to indole-3-carboxaldehyde using a putative brassinin oxidase. Potential inhibitors of brassinin detoxification were designed by replacement of its dithiocarbamate group (toxophore) with carbamate, dithiocarbonate, urea, thiourea, sulfamide, sulfonamide, dithiocarbazate, amide, and ester functional groups. In addition, the indolyl moiety was substituted for naphthalenyl and phenyl. The syntheses and chemical characterization of these potential detoxification inhibitors, along with their antifungal and cytotoxic activity, as well as screening using cultures of *L. maculans* are reported. Overall, three types of interaction were observed in cultures of *L. maculans* co-incubated with the potential inhibitors and brassinin: (1) a decrease on the rate of brassinin detoxification due to the strong inhibitory activity of the compound on fungal growth, (2) a decrease on the rate of brassinin detoxification due to the inhibitory activity of the compound on the putative brassinin oxidase, and (3) a low to no detectable effect on the rate of brassinin detoxification. A noticeable decrease in the rate of brassinin detoxification was observed in the presence of *N'*-methylbrassinin, methyl *N*-methyl-*N*-(naphthalen-2-ylmethyl) dithiocarbamate, tryptophol dithiocarbonate, and methyl 3-phenyldithiocarbazate. Tryptophol dithiocarbonate appeared to be the best inhibitor among the designed compounds, representing the first inhibitor of brassinin detoxification and potentially the first selective protecting agent of oilseed crucifers against *L. maculans* infestation. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Phytoalexins are low molecular weight secondary metabolites produced de novo by plants in response to various types of stress, including microbial attack.¹ The crucifer phytoalexin brassinin (1) is of great interest in the interaction of crucifers with their fungal pathogens due to both its biological activity and intermediacy in the biosynthetic pathway of other relevant phytoalexins (e.g., cyclobrassinin (2), brassilexin (3), rutalexin (4), brassicanal A (5), and brassicanate A (6)).² Crucifers are cultivated around the world and comprise an extremely valuable group of oilseeds and vegetables. Pathogens of crucifers, similar to many plant pathogens, can metabolize phytoalexins to less toxic compounds, a detrimental process that deprives the plant of important induced

chemical defenses.³ These detoxification reactions are catalyzed by detoxifying enzymes, which are likely to have evolved during the multiple life cycles of pathogens. Such phytoalexin detoxifying enzymes can be of sufficient importance to determine virulence in a fungal pathogen.³

Keywords: Brassinin; *Leptosphaeria maculans*; Phytoalexins; Phoma lingam; Dithiocarbamate; *Brassica*; Detoxifying enzyme; Brassinin oxidase; Antifungal.

^{*} Corresponding author. Tel.: +1 306 966 4772; fax: +1 306 966 4730; e-mail: soledade.pedras@usask.ca

^{0968-0896/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2006.03.014

The blackleg fungus [Leptosphaeria maculans (Desm.) Ces. et de Not., asexual stage Phoma lingam (Tode ex Fr) Desm.], an important pathogen of crucifer oilseeds (rapeseed, canola, and mustard), can detoxify several phytoalexins including brassinin (1) (Scheme 1).⁴ cyclobrassinin (2), brassilexin (3), and brassicanal A (5) via different pathways.³ Considering that brassinin (1) is a biosynthetic precursor of many other phytoalexins, this metabolic detoxification can make plants particularly vulnerable to further pathogen colonization. Because fungal pathogens appear to use specific enzymes in the

Scheme 1. Detoxification of brassinin (1) in the phytopathogenic fungus Leptosphaeria maculans; (i) in mycelial cultures or cell-free extracts (brassinin oxidase);⁴ (ii) in mycelial cultures.³

detoxification of phytoalexins,³ the inhibition of such enzymes may be a suitable strategy to control L. maculans.² That is, enhancement of plant self-defenses through the use of selective detoxification inhibitors, that is, paldoxins,^{2b} could lead to a selective and environmentally safer control of L. maculans. Selective inhibitors are less likely to affect non-targeted organisms and thus are expected to have lower impact on the cultivated ecosystem, that is, be environmentally 'neutral.' Toward this end, we report the design, syntheses, biological activity, screening, and evaluation of potential brassinin detoxification inhibitors.

2. Results

The chemical structure of brassinin (1) contains a dithiocarbamate group (toxophore, substructure A) and an indole nucleus (substructure B) linked by a methylene bridge located at the C-3 of indole (Fig. 1). Brassinin (1) detoxification in mycelial cultures of L. maculans involves the formation of brassinin sulfoxide (7) and indole-3-carboxaldehyde (8) (Scheme 1) which is oxidized slowly to indole-3-carboxylic acid.³ However, it is not understood whether sulfoxide 7 is an intermediate in the detoxification pathway, since it was not detected in cell-free extracts containing brassinin

Figure 1. Potential inhibitors 9-75 of brassinin (1) detoxification.

oxidase activity.⁴ Notwithstanding the details of the detoxification mechanism, it is clear that enzymatic detoxification of brassinin (1) by a putative brassinin oxidase⁴ takes place only on the side chain of brassinin (1), while the indolyl component remains unaffected. For this reason, to design selective inhibitors of brassinin detoxification, the side chain of brassinin (1) was of crucial importance. Alternatively, replacement of the indolyl moiety with naphthalenyl (e.g., 10–13) or phenyl (e.g., 14 and 15) would lead to structures in which the contribution of the indolyl part (more polar) of brassinin (1) to metabolism and toxicity could be directly evaluated. In the case of naphthalene derivatives, both C-1 and C-2 were chosen as points of substitution because previous work showed that a fungal pathogen transformed these compounds differently.⁵ In addition, since dithiocarbamates have strong biological activity,⁶ the design of compounds with a wider range of bioactivities was planned as well.

In most cases, isosteric replacement⁷ of the heteroatoms of the dithiocarbamate group of brassinin (1) led to incorporation of carbamate, urea, thiourea, sulfamide, sulfonamide, dithiocarbazate, amide, and ester functional groups into the structure of potential inhibitors (16-75). Besides the potential role as detoxification inhibitors, this wide range of functional groups was designed to provide further insights into the detoxification mechanism of brassinin as well as structure-activity correlations. Accordingly, replacement of both sulfur atoms of brassinin (1) with oxygen atoms afforded carbamates 18 and 19, whereas replacement of the thiocarbonyl with carbonyl and the SCH₃ with NH_2 or NHR (R = alkyl or phenyl) gave rise to unsymmetrical urea derivatives 22-46 containing indolyl or naphthalenyl (less polar) moieties. Similarly, keeping the thiocarbonyl intact and replacing the SCH_3 group with NH₂ or NHR (R = alkyl or phenyl) resulted in unsymmetrical thioureas 47-60, whereas dithiocarbazates 20 and 21 could be obtained by replacing the (H)N-2' with (H)N-NH (hydrazine). Sulfamides 61-66 and sulfonamides 67-72 were obtained by replacing the thiocarbonyl group with a sulfone moiety and the SCH₃ with NH₂, NHCH₃ (sulfamides), and CH₃ (sulfonamides) containing indolyl or naphthalenyl moieties as well. Amides 74 and 75 and ester 73 were obtained by replacing the (H)N-2' of brassinin (1) with CH₂, the thiocarbonyl with a carbonyl, and SCH₃ with either NH₂/NHCH₃ (amide) or OCH₃ (ester), respectively. Overall, it was anticipated that some of these new compounds (Fig. 1) would hinder brassinin (1) detoxification by inhibiting the putative brassinin oxidase.

2.1. Syntheses of potential inhibitors and metabolism

Among the designed potential inhibitors 9–75, compounds 9, ⁸ 10, ⁵ 12, ⁵ 14, ⁹ 15, ⁹ 18, ¹⁰ 20, ¹¹ 21, ¹² 22, ¹³ 26, ¹⁴ 48, ¹⁵ 72, ¹⁶ 73, ¹⁷ 74, ¹⁸ and 75¹⁹ were reported previously. Of the designed sulfonamides 67–72, *N*-methyl-*N*-(naphthalen-1-ylmethyl)methanesulfonamide (72) has been used to study aldose reductase inhibitors, but its synthesis was not described. ¹⁶ Amines such as indol-3-ylm-

ethylamine (**76**), N'-methylindol-3-ylmethylamine (**77**), naphthalen-2-ylmethylamine (**78**), N-methylnaphthalen-2-ylmethylamine (**79**), naphthalen-1-ylmethylamine (**80**), and N-methylnaphthalen-1-ylmethylamine (**81**) were used in the syntheses of most of the designed compounds. These key starting materials were synthesized in good yields using known methodology.^{20–22}

2.1.1. Syntheses of dithiocarbamates, dithiocarbonates, carbamates, dithiocarbazates, ureas, and thioureas (1, 9-15, and 17-60). The syntheses of brassinin $(1)^2 N'$ methylbrassinin (9), and dithiocarbamates $10-15^5$ were carried out as reported earlier for brassinin by first allowing the respective amines 76-83 to react with CS₂ in pyridine and triethylamine followed by quenching with MeI and acidic work-up (H₂SO₄). As expected, attempts to transform indol-3-ylmethanol (86) to methyl indol-3-vlmethyldithiocarbonate (16) under experimental conditions similar to those used for dithiocarbamates were not successful as indol-3-ylmethanol (86) was found to be stable under those conditions. When triethylamine was replaced with a stronger base such as NaH for deprotonation of -(O)-H,²³ followed by addition of CS₂, thioether 87 (30% yield) along with recovered starting material (86, 40% yield) was obtained. Heating 3indolylmethanol (86) to 70 °C in the presence of NaH in THF resulted in extensive decomposition of the starting material. Using a reagent such as 1-(methyldithio-carbonyl)imidazole,²⁴ a reagent developed for the mild conversion of alcohols to S-Me dithiocarbonates, also failed to give the desired compound 16 and instead yielded thioether 87 (60% yield). By contrast, deprotonation of tryptophol (88), the CH₂ homolog of 3-indolylmethanol (86), with NaH in THF at 0 °C followed by addition of CS₂ and quenching with MeI afforded the corresponding dithiocarbonate 17 (15 min) in excellent yield (95% yield). Methyl 3-phenyldithiocarbazate (20) and methyl 3-benzyldithiocarbazate (21) were synthesized from phenylhydrazine and benzylhydrazine, respectively (Scheme 2).²⁵

The syntheses of N-(indol-3-yl)methylurea (22),¹³ Nindol-3-ylmethyl-N'-phenylurea (26),¹⁴ and N-(naphthalen-1-ylmethyl)-N'-phenylurea $(44)^{26}$ were carried out as previously described. Although urea 22 was prepared quantitatively from gramine (89) and excess urea, a similar attempt to make N-indol-3-ylmethyl-N'-methylurea (23) by reacting gramine (89) and methylurea was unsuccessful. Compound 23 could be obtained in good yield by first reacting amine 76 with COCl₂ to yield isocyanate 90, which was then reacted with CH_3NH_2 to give urea 23 (Scheme 3). Other unsymmetrical ureas (24-46) were prepared in good yields by the reaction of primary or secondary amines with alkyl isocyanates (Scheme 3).²⁷ Similar to ureas 24-46, most of the unsymmetrical thioureas 49–60 (Scheme 3) were synthesized by reacting the corresponding primary or secondary amine with an isothiocyanate (RNCS, R = Pr or Ph, Scheme 3).²⁷ Methyl *N*-(indol-3-ylmethyl)-*N*-methylcarbamate (19) was obtained in 85% yield by treatment of N-(indol-3-ylmethyl)-N-methylamine (77) with ethylchloroformate in the presence of N,O-bis(trimethylsilyl)acetamide (Scheme $\overline{3}$).¹⁰

Scheme 2. Syntheses of dithiocarbamates 1, 9–15, and dithiocarbonate 17, and dithiocarbazates 20 and 21. Reagents: (i) for 9–15, CS_2 , pyridine/Et₃N; MeI; for 20 and 21, CS_2 , KOH, EtOH, MeI; (ii) NaH, THF, MeI.

Attempts to synthesize indol-3-ylmethylthiourea (47) by condensing the salt of 76 with KSCN in THF²⁸ were unsuccessful. Thus, the syntheses of 47 and 48 involved rather lengthy procedures starting with protection of N-1 with Boc,²¹ followed by isothiocyanate formation, which was then reacted with ammonia/methylamine to give *N*-Boc-indolyl thioureas. The Boc group was hydrolyzed using excess sodium methoxide to give 47 and 48 in moderate yields (Scheme 4).²¹

2.1.2. Syntheses of sulfamides and sulfonamides (61–72). The sulfamide functional group was conveniently introduced into amines 76–81 upon treatment with sulfamide at 100 °C in aqueous solution. After heating

Scheme 4. Syntheses of urea 23 and thioureas 47 and 48. Reagents: (i) RNH₂ (R = H, Me), CH₂Cl₂; (ii) NaOMe, MeOH.

Scheme 5. Syntheses of sulfamides 61–66 and sulfonamides 67–72. Reagents and conditions: (i) NH₂SO₂NH₂, H₂O, 100 °C; (ii) ClSO₂Me, THF, rt.

for 4 h and then cooling to rt, the precipitates of desired sulfamides 61-66 were obtained in moderate yields (Scheme 5).²⁹ Sulfonamides 67-72 were synthesized in good yields by reacting primary and secondary amines 76-81 with methane sulfonyl chloride in THF (Scheme 5).³⁰

2.1.3. Syntheses of amides and ester (73–75). Amide 73 has been previously synthesized starting from 3-(indol-3-yl)propanoic acid (92) and 3-(indol-3-yl)propanenitrile

Scheme 3. Syntheses of ureas 24–46, thioureas 49–60, and carbamates 18–19. Reagents: (i) RNCO, CH₂Cl₂; (ii) RNCS, CH₂Cl₂; (iii) ClCOOMe, *N*,*O*-bis(trimethylsilyl)acetamide.

Scheme 6. Syntheses of amides 74 and 75. Reagents and conditions: (i) CICOOEt, THF, Et₃N, 0 °C; (ii) NH₃ for 74; MeNH₂ for 75.

(93) in good yields.^{31,32} However, the synthesis of 73 and 74 was carried out using a milder procedure in which acid 92 was first reacted with ethylchloroformate in THF and triethylamine, then ammonia/methyl amine was bubbled through the solution for 30 min (Scheme 6).³³ Ester 75 was prepared from acid 92 as published previously.³¹

2.2. Biological activity of potential inhibitors and metabolism

The antifungal activity against *L. maculans* and cytotoxic activity to *Artemia salina* (brine shrimp) of the synthesized compounds (1 and 9–75) were determined using established bioassay methods, as follows.

2.2.1. Antifungal activity. To establish the antifungal activity, bioassays were carried out using a mycelial radial growth assay, as described in Section 4. The results summarized in Table 1 indicate that N'-methylbrassinin (9), naphthalen-2-ylmethylurea (31), and *N*-(indol-3-ylmethyl)-*N*-methyl-*N*-phenylthiourea (52)were the most potent antifungal compounds among all tested compounds. All three compounds were completely inhibitory of mycelial growth at 0.2 mM and showed a substantial inhibition even at 0.1 mM (>70%). 0.1 mM). Interestingly, N'-methylbrassinin (9) was found to be almost twice as antifungal as the naturally occurring dithiocarbamate 1, suggesting that replacement of the side chain (N)-H of brassinin with a CH₃ group increased the toxicity toward L. maculans. Among other dithiocarbamates, naphthalene-based compounds 10-13 were significantly less inhibitory than brassinin (1) and showed no pronounced effect when the (N)-H was replaced with a CH₃ group. Dithiocarbonate 17 showed substantially lower antifungal activity (41%, 0.5 mM) than brassinin (1), whereas dithiocarbazate exhibited somewhat similar antifungal activity. In the case of ureas 22-46, indole-based compounds 22-30 showed an increase in the activity with the increase of the bulkiness of the alkyl substituent. For example, N-(indol-3-ylmethyl)-N-propylurea (25) was twice as toxic as N-(indol-3-ylmethyl)urea (22). However, introduction of an additional CH₃ group on the N of the urea moiety (27-30) led to lower toxicity. Naphthalenyl ureas 31-46 were significantly more toxic than indolyl ureas 22-30and showed a decrease in the antifungal activity with the increase in bulkiness of the alkyl substituent on the urea moiety. Methylated ureas 35-38 and 43-46 were found to be substantially less toxic then their demethylated analogs 31-34 and 39-42. While indol-3ylmethylthiourea (47) showed no toxicity to L. maculans at the tested concentrations, other indolylthioureas (48-60) were found to have antifungal activity, showing an

increase in the activity with the increase in the size of alkyl group substituent on the thiourea moiety. The activity of *N*-(indol-3-ylmethyl)-*N*-methyl-*N*-propylthiourea (**51**) increased markedly with the replacement of (N)– H with a CH₃ group on thiourea moiety. The naphthalenylthioureas **53–60** showed comparable antifungal activity. Compounds containing sulfamide or sulfonamide functional groups (**61–72**) were found to have mild antifungal activity, whereas carbamates **18** and **19**, amides **73** and **74**, and ester **75** showed little or no toxicity against *L. maculans* at the tested concentrations. In general, those compounds having substitution at C-2 were more active than the compounds with substitution at C-1 of the naphthalene ring (Table 1).

2.2.2. Cytotoxic activity. Assays using brine shrimp larvae (A. salina) were carried out for a preliminary evaluation of cytotoxicity. Shrimp eggs were allowed to hatch for 24 h, incubated with brassinin or designed compounds at 0.5, 0.2, and 0.1 mM, and the number of surviving shrimps was counted after 24 h. A control experiment was carried out similarly without adding any compound. The results summarized in Table 1 show that compounds containing a dithiocarbamate group (1 and 9-13) were lethal at all the tested concentrations, whereas carbamates (18 and 19) were found to be moderately toxic. Among the ureas 22-46, naphthalen-2ylmethylurea (31) and naphthalen-1-ylmethylurea (39) were found to be most potent. A decrease in lethality was observed with the increase in the size of substituents on the urea fragment of these compounds. For instance, N-(indol-3-ylmethyl)-N-methyl-N-propylurea (29) and *N*-methyl-*N*-(naphthalen-2-vlmethyl)-*N*-propylurea (**37**) had no toxicity. Compounds having urea functional group placed at the naphthalen-2-ylmethyl position were found to be more active than the 1-substituted isomers. Only N-(indol-3-ylmethyl)-N-methylthiourea (23) was lethal at 0.5 and 0.2 mM, among thioureas 47-60. Other compounds containing thiourea functionality were notably less toxic. Sulfamides, sulfonamides, and amides were very mild or non-cytotoxic at the tested concentrations.

2.3. Screening of potential inhibitors and metabolism

The metabolism of brassinin (1) and potential detoxification inhibitors 9-15 and 17-75 was investigated in cultures of L. maculans over a period of 96 h. Initial experiments were carried out to determine the time required by L. maculans to completely metabolize brassinin (1) at three different concentrations (0.1, 0.2, and0.3 mM). Next, the screening of potential inhibitors of brassinin detoxification was performed by co-incubating each compound with brassinin (1). Mycelial cultures (48-h-old) in a chemically defined medium³⁴ were incubated with the potential inhibitors at 0.1 and 0.2 mM for 10 min (to allow absorption/transport of compounds into cells) before adding brassinin (1, 0.1 mM). Control cultures prepared similarly but containing only brassinin (1) or the potential inhibitor were incubated in parallel. The stability of brassinin (1) and compounds 9–15 and 17-75 was determined by incubations in culture media under similar conditions. Samples were withdrawn from

Table 1. Biological activity of brassinin (1) and potential detoxification inhibitors 9–15 and 17–75 against Leptosphaeria maculans and Artemia salina

compound	Biological activity	Percentage of activity			
		0.5 mM	0.2 mM	0.1 mM	
Brassinin (1)	Antifungal activity ^a Cytotoxic activity ^b	100 ± 0 100 ± 0	$\begin{array}{c} 45\pm 6\\ 100\pm 0\end{array}$	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
N'-Methylbrassinin (9)	Antifungal activity Cytotoxic activity	100 ± 0 100 ± 0	100 ± 0 100 ± 0	74 ± 2 100 ± 0	
Methyl naphthalen-2-ylmethyldithiocarbamate (10)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 40\pm8\\ 100\pm0\end{array}$	32 ± 7 100 ± 0	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
Methyl N-methylnaphthalen-2-ylmethyldithiocarbamate (11)	Antifungal activity Cytotoxic activity	40 ± 6 100 ± 0	$\begin{array}{c} 28 \pm 6 \\ 100 \pm 0 \end{array}$	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
Methyl naphthalen-1-ylmethyldithiocarbamate (12)	Antifungal activity Cytotoxic activity	44 ± 7 100 ± 0	32 ± 4 100 ± 0	23 ± 6 100 \pm 0	
Methyl N-methylnaphthalen-1-ylmethyldithiocarbamate (13)	Antifungal activity Cytotoxic activity	35 ± 3 100 ± 0	20 ± 2 100 ± 0	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
Methyl N-benzyldithiocarbamate (14)	Antifungal activity Cytotoxic activity	100 ± 0 100 ± 0	52 ± 2 100 ± 0	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
Methyl N-phenyldithiocarbamate (15)	Antifungal activity Cytotoxic activity	62 ± 4 100 ± 0	20 ± 3 100 ± 0	$\begin{array}{c} 0\\ 100\pm 0 \end{array}$	
Tryptophol dithiocarbonate (17)	Antifungal activity Cytotoxic activity	41 ± 7 100 ± 0	30 ± 5 84 ± 10	20 ± 7 24 ± 6	
Methyl indol-3-ylmethylcarbamate (18)	Antifungal activity Cytotoxic activity	17 ± 3 64 ± 6	$0 \\ 25 \pm 10$	0 0	
Methyl 2'-methylindol-3-ylmethylcarbamate (19)	Antifungal activity Cytotoxic activity	33 ± 5 82 ± 6	$\begin{array}{c} 0\\ 52\pm10 \end{array}$	$\begin{array}{c} 0\\ 10\pm 0 \end{array}$	
Methyl phenyldithiocarbazate (20)	Antifungal activity Cytotoxic activity	100 ± 0 100 ± 0	76 ± 4 96 ± 4	32 ± 2 66 \pm 6	
Methyl benzyldithiocarbazate (21)	Antifungal activity Cytotoxic activity	84 ± 5 100 ± 0	26 ± 6 82 ± 7	$\begin{array}{c} 0\\ 56\pm6\end{array}$	
Indol-3-ylmethylurea (22)	Antifungal activity Cytotoxic activity	62 ± 4 61 ± 6	33 ± 6 25 ± 10	0 0	
N-(Indol-3-ylmethyl)-N'-methylurea (23)	Antifungal activity Cytotoxic activity	74 ± 4 82 ± 12	40 ± 6 64 ± 6	0 57 ± 6	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> ′-ethylurea (24)	Antifungal activity Cytotoxic activity	84 ± 3 61 ± 12	44 ± 6 25 ± 5	21 ± 5 0	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> ′-propylurea (25)	Antifungal activity Cytotoxic activity	0 0	58 ± 3	$\begin{array}{c} 43 \pm 5 \\ 0 \end{array}$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> ′-phenylurea (26)	Antifungal activity Cytotoxic activity	75 ± 2 17 ± 6	$\begin{array}{c} 36 \pm 2 \\ 0 \end{array}$	22 ± 3 0	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> ′-methylurea (27)	Antifungal activity Cytotoxic activity	70 ± 4 86 \pm 6	53 ± 3 61 ± 6	$\begin{array}{c} 0\\ 48\pm10 \end{array}$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl- <i>N</i> '-ethylurea (28)	Antifungal activity Cytotoxic activity	48 ± 2 75 ± 6	$\begin{array}{c} 31 \pm 5 \\ 50 \pm 6 \end{array}$	$0 \\ 39 \pm 6$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl- <i>N'</i> -propylurea (29)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 17 \pm 3 \\ 0 \end{array}$	0 0	0 0	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl- <i>N</i> '-phenylurea (30)	Antifungal activity Cytotoxic activity	61 ± 4 39 ± 0	$\begin{array}{c} 37 \pm 2 \\ 17 \pm 6 \end{array}$	30 ± 3 0	
Naphthalen-2-ylmethylurea (31)	Antifungal activity Cytotoxic activity	100 ± 0 100 ± 0	100 ± 0 68 ± 11	81 ± 3 29 \pm 12	
N'-Ethyl-N-(naphthalen-2-ylmethyl)urea (32)	Antifungal activity Cytotoxic activity	64 ± 3 68 ± 6	44 ± 5 25 ±10	$\begin{array}{c} 23 \pm 3 \\ 0 \end{array}$	
N-(Naphthalen-2-ylmethyl)-N'-propylurea (33)	Antifungal activity Cytotoxic activity	$74 \pm 5 \\ 48 \pm 0$	48 ± 6 14 ± 6	24 ± 3 0	
N'-Phenyl-N-(naphthalen-2-ylmethyl)urea (34)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 61 \pm 3 \\ 36 \pm 6 \end{array}$	$\begin{array}{c} 60 \pm 2 \\ 0 \end{array}$	58 ± 2	

Table 1 (continued)

Compound	Biological activity	Percentage of activity			
		0.5 mM	0.2 mM	0.1 mM	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)urea (35)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 100 \pm 0 \\ 100 \pm 0 \end{array}$	$\begin{array}{c} 66 \pm 6 \\ 64 \pm 6 \end{array}$	24 ± 2 32 ± 6	
N'-Ethyl-N-methyl-N-(naphthalen-2-ylmethyl)urea (36)	Antifungal activity Cytotoxic activity	60 ± 4 71 ± 10	41 ± 5 25 ± 6	$\begin{array}{c} 18 \pm 4 \\ 0 \end{array}$	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)- <i>N</i> '-propylurea (37)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 76\pm 6\\ 0 \end{array}$	$\begin{array}{c} 38\pm3\\ 0 \end{array}$	$\begin{array}{c} 21 \pm 4 \\ 0 \end{array}$	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)- <i>N</i> '-phenylurea (38) (low solubility)	Antifungal activity Cytotoxic activity	64 ± 4 14 ± 5	$\begin{array}{c} 30\pm3\\0\end{array}$	$\begin{array}{c} 15 \pm 2 \\ 0 \end{array}$	
Naphthalen-1-ylmethylurea (39)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 100 \pm 0 \\ 0 \end{array}$	46 ± 4 72 ± 11	$\begin{array}{c} 0\\ 36\pm6 \end{array}$	
N'-Ethyl-N-(naphthalen-1-ylmethyl)urea (40)	Antifungal activity Cytotoxic activity	68 ± 4 68 ± 10	26 ± 6 22 ± 6	0 0	
N-(Naphthalen-1-ylmethyl)-N'-propylurea (41)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 54 \pm 6 \\ 0 \end{array}$	$\begin{array}{c} 36 \pm 4 \\ 0 \end{array}$	0 0	
N-(Naphthalen-1-ylmethyl)-N'-phenylurea (42) (low solubility)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 60 \pm 4 \\ 0 \end{array}$	$\begin{array}{c} 34 \pm 2 \\ 0 \end{array}$	0 0	
N-Methyl-N-(naphthalen-1-ylmethyl)urea (43)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 100 \pm 0 \\ 100 \end{array}$	76 ± 6 46 ± 6	28 ± 2 78 ± 0	
N'-Ethyl- N -methyl- N -(naphthalen-1-ylmethyl)urea (44)	Antifungal activity Cytotoxic activity	$50 \pm 5 \\ 64 \pm 6$	$\begin{array}{c} 31 \pm 4 \\ 32 \pm 10 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-1-ylmethyl)- <i>N</i> '-propylurea (45)	Antifungal activity Cytotoxic activity	53 ± 4 14 ± 6	$\begin{array}{c} 21 \pm 3 \\ 0 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-1-ylmethyl)- <i>N</i> '-phenylurea (46) (low solubility)	Antifungal activity Cytotoxic activity	54 ± 4 32 ± 6	$\begin{array}{c} 18\pm 6\\ 0\end{array}$	0 0	
Indol-3-ylmethylthiourea (47)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 0\\ 79 \pm 0 \end{array}$	$\begin{array}{c} 0\\ 29 \pm 12 \end{array}$	0 0	
N-(Indol-3-ylmethyl)-N'-methylthiourea (48)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 73 \pm 3 \\ 100 \end{array}$	$\begin{array}{c} 38 \pm 2 \\ 100 \end{array}$	$\begin{array}{c} 0\\ 75\pm6\end{array}$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> '-propylthiourea (49)	Antifungal activity Cytotoxic activity	64 ± 4 78 ± 6	29 ± 3 24 ± 6	0 0	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> '-phenylthiourea (50)	Antifungal activity Cytotoxic activity	83 ± 7 42 ± 10	$\begin{array}{c} 81 \pm 5 \\ 14 \pm 0 \end{array}$	$\begin{array}{c} 64 \pm 3 \\ 0 \end{array}$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl- <i>N</i> '-propylthiourea (51)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 35\pm3\\ 38\pm6 \end{array}$	$\begin{array}{c} 30 \pm 4 \\ 14 \pm 6 \end{array}$	0 0	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl- <i>N</i> ′-phenylthiourea (52)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 100 \pm 0 \\ 0 \end{array}$	$\begin{array}{c} 100 \pm 0 \\ 0 \end{array}$	$\begin{array}{c} 73 \pm 3 \\ 0 \end{array}$	
N-(Naphthalen-2-ylmethyl)- N' -propylthiourea (53)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 100 \pm 0 \\ 0 \end{array}$	$\begin{array}{c} 62 \pm 1 \\ 0 \end{array}$	0 0	
N-(Naphthalen-2-ylmethyl)- N' -phenylthiourea (54)	Antifungal activity Cytotoxic activity	$81 \pm 4 \\ 14 \pm 6$	$\begin{array}{c} 39 \pm 4 \\ 0 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)- <i>N</i> '-propylthiourea (55)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 89 \pm 6 \\ 0 \end{array}$	$\begin{array}{c} 32 \pm 7 \\ 0 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)- <i>N</i> '-phenylthiourea (56)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 68 \pm 6 \\ 0 \end{array}$	$\begin{array}{c} 30 \pm 4 \\ 0 \end{array}$	0 0	
N-(Naphthalen-1-ylmethyl)-N'-propylthiourea (57)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 90 \pm 4 \\ 0 \end{array}$	$\begin{array}{c} 34 \pm 4 \\ 0 \end{array}$	0 0	
N-(Naphthalen-1-ylmethyl)-N'-phenylthiourea (58)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 86 \pm 3 \\ 0 \end{array}$	$\begin{array}{c} 46\pm 6\\ 0\end{array}$	0 0	
N-Methyl-N-(naphthalen-1-ylmethyl)-N'-propylthiourea (59)	Antifungal activity Cytotoxic activity	76 ± 4 14 ± 6	$\begin{array}{c} 31 \pm 5 \\ 0 \end{array}$	0 0	

Table 1 (continued)

Compound	Biological activity	Percentage of activity			
		0.5 mM	0.2 mM	0.1 mM	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-1-ylmethyl)- <i>N</i> '-phenylthiourea (60)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 60 \pm 5 \\ 0 \end{array}$	$\begin{array}{c} 26\pm3\\ 0\end{array}$	0 0	
Indol-3-ylmethylsulfamide (61)	Antifungal activity Cytotoxic activity	57 ± 5 43 ± 5	29 ± 2 24 ± 7	0 0	
N-(Indol-3-ylmethyl)-N-methylsulfamide (62)	Antifungal activity Cytotoxic activity	43 ± 5 32 ± 6	20 ± 7 14 ± 6	0 0	
Naphthalen-2-ylmethylsulfamide (63)	Antifungal activity Cytotoxic activity	48 ± 4 29 ± 6	$\begin{array}{c} 37\pm8\\0\end{array}$	0 0	
N-Methyl-N-(naphthalen-2-ylmethyl)sulfamide (64)	Antifungal activity Cytotoxic activity	40 ± 4 14 ± 5	$\begin{array}{c} 24 \pm 6 \\ 0 \end{array}$	0 0	
Naphthalen-1-ylmethylsulfamide (65)	Antifungal activity Cytotoxic activity	$38 \pm 4 \\ 0$	0 0	0 0	
N-Methyl-N-(naphthalen-1-ylmethyl)sulfamide (66)	Antifungal activity Cytotoxic activity	$32 \pm 6 \\ 0$	0 0	0 0	
<i>N</i> -(Indol-3-ylmethyl)methanesulfonamide (67)	Antifungal activity Cytotoxic activity	56 ± 5 50 ± 6	39 ± 4 29 ± 6	$\begin{array}{c} 22 \pm 3 \\ 0 \end{array}$	
<i>N</i> -(Indol-3-ylmethyl)- <i>N</i> -methyl methanesulfonamide (68)	Antifungal activity Cytotoxic activity	46 ± 4 32 ± 6	$\begin{array}{c} 28 \pm 6 \\ 0 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)methanesulfonamide (69)	Antifungal activity Cytotoxic activity	38 ± 3 32 ± 12	$\begin{array}{c} 18 \pm 3 \\ 0 \end{array}$	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-2-ylmethyl)methanesulfonamide (70)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 44 \pm 3 \\ 0 \end{array}$	0 0	0 0	
N-(Naphthalen-1-ylmethyl)methanesulfonamide (71)	Antifungal activity Cytotoxic activity	55 ± 3 14 ± 6	0 0	0 0	
<i>N</i> -Methyl- <i>N</i> -(naphthalen-1-ylmethyl)methanesulfonamide (72)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 38 \pm 6 \\ 0 \end{array}$	0 0	0 0	
Indolyl-3-propanamide (73)	Antifungal activity Cytotoxic activity	48 ± 2 86 ± 12	$\begin{array}{c} 26\pm 5\\ 0\end{array}$	0 0	
N'-Methyl-indolyl-3-propanamide (74)	Antifungal activity Cytotoxic activity	$\begin{array}{c} 0\\ 64\pm6 \end{array}$	0 0	0 0	

^a Percent of inhibition = $100 - [(growth on medium containing compound/growth on control medium) \times 100)] \pm standard deviation.$

^b Percent of mortality = 100 - [(number of surviving larvae in solution containing compound/number of surviving larvae in control solution) × 100)] ± standard deviation.

cultures immediately after addition of brassinin (1) and at 24, 48, and 96 h, and were extracted with ethyl acetate. The organic extracts were analyzed by HPLC (phoarray detection at todiode 220 nm, brassinin $t_{\rm R} = 18.8$ min) to determine the concentration of both brassinin (1) (remaining in the cultures at different times) and the indole-3-carboxaldehyde (8, $t_{\rm R} = 6.8$ min), the product of brassinin biotransformation. Brassinin (1) and potential inhibitors 9-15 and 17-75 were stable in minimal media for at least 8 days. The rate of disappearance of brassinin (1) in the presence of the potential inhibitor was compared with that of control cultures (mycelial culture containing only brassinin at 0.1, 0.2, and 0.3 mM) by HPLC analyses of culture extracts. HPLC analyses of culture extracts showed that brassinin (1) at 0.1 mM was metabolized completely to indole-3carboxaldehyde (8) in ca. 16 h, while in cultures containing brassinin (1) at higher concentrations, 0.2 and 0.3 mM, complete metabolism to 8 took place in ca. 24 and 48 h, respectively. As shown in Table 2, some of the compounds tested slowed down the metabolism of brassinin (1) relative to control cultures. That is, N'-methylbrassinin (9), methyl N-methyl-N-(naphthalen-2-ylmethyl)dithiocarbamate (11), tryptophol dithiocarbonate (17), and methyl 3-phenyldithiocarbazate (20) affected the rate of detoxification of brassinin (1) noticeably (Table 2). In the presence of methylbrassinin (9, 0.1 mM), brassinin (1, 0.1 mM) was completely metabolized to 8 in ca. 48 h (vs 16 h for brassinin at 0.1 mM), whereas doubling the concentration of 9 slowed down the transformation of brassinin (1) to 96 h (vs 24 h for brassinin at 0.2 mM). Importantly, no biotransformation of product of 9 was detected in any of the cultures. Less pronounced but similar results were obtained when the cultures were incubated with methyl *N*-methyl-*N*-(naphthalen-2-ylmethyl)dithiocarbamate (11) and brassinin (1), as shown in Table 2. On the other hand, methyl, N-benzyldithiocarbamate (14), and methyl *N*-phenyldithiocarbamate (15) did not affect the metabolism of brassinin (1).

Compounds at 0.1 mM and 0.2 mM	Biotransformation product (time required for complete transformation)	Incubation time, remaining brassinin (1) molar % ^a		
		0.1 mM	0.2 mM	
Control (containing only brassinin (1))	Indole-3-carboxaldehyde (8)	16 h, <5%	24 h, <5%	
N'-Methylbrassinin (9) ^c	No transformation	24 h, 25 ± 2	24 h, 94 ± 2	
		48 h, n.d. ^b	48 h, 80 ± 4	
		72 h, n.d.	$72 \text{ h}, 20 \pm 5$	
		_	96 h, n.d.	
Methyl N-methyl-N-(naphthalen-2-ylmethyl)	No transformation	24 h, 11 ± 2	24 h, 72 ± 4	
dithiocarbamate (11) ^c		48 h, n.d.	48 h, <5%	
Methyl N-benzyldithiocarbamate (14)	Benzoic acid	24 h, n.d.	24 h, n.d.	
Tryptophol dithiocarbonate (17)	Tryptophol (120 h) (88)	24 h, 83 ± 4	24 h, 97 ± 3	
		48 h, 75 ± 4	48 h, 90 ± 4	
		72 h, 49 ± 5	72 h, 68 ± 4	
		96 h, n.d.	96 h, <5%	
Methyl 3-phenyldithiocarbazate (20)	Methyl 3-phenylthiocarbazate (48 h) (94)	24 h, 19 ± 3	24 h 68 ± 4	
		48 h, n.d.	48 h, <5%	
N-(Indol-3-ylmethyl)- N' -methylthiourea (48)	Indole-3-carboxaldehyde (30 h) (8)	24 h, n.d.	24 h, n.d.	
3-(Indol-3-yl)propanamide (73)	3-(Indol-3-yl)propanoic acid (48 h) (92)	24 h, n.d.	24 h, n.d.	
N'-Methyl-3-(indol-3-yl)propanamide (74)	3-(Indol-3-yl)propanoic acid (168 h) (92)	24 h, n.d.	24 h, n.d.	
Methyl 3-(indol-3-yl)propanoate (75)	3-(Indol-3-yl)propanoic acid (6 h) (92)	24 h, n.d.	24 h, n.d.	

Table 2.	Compounds	s that were	metabolized (9, 11, 14,	17, 20,	48 , and	73–75 at 0.	and 0.2 ml	M) or decrea	sed the r	ate (9, 11	, 17 , and	20 at 0.1 and
0.2 mM)	of brassinin	detoxificat	ion in culture	s of Lept	osphaer	ia macul	ans co-incu	bated with b	prassinin (1,	0.1 mM)	for differ	ent time	periods (h)

^a Percentages were determined using calibration curves and are averages of at least two independent experiments conducted in duplicate ± standard deviation.

^b n.d., not detected.

^c Compound not metabolized.

Complete detoxification of brassinin (1, 0.1 mM) in the presence of tryptophol dithiocarbonate (17, 0.1 mM) took place in 96 h (vs 16 h for brassinin alone); similar results were obtained with 17 at 0.2 mM. Tryptophol dithiocarbonate (17) was hydrolyzed to tryptophol (88) in 120 h (enzymatic transformation). Methyl 3-phenyldithiocarbazate (20) slowed down the transformation of brassinin (1, 0.1 mM) from 24 to 48 h, although 20 was also metabolized to 94 within 48 h of incubation (Table 2).

Of the remaining synthetic compounds that were screened for the inhibitory activity, only compounds **48** and **73–75** were metabolized by *L. maculans*. The thiourea **48** was biotransformed to **8** in 30 h whereas **72–75** were metabolized to 3-(indol-3-yl)propanoic acid (**92**) in 48, 168, and 6 h, respectively, without affecting the metabolism of brassinin (1). Compounds **10**, **12–14**, **18**, **19**, and **21–72** were not biotransformed by *L. maculans* and did not appear to affect noticeably the rate of metabolism of brassinin (1).

3. Discussion and conclusion

Because brassinin (1) detoxification by L. maculans can deprive plants of crucial natural chemical defenses, it is of great importance to understand and inhibit this process. Selective inhibitors of brassinin detoxification are potential protection agents against blackleg

disease of crucifer crops. To design potential inhibitors of brassinin detoxification, the structures of brassinin (1) and its metabolic products 7 and 8 were modified to incorporate a wide range of functional groups (9–75). The designed compounds were synthesized (9-15 and 17-75) and their bioactivities and metabolism in cultures of L. maculans were investigated. The antifungal and cytotoxic activity of these compounds indicated that dithiocarbamates, dithiocarbazates, ureas, and thioureas were highly toxic to L. maculans and A. salina, with dithiocarbamates causing 100% death in larvae of A. salina even at 0.1 mM. By contrast, compounds having carbamate, sulfamide, sulfonamide, amide or ester functional groups had either very little or no activity against L. maculans or A. salina. Interestingly, indolyl and phenyl dithiocarbamates 1, 9, 14, and 15 were more antifungal than their naphthalenyl analogs 10-13, whereas in the case of ureas and thioureas, the naphthalenyl substituted compounds (31-46) were more active than the indolyl-substituted analogs (22-30). Among the various naphthalenyl compounds, substitution at C-2 led to higher activity than substitution at C-1 (Table 2). Compounds containing functional groups identical or related to compounds 9-75 are known to display pesticidal and/or other biological activities.³⁵

Compounds 9–15 and 17–75 were screened for biotransformation and inhibition of brassinin detoxification in cultures of *L. maculans* by co-incubating these compounds with brassinin (1). A noticeable decrease in the rate of brassinin detoxification was observed in the presence of N'-methylbrassinin (9), dithiocarbamate 11,

4967

dithiocarbonate 17, and dithiocarbazate 20. In agreement with previous results,³ modification of the aromatic substituent of brassinin (1) did not prevent metabolic degradation; however, the presence of the -CH₂-NH-C=S- moiety on the side chain was essential for metabolism to occur. That is, replacement of the (N)H with a (N)-CH₃ group or deletion of the methylene bridge prevented the degradation of dithiocarbamates 9, 11, and 15. This result is of great interest as it suggests that the (N)H of the -NH-C=S- moiety might be playing an important role in substrate recognition by the putative brassinin oxidase. In addition, this result may explain the substantially higher antifungal activity of N'-methylbrassinin (9) relative to brassinin (1, Table 1) against L. maculans. Furthermore, the slower transformation of dithiocarbamates 10 and 13 (to 2- and 1naphthoic acids, in 48 and 96 h, respectively) than that of brassinin (1, 16 h) might be due to either the different polarity of these naphthalenvl derivatives or/and the selectivity of brassinin oxidase. Furthermore, carbamate 17, ureas 22-46, sulfamides 61-66, and sulfonamides 67-72 were not metabolized by L. maculans, whereas among thioureas 47-60, only 48 was metabolized (to aldehyde 8 in 30 h). Structurally, 48 is similar to brassinin, having the $S(CH_3)$ atom replaced with $NH(CH_3)$; however, the rate of metabolism of 48 was much slower (30 vs 16 h for brassinin). Taken together, these metabolic results point out the selectivity of brassinin oxidase, although at this point the possibility that somewhat more polar molecules are unable to reach the metabolic cell site cannot be ruled out.

Overall, three types of interaction were observed in cultures of *L. maculans* co-incubated with the compounds under study (9–15 and 17–75) and brassinin (1): (1) a decrease on the rate of brassinin detoxification due to the strong inhibitory activity of the compound on mycelium growth (e.g., 9, Fig. 2); (2) a decrease on the rate of brassinin detoxification due to the inhibitory activity of the compound on brassinin oxidase (e.g., 17, Fig. 3); (3) a low to no detectable effect on the rate of brassinin detoxification (10, 12, 13, 15, 18, 19, and 21–75). It is also possible that the decrease on the rate of brassinin detoxification is due to strong inhibitory activity of the compound on both mycelium growth and brassinin oxidase; however, this hypothesis can be confirmed only by

Figure 2. Progress curves for detoxification of brassinin (1, 0.1 mM) in the presence of different concentrations of *N'*-methylbrassiin (9, 0.1 and 0.2 mM) in cultures of *Leptosphaeria maculans*.

Figure 3. Progress curves for detoxification of brassinin (1, 0.1 mM) in the presence of tryptophol dithiocarbonae (17, 0.1 and 0.2 mM) in cultures of *Leptosphaeria maculans*.

co-incubating compounds with brassinin oxidase or brassinin oxidase containing extracts. Therefore, further testing of compounds 9, 11, 17, and 20 in brassinin oxidase containing fractions is necessary. In addition, it is necessary to understand the mechanistic details of brassinin oxidase mediated conversion of brassinin (1) to be able to design more effective inhibitors. Although compound 17 is a very good lead structure, compounds that are not metabolized in culture are more likely to protect oilseed crucifers against *L. maculans* infestation. It is expected that isolation and characterization of the brassinin oxidase involved in the detoxification of brassinin (1) will greatly facilitate the design of more effective and selective inhibitors.

4. Experimental

4.1. General experimental procedures

All chemicals were purchased from Sigma–Aldrich Canada Ltd, Oakville, ON. All solvents were of HPLC grade and used as such, except for CH_2Cl_2 and $CHCl_3$ that were redistilled. Solvents used in syntheses were dried over the following drying agents prior to use: THF and diethyl ether over sodium/benzophenone, CH_2Cl_2 and benzene over CaH_2 . Organic extracts were dried over anhydrous Na_2SO_4 and solvents removed under reduced pressure in a rotary evaporator.

HPLC analysis was carried out with a high-performance liquid chromatograph equipped with quaternary pump, automatic injector, and diode array detector (wavelength range 190-600 nm), degasser, and a Hypersil ODS column (5 µm particle size silica, 4.6 id $\times 200$ mm), equipped with an in-line filter. Mobile phase: 75% H₂O/25% CH₃CN to 100% CH₃CN, for 35 min, linear gradient, and a flow rate 1.0 mL/min. UV spectra were recorded on a Varian-Cary spectrophotometer in MeOH. NMR spectra were recorded on Bruker Avance 500 spectrometers; δ values were referenced as follows: for ¹H (500 MHz), CDCl₃ (CHCl₃ at 7.27 ppm), CD₃CN (CD₂HCN at 1.94 ppm), and (CD₃)₂SO (CHD₂SOCD₃ at 2.50 ppm); for 13 C (125.8 MHz), CDCl₃ (77.2 ppm), CD₃CN (118.7 ppm), and (CD₃)₂SO (39.5 ppm). Fourier transform infrared (FTIR) spectra

were recorded on Bio-Rad FTS-40 spectrometers. Mass spectra (MS) were obtained on a VG 70 SE mass spectrometer using a solid probe or on a Q Star XL, Applied Biosystems.

4.2. Fungal cultures

Fungal cultures of *L. maculans* virulent isolate BJ 125 were obtained from the IBCN collection, Agriculture and Agri-Food Canada Research Station, Saskatoon, SK. Cultures were handled as described previously.³⁶

4.3. Antifungal bioassays

Virulent isolates of *L. maculans* were grown on potato dextrose agar (PDA) plates at 24 ± 1 °C under constant light for 7 days. The antifungal activity of compounds was determined following a mycelial radial growth bioassay, as described previously.³⁷ All bioassays were carried out in triplicate, at least two times.

4.4. Brine shrimp larvae bioassays

The cytotoxic activity of compounds was determined using brine shrimp larvae (A. salina). Shrimp eggs (1 scoop) were incubated in Petri dishes containing saline water (3.8% NaCl solution) under constant light and eggs were allowed to hatch for 24 h. Solutions of the compounds to be tested were prepared by serial dilutions (final concentrations 0.5, 0.2, and 0.1 mM in saline water with 1% MeOH, prepared from 50 mM stock solutions in MeOH) and dispensed (4 mL) into vials; 10 living shrimps were then added to each vial and final volume was made up to 5 mL using saline water. Control solutions (1% MeOH in saline water) containing 10 living larvae were prepared similarly. The vials were incubated for 24 h and the number of surviving larvae in each vial was counted and compared with that in the control vial. The experiments were performed in triplicate at least twice.

4.5. Metabolism and screening of potential detoxification inhibitors

Erlenmeyer flasks (125 mL, containing 50 mL of defined media) were inoculated with spores (10^8 spores/100 mL) of *L. maculans* and incubated at 24 ± 1 °C on shaker at 120 rpm under constant light for 48 h. The compound (stock solution in DMSO) to be screened was added to cultures (0.1 and 0.2 mM) and to uninoculated medium (control), and flasks were then incubated for 10 min on shaker at 120 rpm. Brassinin (final concentration 0.1 mM) was then added to the culture and cultures further incubated. Control cultures containing brassinin (1) or the compound only were incubated separately. Samples (2 mL) were withdrawn at different times and either frozen or immediately extracted with EtOAc (2× 4 mL). The organic phases were concentrated and analyzed by HPLC.

4.6. Syntheses

4.6.1. Brassinin (1). Carbon disulfide (45 μ L, 0.75 mmol) was added to a solution of indol-3-ylmethylamine (76,

100 mg, 0.68 mmol) and triethylamine (191 µL, 1.44 mmol) in pyridine (1 mL) at 0 °C. After stirring for 20 min, MeI (49 µL, 0.75 mmol) was added and the reaction mixture was stirred for an additional 30 min. The reaction mixture was acidified with H₂SO₄ (5 mL, 1.5 M), was extracted with Et₂O, the organic phase was dried (Na₂SO₄) and evaporated under reduced pressure. Fractionation by FCC (silica gel, EtOAc/hexane, 50:50) afforded brassinin (1, 153 mg, 95% yield) as a white solid. Mp: 132–133 °C, CH₂Cl₂ (lit.³⁸ 132–133 °C). HPLC $t_R = 18.7$ min. Spectroscopic data are identical to published data.

4.6.2. N'-Methylbrassinin (9). Preparation and separation as reported above for brassinin (1) substituting 77 (100 mg, 0.63 mmol) for indol-3-ylmethylamine (76). Red solid, 134 mg, 86% yield based on amine 77. Mp: 68–69 °C, CH₂Cl₂. HPLC $t_{\rm R} = 21.7$ min. ¹H NMR (500 MHz, CD₃CN) mixture of rotamers (1:2): δ 9.32 (br s, 1H, D₂O exchangeable), 7.73 (d, J = 7.5 Hz, 0.7H), 7.45 (d, J = 7.5 Hz, 1H), 7.37 (br s, 0.7H), 7.18 (dd, J = 7, 7 Hz, 1H), 7.08 (m, 1H), 5.53 (s, 1.3H),3.22 (s, 2H), 2.66 (s, 3H); additional signals for minor rotamer 7.63 (br s, 0.3H), 7.31 (br s, 0.3H), 5.16 (s, 0.7H), 3.42 (s, 1H). ¹³C NMR (500 MHz, CD₃CN) mixture of rotamers: δ 197.9, 136.5, 126.6, 125.3, 122.0, 119.4, 119.2, 111.5, 110.1, 51.1, 37.6, 19.7; additional signals for minor rotamer 197.1, 124.7, 119.6, 118.6, 111.7, 109.3, 49.4, 42.2. FTIR v_{max} (KBr): 3409, 480, 1388, 745 cm⁻¹. HREIMS: m/z measured 250.0604 (250.0598 calculated for $C_{12}H_{14}N_2S_2$). EIMS *m/z* (% relative abundance) 250 (M⁺, 35), 130 (100), 121 (15).

4.6.3. Methyl *N*-(naphthalen-2-ylmethyl)dithiocarbamate (10). Preparation as reported above for brassinin (1), substituting **78** (200 mg, 1.27 mmol) for indol-3-ylmethylamine (**76**). The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford methyl *N*-(naphthalen-2-ylmethyl)dithiocarbamate (**10**, 283 mg, 90% yield based on amine **78**) as a white solid. Mp: 72–73 °C, CH₂Cl₂/hexane. HPLC $t_{\rm R} = 24.2$ min. Spectroscopic data are identical to previously reported data.⁵

4.6.4. Methyl N-methyl-N-(naphthalen-2-ylmethyl)dithiocarbamate (11). Preparation as reported above for brassinin (1), substituting 79 (100 mg, 0.58 mmol) for indol-3ylmethylamine (76). The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford methyl N-methyl-N-(naphthalen-2-ylmethyl)dithiocarbamate (11, 134 mg, 88% yield based on amine **79**) as a white solid. Mp: 83–84 °C, CH₂Cl₂/hexane. HPLC $t_{\rm R} = 28.6$ min. ¹H NMR (500 MHz, (CD₃)₂SO) mixture of rotamers (1:2): δ 7.90 (m, 3H), 7.62 (br s, 0.7), 7.51 (br s, 2H), 7.43 (d, J = 8 Hz, 0.7H), 5.51 (s, 1.4H), 3.33 (s, 2H), 2.62 (s, 2H); additional signals for minor rotamer 7.71 (br s, 0.3H), 7.39 (d, J = 8 Hz, 0.3H), 5.22 (s, 0.7H), 3.50 (s, 1H), 2.58 (s, 1H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 199.3, 134.5, 133.7, 133.2, 129.2, 128.5, 128.4, 122.2, 126.9, 126.8, 126.4, 59.6, 21.0; additional signals for minor rotamer 192.2, 133.9, 129.4, 127.3, 127.0, 125.8, 57.8, 20.8. FTIR v_{max} (KBr): 3054, 2918, 1481, 1382, 959, 752 cm⁻¹. HRE-

IMS: m/z measured 261.0644 (261.0646 calculated for $C_{14}H_{15}NS_2$). EIMS m/z (% relative abundance) 225 (M⁺, 41), 141 (100), 115 (25).

4.6.5. Methyl *N*-(naphthalen-1-ylmethyl)dithiocarbamate (12). Preparation as reported above for brassinin (1), substituting **80** (150 mg, 0.95 mmol) for indol-3-ylmethyl-amine (**76**). The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford methyl *N*-(naphthalen-1-ylmethyl)dithiocarbamate (**12**, 212 mg, 90% yield from amine **80**) as a yellowish solid Mp: 85–86 °C, CH₂Cl₂/hexane. HPLC $t_{\rm R} = 23.9$ min. Spectroscopic data are identical to previously reported data.⁵

4.6.6. Methyl N-methyl-N-(naphthalen-1-ylmethyl)dithiocarbamate (13). Preparation as reported above for brassinin (1), substituting 81 (100 mg, 0.58 mmol) for indol-3-vlmethylamine (76). The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford methyl N-methyl-N-(naphthalen-1-ylmethyl)dithiocarbamate (13, 130 mg, 85% yield from amine 81) as a white solid. Mp: 132-135 °C, CH₂Cl₂/ hexane. HPLC $t_{\rm R} = 27.8$ min. ¹H NMR (500 MHz, (CD₃)₂SO) mixture of rotamers (1:2): ¹H NMR (500 MHz, (CD₃)₂SO) mixture of rotamers (1:2): δ 7.99 (m, 2H), 7.89 (d, J = 8 Hz, 1H), 7.57 (m, 3H), 7.49 (br s, 1H, D_2O exchangeable), 7.21 (d, J = 6.5 Hz, 0.7H), 5.58 (s, 1.2H), 3.28 (s, 2H), 2.64 (s, 2H); additional signals for minor rotamer 7.07 (d, J = 6.5 Hz, 0.3H), 5.56 (s, 0.7H), 3.53 (s, 1H), 2.55 (s, 1H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 199.1, 134.2, 132.0, 131.6, 129.5, 128.8, 127.4, 126.9, 126.4, 125.6, 124.0, 58.0, 44.8, 21.0; additional signals for minor rotamer 198.8, 131.4, 131.1, 127.0, 126.5, 123.7, 123.6, 55.9, 20.8. FTIR v_{max} (KBr): 2924, 1633, 1340, 1484, 1383, 800 cm⁻¹. HREIMS: m/z measured 261.0652 (261.0646 calculated for $C_{14}H_{15}NS_2$). EIMS *m/z* (% relative abundance) 261 (M⁺, 44), 141 (100), 115 (21).

4.6.7. Tryptophol dithiocarbonate (17). Carbon disulfide (82 µL, 1.36 mmol) was added to a mixture of tryptophol (88, 200 mg, 1.24 mmol) and NaH (95 mg, a 60% suspension in oil, 2.48 mmol) in THF (5.0 mL) at 0 °C. After stirring the reaction mixture for 5 min, MeI $(150 \,\mu\text{L}, 1.36 \,\text{mmol})$ was added and the reaction mixture was allowed to stir for an additional 10 min at 0 °C. After dilution with H_2O (20 mL) and extraction with EtOAc, the extract was dried (Na₂SO₄) and concentrated to afford 17 (148 mg, 93% yield) as an off-white solid. Mp: 54–55 °C, EtOAc. HPLC $t_R = 28.0 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN): δ 9.15 (br s, 1H, D₂O exchangeable), 7.64 (d, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.16 (m, 2H), 7.08 (dd, J = 7.5, 7.5 Hz, 1H), 4.87 (t, J = 7 Hz, 2H), 3.26 (t, J = 7, 2 H), 2.53 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 216.6, 136.8, 127.8, 123.5, 122.0, 119.3, 118.8, 111.8, 111.0, 74.5, 24.3, 18.6. FTIR v_{max} (KBr): 3424, 1218, 1064, 744 cm⁻ HREIMS: m/z measured 251.0431 (251.0438 calculated for $C_{12}H_{13}NOS_2$). EIMS m/z (% relative abundance) 251 (M⁺, 5), 143 (100), 115 (10).

4.6.8. Methyl *N*-(indol-3-ylmethyl)carbamate (18). A solution of *N*,*O*-bis(trimethylsilyl)acetamide (367μ L,

1.5 mmol) in CH₂Cl₂ (1 mL) was added to a solution of indol-3-ylmethylamine (**76**, 146 mg, 1.0 mmol) in solvent CH₂Cl₂ (6 mL) and the mixture was stirred at rt for 30 min. The reaction was then cooled to 0 °C and a solution of methyl chloroformate (115 µL, 1.5 mmol) in CH₂Cl₂ (1.5 mL) was added. The reaction mixture was allowed to stir at 0 °C for an additional 60 min, was quenched with H₂O (10 mL), and was extracted with EtOAc, and the organic extract was dried (Na₂SO₄) and concentrated. The residue obtained was subjected to FCC (silica gel, CH₂Cl₂) to give methyl *N*-(indol-3ylmethyl)carbamate (**18**) (163 mg, 80% yield from amine **76**) as a white solid. Mp: 82–83 °C, CH₂Cl₂. HPLC $t_{\rm R} = 9.2$ min. Spectroscopic data are identical to previously reported data.¹⁰

4.6.9. Methyl *N*-(indol-3-ylmethyl)-*N*-methylcarbamate (19). Preparation as reported above for methyl N-(indol-3-vlmethyl)carbamate (18) substituting 77 for indol-3-ylmethylamine (76). The crude reaction mixture was subjected to FCC (silica gel, CH2Cl2) to afford methyl N-(indol-3-ylmethyl)-N'-methylcarbamate (19) as a light brown oil (185 mg, 85% yield). HPLC $t_{\rm R} = 12.4 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN) Mixture of rotamers: δ 9.22 (br s, 1H, D₂O exchangeable), 7.63 (br s, 1H), 7.43 (d, J = 8 Hz, 1H), 7.23 (s, 1H), 7.16 (dd, J = 7, 8 Hz, 1H), 7.07 (dd, J = 7.5, 7 Hz, 1H), 4.61 (s, 2H), 3.74 (br s, 1H), 3.69 (br s, 2H), 3.77 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 156.7, 137.0, 127.2, 124.8, 122.1, 119.6, 119.4, 111.9, 111.8, 52.4, 43.7, 32.4. FTIR v_{max} (KBr): 3308, 1684, 1454, 741 cm⁻¹. HREIMS: *m*/*z* measured 218.1059 (218.1055 calculated for $C_{12}H_{14}N_2O_2$). EIMS m/z (% relative abundance) 218 (M⁺, 67), 130 (100) 118 (11).

4.6.10. Methyl 3-phenyldithiocarbazate (20). Carbon disulfide (65 μ L, 1.0 mmol) was added to a mixture of phenylhydrazine (84, 100 μ L, 0.93 mmol) and KOH (156 mg, 2.80 mmol) in ethanol at 0 °C. After stirring the reaction mixture for 30 min, MeI (66 μ L, 1.02 mmol) was added and the reaction mixture was allowed to stir for an additional 60 min at 0 °C. The excess of solvent was removed and the residue was diluted with H₂O (20 mL), was extracted with EtOAc, the extract was dried (Na₂SO₄) and concentrated. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford 20 (174 mg, 95% yield) as an off-white solid. Mp: 133–134 °C (lit.¹¹ 133 °C), CH₂Cl₂/hexane. HPLC $t_R = 17.5$ min. Spectroscopic data are identical to previously reported data.³⁹

4.6.11. Methyl 3-benzyldithiocarbazate (21). Preparation as reported above for methyl 3-phenyldithiocarbazate (**20**) substituting benzylhydrazine dihydrochloride (**85**, 150 mg, 0.77 mmol) for phenylhydrazine (**84**). The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/hexane, 80:20) to afford methyl 3-benzyldithiocarbazate (**21**) (94 mg, 87% yield) as a white solid. Mp: 76–77 °C. HPLC $t_{\rm R} = 20.3$ min. Spectroscopic data are identical to previously reported data.¹²

4.6.12. Indol-3-ylmethylurea (22). A mixture of urea (2.0 g, 33.3 mmol), gramine (89, 500 mg, 2.87 mmol),

and crushed sodium hydroxide (100 mg, 2.5 mmol) was heated at 134 °C. After heating the reaction mixture for 120 min, ice-cold water (50 mL) was added with vigorous stirring. The white precipitate formed was filtered and crystallized to afford 22 (510 mg, 94% yield) as white crystals. Mp: 149-151 °C, water. HPLC $t_{\rm R} = 4.8 \text{ min.}^{-1} \text{H NMR}$ (500 MHz, CD₃CN): δ 9.27 (br s, 1H, D_2O exchangeable), 7.63 (d, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.16 (m, 2H), 7.07 (dd, J = 8, 8 Hz, 1H), 5.42 (br s, 1H, D₂O exchangeable), 4.72 (br s, 2H, D₂O exchangeable), 4.42 (d, J = 5 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): δ 158.8, 136.6, 126.6, 123.2, 121.6, 119.0, 118.7, 113.7, 111.3, 35.2. FTIR v_{max} (KBr): 3396, 1630, 1591, 742 cm⁻¹. HREIMS: *m*/*z* measured 189.0899 (189.0902 calculated for C₁₀H₁₁N₃O). EIMS m/z (% relative abundance) 189 (M⁺, 98), 145 (50), 130 (100), 118 (40).

4.6.13. N-(Indol-3-vlmethvl)-N_b-methvlurea (23). A solution of indol-3-vlmethylamine (76, 100 mg, 0.63 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a vigorously stirred mixture of COCl₂ (49 µL, 0.69 mmol) and $CaCO_3$ (76 mg, 0.76 mmol) in CH_2Cl_2 (3 mL) and H₂O (5 mL). After stirring for 5 min at rt, the CH₂Cl₂ layer was separated and the aqueous layer was extracted with additional CH₂Cl₂ (5 mL). The organic layer was concentrated, and the residue was re-suspended into CH_2Cl_2 (5 mL). A solution of methylamine (8.0 μ L, 3.2 mmol) in THF was added to the reaction mixture and the mixture was allowed to stir for 30 min, the solvent was evaporated and the residue was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 23 (103 mg, 74% yield) as a white solid. Mp: 119-120 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 5.3$ min. ¹H NMR (500 MHz, CD₃CN): δ 9.26 (br s, 1H, D₂O exchangeable), 7.63 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.16 (m, 2H), 7.06 (dd, J = 7, 7.5 Hz, 1H), 5.26 (br s, 1H, D₂O exchangeable), 4.91 (br s, 1H, D₂O exchangeable), 4.44 (d, J = 5 Hz, 2H), 2.65 (d, J = 5 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 159.0, 136.6, 126.7, 123.1, 121.6, 118.9, 118.8, 114.0, 111.3, 35.2, 26.1. FTIR v_{max} (KBr): 3405, 3308, 1629, 1572, 1256, 743 cm⁻¹. HRE-IMS: m/z measured 203.1059 (203.1058 calculated for $C_{11}H_{13}N_3O$). EIMS *m/z* (% relative abundance) 203 $(M^+, 100), 145 (57), 130 (93), 118 (35).$

4.6.14. N-Ethyl-N'-(indol-3-ylmethyl)urea (24). Ethylisocyanate (95 µL, 1.2 mmol) was added to a solution of indol-3-ylmethylamine (76, 146 mg, 1.0 mmol) in CH₂Cl₂ (5 mL). After allowing the reaction mixture to stir for 15 min at rt, the solvent was evaporated and the crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 24 (182 mg, 84% yield) as a white solid. Mp: 170–172 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R}$ = 7.4 min. ¹H NMR (500 MHz, CD₃CN): δ 9.74 (br s, 1H, D_2O exchangeable), 8.20 (d, J = 7.5 Hz, 1H), 7.98 (d, J = 8 Hz, 1H), 7.72 (m, 2H), 7.63 (dd, J = 7, 8 Hz, 1H), 5.67 (br s, 1H, D₂O exchangeable), 5.45 (br s, 1H, D_20 exchangeable), 5.0 (d, J = 5, Hz, 2H), 3.68 (m, 2H), 01.61 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): 163.9, 142.3, 132.4, 128.9, 128.8, 127.3, 124.6, 124.5, 119.8, 117.0, 40.8, 40.3, 20.7. FTIR v_{max} (KBr): 3440, 3234, 1580, 1352, 734 cm⁻¹. HRE-

IMS: m/z measured 217.1214 (217.1215 calculated for C₁₂H₁₅N₃O). EIMS m/z (% relative abundance) 217 (M⁺, 90), 172 (8), 145 (80), 130 (100), 118 (30), 77 (12).

4.6.15. N-(Indol-3-vlmethvl)-N'-propylurea (25). Preparation as reported above for urea (24), starting from 76 (100 mg, 0.68 mmol) and substituting propylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 25 (138 mg, 87% yield) as a white solid Mp: 145–147 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 9.8 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN): δ 9.18 (br s, 1H, D₂O exchangeable), 7.63 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.15 (m, 2H), 7.06 (dd, J = 8, 7 Hz, 1H), 5.12 (br s, 1H D₂O exchangeable), 4.94 (br s, 1H D_20 exchangeable), 4.44 (d, J = 5 Hz, 2H), 3.06 (m, 2H), 1.45 (m, 2H), 0.87 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): 158.7, 137.1, 127.1, 123.5, 122.0, 119.3, 119.2, 114.5, 111.7, 41.9, 35.6, 23.7, 11.0. FTIR v_{max} (KBr): 3316, 1626, 1571, 742 cm⁻¹. HREIMS: m/zmeasured 231.1369 (231.1371 calculated for $C_{13}H_{17}N_3O$). EIMS *m/z* (% relative abundance) 231 (M⁺, 72), 145 (50), 130 (100), 102 (35), 73 (27).

4.6.16. N-(Indol-3-ylmethyl)-N'-phenylurea (26). Preparation as reported above for N-ethyl-N'-(indol-3-ylmethyl)urea (24), starting from 76 (200 mg, 1.37 mmol) and substituting phenylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 26 (344 mg, 95% yield) as a white solid. Mp: 188-190 °C, CH₂Cl₂/MeOH (lit.¹⁴ 195–196 °C). HPCL $t_{\rm R} = 15.3$ min. ¹H NMR (500 MHz, CD₃CN): δ 9.18 (br s, 1 H, D₂O exchangeable), 7.68 (d, J = 8 Hz, 1H), 7.42 (m, 3H), 7.24 (m, 3H), 7.17 (m, 2H), 7.08 (dd, J = 8, 8 Hz, 1H), 6.97 (dd, J = 7.5, 7.5, 1H), 5.43 (br s, 2H, D₂O exchange-able), 4.54 (d, J = 5 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): 155.3, 140.3, 136.7, 128.7, 126.6, 123.4, 121.8, 121.7, 119.1, 118.8, 118.5, 113.5, 111.4, 35.0. FTIR v_{max} (KBr): 3316, 1595, 1561, 738 cm⁻¹. HRE-IMS: m/z measured 265.1214 (265.1215 calculated for $C_{16}H_{15}N_{3}O$). EIMS *m*/*z* (% relative abundance) 265 $(M^+, 52), 172 (12), 130 (100), 93 (64).$

4.6.17. N-(Indol-3-ylmethyl)-N-methylurea (27). A mixture of *N*-(indol-3-ylmethyl)-*N*-methylamine (77. 130 mg, 0.81 mmol) and KNCO (98 mg, 1.2 mmol) in MeOH (5 mL) was allowed to reflux for 60 min. The reaction mixture was cooled to rt and the solvent was evaporated. The residue was suspended into H₂O (20 mL), was extracted with EtOAc, and the organic extracts were combined, dried over Na₂SO₄, and concentrated to dryness. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 27 (145 mg, 88% yield) as a white solid Mp: 141-142 °C, $CH_2Cl_2/MeOH$. HPLC $t_R = 4.1 \text{ min.}$ ¹H NMR (500 MHz,CD₃CN): δ 9.32 (br s, 1H, D₂O exchangeable), 7.66 (d, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.21 (s, 1H), 7.15 (dd, J = 7.5, 7.5. Hz, 1H), 7.06 (dd, J = 7.5, 7.5 Hz, 1H), 4.89 (br s, 2H, D₂O exchangeable), 4.60 (s, 2H), 2.75 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 159.2, 137.2, 127.2, 124.3, 122.1, 119.5, 119.4, 112.6, 111.7, 43.3, 33.4. FTIR v_{max} (KBr): 3234,

1642, 1593, 744 cm⁻¹. HREIMS: m/z measured 1. 203.1053 (203.1059 calculated for C₁₁H₁₃N₃O). EIMS m/z (% relative abundance) 203 (M⁺, 81), 145 (48), 130 m

N-Ethyl-N'-(indol-3-ylmethyl)-N'-methylurea 4.6.18. (28). Ethylisocyanate (60 μ L, 0.75 mmol) was added to a solution of N-(indol-3-ylmethyl)-N-methylamine (77, 100 mg, 0.63 mmol) in CH₂Cl₂ (5 mL). After allowing the reaction mixture to stir for 15 min at rt, the solvent was evaporated and the crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 28 (124 mg, 86% yield) as a white solid. Mp: 118-121 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R}$ = 9.2 min. ¹H NMR (500 MHz, CD₃CN): δ 9.19 (br s, 1H, D₂O exchangeable), 7.65 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.19 (d, J = 3.5 Hz, 1H), 7.15 (dd, J = 8, 8 Hz, 1H), 7.05 (dd, J = 8, 8 Hz, 1H), 5.13 (br s, 1H, D₂O exchangable), 4.78 (s, 2H), 3.20 (m, 2H), 2.73 (s, 3H), 1.10 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 158.6, 137.1, 127.3, 124.2, 122.0, 119.6, 119.4, 112.9, 111.7, 43.2, 35.7, 33.1, 15.4. FTIR v_{max} (KBr): 3234, 1627, 1530, 743 cm⁻¹. HREIMS: m/z measured 231.1378 (231.1372 calculated for $C_{13}H_{17}N_3O$). EIMS m/z (% relative abundance) 231 (M⁺, 76), 159 (18), 130 (100).

(100), 74 (86).

N-(Indol-3-ylmethyl)-N-methyl-N'-propylurea 4.6.19. (29). Preparation as reported above for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28), starting from 77 (220 mg, 1.37 mmol) and substituting propylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 29 (269 mg, 80% yield) as a white solid. Mp: 116–118 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 11.9$ min. ¹H NMR (500 MHz, CD₃CN): δ 9.35 (br s, 1H, D₂O exchangeable), 7.65 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.19 (s, 1H), 7.15 (dd, J = 7, 8 Hz, 1H), 7.05 (dd, J = 7, 7.5 Hz, 1H), 5.19 (br s, 1H, D₂O exchangeable), 4.62 (s, 2H), 3.14 (m, 2H), 2.74 (s, 3H), 1.51 (m, 2 H), 0.89 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 158.7, 137.2, 127.3, 124.2, 122.0, 119.6, 119.4, 112.9, 111.7, 43.3, 42.7, 33.0, 23.8, 11.1. FTIR v_{max} (KBr): 3245, 2963, 1628, 1531, 1351, 744 cm⁻¹. HREIMS: *m*/*z* measured 245.1538 (245.1541 calculated for C₁₄H₁₉N₃S). EIMS m/z (% relative abundance) 245 (M⁺, 55), 159 (24), 130 (100), 77 (7).

N-(Indol-3-ylmethyl)-N-methyl-N'-phenylurea 4.6.20. (30). Preparation as reported above for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28), starting from 77 (200 mg, 1.25 mmol) and substituting phenylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **30** (293 mg, 84% yield) as a white solid. Mp: 147-150 °C, CH₂Cl₂/MeOH. HPLC $t_R = 16.8 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN): δ 9.29 (br s, 1H, D₂O exchangeable), 7.68 (d, J = 8 Hz, 1H), 7.47 (d, J = 8 Hz, 2H), 7.43 (d, J = 8 Hz, 1H), 3H), 7.27 (m, 3H), 7.14 (m, 2H), 7.07 (dd, J = 7, 7.5 Hz, 1H), 7.02 (dd, J = 7.5, 7.5 Hz, 1H), 4.73 (s, 2H), 2.93 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 156.1, 140.8, 137.2, 129.1, 127.2, 124.5, 122.7, 122.1, 120.5, 119.6, 119.5, 112.4, 111.8, 49.3, 33.5. FTIR v_{max} (KBr): 3281, 1643,

1526, 1444, 1238, 747 cm⁻¹. HREIMS: m/z measured 279.1374 (279.1372 calculated for C₁₇H₁₇N₃O). EIMS m/z (% relative abundance) 279 (M⁺, 14), 160 (16), 130 (48), 119 (100), 93 (48).

4.6.21. Naphthalen-2-ylmethylurea (31). Preparation as reported for *N*-(indol-3-ylmethyl)-*N*-methylurea (27) and substituting 78 (100 mg, 0.64 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **31** (103 mg, 81% yield) as a white solid. Mp: 193-194 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 8.3 \text{ min.} {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta 7.86 \text{ (m,}$ 3H), 7.72 (s, 1H), 7.48 (m, 2H), 7.42 (d, J = 8.5 Hz, 1H), 6.52 (br s, 1 H, D₂O exchangeable), 5.57 (br s₂ 2H, D₂O exchangeable), 4.35 (d, J = 6 Hz, 2H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta$ 159.1, 139.1, 133.4, 132.5, 128.2, 128.0, 127.9, 126.6, 126.3, 125.9, 125.3, 43.4. FTIR v_{max} (KBr): 3355, 1651, 1597, 15568 cm⁻¹. HREIMS: m/z200.0951 (200.0950 calculated measured for $C_{12}H_{12}N_2O$). EIMS *m/z* (% relative abundance) 200 (M⁺, 100), 156 (98), 141 (24), 129 (35).

4.6.22. *N*-Ethyl-*N*'-(naphthalen-2-vlmethyl)urea (32). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)urea (24) and substituting 78 (100 mg, 0.64 mmol) for 76. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 32 (117 mg, 81% yield) as a white solid. Mp: 156–158 °C, CH₂Cl₂/ MeOH. HPLC $t_{\rm R}$ = 11.8 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.85 (m, 3H), 7.71 (s, 1H), 7.48 (m, 2H), 7.42 (d, J = 8.5 Hz, 1H), 6.40 (br s, 1 H, D₂O exchangeable), 5.92 (br s, 1H, D₂O exchangeable), 4.37 (d, J = 6 Hz, 2H), 3.05 (m, 2H), 1.01 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.5, 139.1, 133.4, 132.5, 128.2, 128.0, 127.9, 126.6, 126.4, 125.9, 125.4, 43.5, 34.6, 16.2. FTIR v_{max} (KBr): 3340, 1622, 1572, 1264 cm⁻¹. HRESIMS: m/z measured 229.1341 (229.1340 calculated for $C_{14}H_{17}N_2O$), ESIMS m/z(% relative abundance) 229 ($M+1^+$, 100), 114 (29).

4.6.23. N-(Naphthalen-2-vlmethvl)-N'-propylurea (33). Preparation as reported above for N-ethyl-N'-(indol-3ylmethyl)urea (24) and substituting 78 (150 mg, 0.96 mmol) for 76 and propylisothiocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 33 (190 mg, 80% yield) as a white solid. Mp: 166-168 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 14.2 \text{ min.}^{-1}$ H NMR (500 MHz, (CD₃)₂SO): δ 7.85 (m, 3H), 7.71 (s, 1H), 7.47 (m, 2H), 7.41 (d, J = 8.5 Hz, 1H), 6.40 (br s, 1H, D₂O exchangeable), 5.97 (br s, 1H, D₂O exchangeable), 4.37 (d, J = 6 Hz, 2H), 2.99 (m, 2H), 1.39 (m, 3H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.6, 139.2, 133.4, 132.5, 128.2, 128.0, 127.9, 126.6, 126.4, 125.9, 125.3, 43.5, 41.7, 23.7, 11.8. FTIR v_{max} (KBr): 3325, 1622, 1581, 1253 cm⁻¹. HRESIMS: m/z243.1503 calculated measured (243.1497 for $C_{15}H_{19}N_2O$). ESIMS *m*/*z* (% relative abundance) 243 $(M+1^+, 100).$

4.6.24. *N*-(Naphthalen-2-ylmethyl)-N'-phenylurea (34). Preparation as reported for *N*-ethyl-N'-(indol-3-ylmeth-yl)urea (24) and substituting 78 (180 mg, 1.15 mmol)

for 76 and phenylisothiocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 34 (250 mg, 80% yield) as a white solid. Mp: 188–190 °C, CH₂Cl₂/ MeOH. HPLC $t_{\rm R} = 19.5 \text{ min.}^{-1} \text{H}$ NMR (500 MHz, $(CD_3)_2SO$: δ 8.59 (s, 1H, D₂O exchangeable), 7.89 (m, 3H), 7.78 (s, 1H), 7.49 (m, 3H), 7.42 (d, J = 7.5 Hz, 2H), 7.22 (t, J = 7.5, 2H), 6.89 (t, J = 7.5, 1H), 6.71 (t, J = 6 Hz, 1H, D₂O exchangeable), 4.48 (d, J = 6 Hz, 2H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 155.7, 140.9, 138.5, 133.4, 132.6, 129.1, 128.4, 128.0, 127.9, 126.6, 126.3, 126.0, 125.5, 121.6, 118.2, 43.4. FTIR v_{max} (KBr): 3317, 1633, 1597, 1246 cm⁻¹. HRE-SIMS: m/z measured 277.1331 (276.1335 calculated for $C_{18}H_{17}N_2O$). ESIMS *m*/*z* (% relative abundance) 277 (M+1⁺, 100), 149 (4).

4.6.25. N-Methyl-N-(naphthalen-2-vlmethyl)urea (35). Preparation as reported for N-(indol-3-vlmethyl)-Nand substituting **79** (100 mg, methylurea (27) 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **35** (95 mg, 76% yield) as a white solid. Mp: 182–183 °C, $CH_2Cl_2/MeOH.$ HPLC $t_R = 7.8 \text{ min.}$ ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.87 (m, 3H), 7.68 (s, 1H), 7.48 (m, 2H), 7.37 (d, J = 8.5 Hz, 1H), 5.99 (s, 1H, D_2O exchangeable), 4.56 (s, 2H), 2.77 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 159.4, 137.1, 133.4, 132.6, 128.5, 128.0, 127.9, 126.6, 126.3, 126.0, 125.9, 51.6, 34.5. FTIR v_{max} (KBr): 3371, 1665, 1532, 746 cm⁻¹. HREIMS: *m*/*z* measured 214.1105 (214.1106 calculated for $C_{13}H_{14}N_2O$). EIMS m/z (% relative abundance) 214 (M⁺, 100), 197 (9), 170 (63), 141 (24), 115 (23).

4.6.26. N-Ethyl-N'-methyl-N'-(naphthalen-2-ylmeth**yl)urea (36).** Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28) and substituting 79 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 36 (112 mg, 79% yield) as a white solid. Mp: 150–151 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 14.5$ min. ¹H NMR (500 MHz, $(CD_3)_2SO$): δ 7.87 (m, 3H), 7.67 (s, 1H), 7.48 (m, 2H), 7.35 (d, J = 8.5 Hz, 1H), 6.43 br s, 1 H, D₂O exchangeable), 4.57 (s, 2H), 3.11 (m, 2H), 2,77 (s, 3H), 1.05 (t, J = 7 Hz, 3H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta$ 158.8, 137.5, 133.8, 133.0, 128.9, 128.4, 128.3, 127.0, 126.5, 126.3, 52.0, 35.9, 34.5, 16.6. FTIR v_{max} (KBr): 3341, 2963, 1629, 1534 cm⁻¹. HREIMS: m/zmeasured 242.1411 (242.1419 calculated for $C_{15}H_{18}N_2O$). EIMS m/z (% relative abundance) 242 (M⁺, 74), 170 (94), 141 (100), 115 (29).

4.6.27. *N*-Methyl-*N*-(naphthalen-2-ylmethyl)-*N*'-propylurea (37). Preparation as reported for *N*-ethyl-*N*'-(indol-3-ylmethyl)-*N*'-methylurea (28), substituting 79 (100 mg, 0.58 mmol) for 77 and propylisothiocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 37 (122 mg, 82% yield) as a white solid. Mp: 158–159 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 14.2$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.86 (m, 3H), 7.67 (s,

1H), 7.48 (m, 2H), 7.35 (d, J = 7.5 Hz, 1H), 6.44 (br s, 1H, D₂O exchangeable), 4.58 (s, 2H), 3.04 (m, 2H), 2.77 (s, 3H), 1.44 (m, 2H), 0.83 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.9, 137.5, 133.8, 133.0, 128.9, 128.4, 128.3, 127.0, 126.6, 126.5, 126.3, 52.0, 42.9, 34.6, 24.0, 12.2. FTIR v_{max} (KBr): 3344, 2962, 1630, 1534 cm⁻¹. HREIMS: *m*/*z* measured 256.1574 (256.1577 calculated for C₁₆H₂₀N₂O). EIMS *m*/*z* (% relative abundance) 256 (M⁺, 43), 170 (64), 141 (100), 115 (33).

4.6.28. *N*-Methyl-*N*-(naphthalen-2-ylmethyl)-*N*'-phenylurea (38). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28), substituting 79 (120 mg, 0.70 mmol) for 77 and phenylisothiocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **38** (152 mg, 91% yield) as a white solid. Mp: 133-135 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 18.7$ min. ¹H NMR (500 MHz, $(CD_3)_2SO$): δ 8.46 (s, 1H, D₂O exchangeable), 7.89 (m, 3H), 7.76 (s, 1H), 7.49 (m, 4H), 7.42 (d, J = 8.5 Hz, 1H), 7.24 (t, J = 8, 2 H), 6.89 (t, J = 7.5, 1H), 4.72 (s, 2H), 2.96 (s 3H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta 156.6, 141.4, 137.0, 133.8,$ 133.1, 129.1, 129.0, 128.4, 128.4, 127.1, 126.7, 126.6, 126.5, 122.7, 120.1, 52.2, 35.2. FTIR v_{max} (KBr): 3326, 3055, 1642, 1532, 750 cm⁻¹. HREIMS: m/z measured 290.1421 (290.1419 calculated for C19H18N2O). EIMS m/z (% relative abundance) 290 (M⁺, 30), 170 (19), 141 (100), 115 (15).

4.6.29. Naphthalen-1-ylmethylurea (39). Preparation as reported for *N*-(indol-3-vlmethyl)-*N*-methylurea (27) and substituting 80 (100 mg, 0.63 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **39** (97 mg, 74%) yield). Mp: 214-216 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 8.1 \text{ min}^{-1} \text{H} \text{ NMR} (500 \text{ MHz}, (CD_3)_2 \text{SO}): \delta 8.10,$ (d, J = 8 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8 Hz, 1H), 7.53 (m, 2H), 7.45 (m, 2H), 6.42 (br s, 1H, D₂O exchangeable), 5.52 (s, 2H, D₂O exchange-able), 4.64 (d, J = 6 Hz, 2H). ¹³C NMR (500 MHz, $(CD_3)_2SO$): δ 158.9, 136.5, 133.8, 131.4, 128.9, 127.8, 126.6, 126.2, 125.9, 125.5, 124.05, 41.3. FTIR v_{max} (KBr): 3430, 3339, 1649, 1600, 773 cm⁻¹. HRESIMS: m/z measured 200.0950 (200.0949 calculated for $C_{12}H_{12}N_2O$, ESIMS *m/z* (% relative abundance) 200 (M⁺, 95), 141 (35), 129 (42).

4.6.30. *N*-Ethyl-*N'*-(naphthalen-1-ylmethyl)urea (40). Preparation as reported for *N*-ethyl-*N'*-(indol-3-ylmethyl)urea (24) and substituting 80 (164 mg, 1.04 mmol) for **76.** The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 40 (200 mg, 84% yield) as a white solid. Mp: 183–184 °C, CH₂Cl₂/ MeOH. HPLC $t_{\rm R}$ = 11.6 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.09 (d, *J* = 8 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 8 Hz, 1H), 7.54 (m, 2H), 7.44 (m, 2H), 6.29 (br s, 1H, D₂O exchangeable), 5.85 (br s, 1H, D₂O exchangeable), 4.66 (d, *J* = 5.5 Hz, 2H), 3.04 (m, 2H), 0.99 (t, *J* = 7 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.3, 136.6, 133.8, 131.4, 128.9, 127.7, 126.6, 126.2, 125.9, 125.5, 124.0, 41.4,

4973

34.6, 16.2. FTIR v_{max} (KBr): 3330, 1618, 1580, 776 cm⁻¹. HREIMS: *m/z* measured 228.1260 (228.1262 calculated for C₁₄H₁₆N₂O). EIMS *m/z* (% relative abundance) 228 (M⁺, 60), 156 (100), 141 (58), 129 (21).

4.6.31. N-(Naphthalen-1-ylmethyl)-N'-propylurea (41). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)urea (24) and substituting 80 (160 mg, 1.02 mmol) for 76 and propylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 41 (200 mg, 81% yield) as a white solid. Mp: 136–137 °C, CH₂Cl₂/MeOH. HPLC $t_R = 14.1 \text{ min.}^{-1}\text{H NMR}$ (500 MHz, (CD₃)₂SO): δ 8.09 (d, J = 8 Hz, 1H), 7.93 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 8 Hz, 1H), 7.53 (m, 2H), 7.44 (m, 2H), 6.28 (br)s, 1H, D₂O exchangeable), 5.90 (br s, 1H, D₂O exchangeable), 4.66 (d, J = 5.5 Hz, 2H), 2.98 (m, 2H), 1.38 (m, 2H), 0.83 (t, J = 7.5 Hz, 3H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta$ 158.4, 136.6, 133.8, 131.4, 128.9, 127.7, 126.6, 126.2, 125.9, 125.5, 124.0, 41.6, 41.4, 23.7, 11.8. FTIR v_{max} (KBr): 3313, 1626, 1591, 792 cm^{-1} . HRESIMS: *m*/*z* measured 243.1497 (243.1491 calculated for $C_{15}H_{19}N_2O$). ESIMS *m/z* (% relative abundance) 243 (M+1⁺, 100), 114 (11).

4.6.32. N-(Naphthalen-1-ylmethyl)-N'-phenylurea (42). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)urea (24), substituting 80 (160 mg, 1.02 mmol) for 76 and phenylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 42 (247 mg, 88% yield) as a white solid. Mp: 221–223 °C. HPLC $t_{\rm R}$ = 19.5 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.51 (s, 1H, D₂O exchangeable), 8.13 (d, J = 8 Hz, 1H), 7.95 (d, J = 8 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.56 (m, 2H), 7.49 (m, 2H), 7.41 (d, J = 8 Hz, 2H), 7.22 (t, J = 8 Hz, 2H), 6.89 (t, J = 7.5 Hz, 1H), 6.63 (br s, 1H, D₂O exchangeable), 4.77 (d, J = 5.5 Hz, 2H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta 155.5, 140.9, 135.9, 133.8,$ 131.3, 121.1, 129.0, 128.0, 126.7, 126.3, 125.9, 125.8, 123.9, 122.6, 118.1, 41.2. FTIR v_{max} (KBr): 3323, 1628, 1571, 778 cm⁻¹ HREIMS: m/z measured 276.1260 (276.1262 calculated for $C_{18}H_{16}N_2O$). EIMS m/z (% relative abundance) 276 (M⁺, 49), 156 (10), 141 (100), 115 (15).

4.6.33. N-Methyl-N-(naphthalene-1-ylmethyl)urea (43). Preparation as reported for N-(indol-3-ylmethyl)-Nsubstituting 81 (100 mg, methylurea (27) and 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH2Cl2/MeOH, 98:2) to afford **43** (98 mg, 78% yield) as a white solid. Mp: 193–194 °C. HPLC $t_{\rm R} = 8.4 \text{ min.}^{1} \text{H NMR}$ (500 MHz, (CD₃)₂SO): δ 8.15, (br s, 1H), 7.93 (br s, 1H), 7.84 (d, *J* = 8 Hz, 1H), 7.52 (br s, 2H), 7.47 (t, J = 7 Hz, 1H), 7.31 (d, J = 7 Hz, 1H), 6.02 (br s, 1H, D₂O exchangeable), 4.88 (s, 2H), 2.74 (s, 3 H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 159.7, 134.9, 134.3, 132.2, 129.3, 128.9, 128.3, 126.9, 126.6, 126.5, 126.2, 125.7, 1245, 49.8, 34.6. FTIR v_{max} (KBr): 3433, 3338, 1650, 1600, 774 cm⁻¹. HREIMS: m/z measured 214.1112 (214.1106 calculated for $C_{13}H_{14}N_2O$). EIMS *m/z* (% relative abundance) 214 $(M^+, 21), 170 (88), 141 (100), 15 (19).$

N-Ethyl-N'-methyl-N'-(naphthalen-1-ylmeth-4.6.34. yl)urea (44). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28) and substituting 81 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 44 (101 mg, 81% yield) as a white solid. Mp: $t_{\rm R} = 14.1$ min. 174–175 °C. HPLC ^{1}H NMR (500 MHz, $(CD_3)_2SO$): δ 8.13 (br s, 1H), 9.93 (br s, 1H), 7.83 (d, J = 8 Hz, 1H), 7.52 (br s, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7 Hz, 1H), 6.43 (br s, 1H, D₂O exchangeable), 4.89 (s, 2H), 3.11 (m, 2 H), 2.74 (s, 3H), 1.04(t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.7, 134.9, 134.3, 132.0, 129.3, 128.3, 126.9, 126.6, 126.2, 125.8, 124.5, 49.8, 35.9, 34.3, 16.6. FTIR v_{max} (KBr): 3347, 1630, 1532, 785 cm⁻¹. HRE-IMS: m/z measured 242.1421(228.1419 calculated for $C_{15}H_{18}N_2O$). EIMS *m/z* (% relative abundance) 242 $(M^+, 93), 170 (82), 141 (100), 15 (54).$

4.6.35. N-Methyl-N-(naphthalen-1-ylmethyl)-N'-propylurea (45). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28), substituting 81 (100 mg, 0.58 mmol) for 77 and propylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH2Cl2/MeOH, 98:2) to afford 45 (119 mg, 80% yield) as a white solid. Mp: 147-148 °C. HPLC $t_{\rm R}$ = 14.2 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.12 (dd, J = 6, 6 Hz, 1H), 7.93 (dd, J = 6, 6 Hz, 1H), 7.83 (d, J = 8 Hz, 1H), 7.52 (dd, J = 6, 6 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.27 (t, J = 7 Hz, 1H), 6.41 (br s, 1H, D₂O exchangeable), 4.89 (s, 2H), 3.05 (m, 2H), 2.74 (s, 3H), 1.44 (m, 2H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 158.7, 135.0, 134.3, 132.0, 129.3, 128.3, 126.9, 126.6, 126.4, 125.7, 124.5, 49.9, 42.9, 34.3, 24.0, 12.2. FTIR v_{max} (KBr): 3321, 1625, 1587 cm⁻¹. HREIMS: m/z measured 256.1574 (256.1575 calculated for C₁₆H₂₀N₂O). EIMS m/z (% relative abundance) 256 (M⁺, 68), 170 (87), 141 (58), 15 (22).

4.6.36. N-Methyl-N-(naphthalen-1-ylmethyl)-N'-phenylurea (46). Preparation as reported for N-ethyl-N'-(indol-3-ylmethyl)-N'-methylurea (28), substituting 81 (100 mg, 0.58 mmol) for 77 and phenylisocyanate for ethylisocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 46 (146 mg, 86% yield) as a white solid. Mp: 153-154 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 23.7$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.43 (s, 1H, D₂O exchangeable), 8.13 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7 Hz, 1H), 7.86 (d, J = 8 Hz, 1H), 7.54 (m, 5H), 7.37 (d, J = 7 Hz, 1H), 7.24 (t, J = 8 Hz, 2 H), 6.95 (t, J = 7.5 Hz, 1H), 5.04 (s, 2H), 2.93 (s, 3H). ¹³C NMR (500 MHz, $(CD_3)_2SO$): δ 156.0, 141.0, 134.1, 133.9, 131.6, 129.0, 128.7, 128.0, 126.7, 126.3, 125.9, 125.5, 124.0, 122.3, 120.4, 49.6, 34.7. FTIR v_{max} (KBr): 3328, 1631, 1531, 1245, 759 cm⁻¹. EIMS: m/z measured 290.1421 (290.1419 calculated for C₁₉H₁₈N₂O). EIMS m/z (% relative abundance) 290 (M⁺, 38), 141 (100), 115 (11).

4.6.37. 3-Indolylmethylthiourea (47). A solution of 1-Boc-indol-3-ylmethylamine (220 mg, 0.85 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a vigorously

stirred mixture of CSCl₂ (71 µL, 0.94 mmol) and CaCO₃ (107 mg, 1.07 mmol) in CH₂Cl₂ (6 mL) and H₂O (10 mL). After stirring for 5 min at rt, the CH₂Cl₂ layer was separated and the aqueous layer was extracted with additional CH₂Cl₂ (5 mL). The organic layers were combined and concentrated, and the residue was subjected to FCC (silica gel, CH₂Cl₂) to afford 1-Bocindol-3-ylmethylisothiocyanate (91) (196 mg, 71% yield) as a light yellow solid. Ammonia gas was bubbled into a solution of isothiocyanate 91 in CH₂Cl₂ (10 mL). After 60 min, CH₂Cl₂ was evaporated, and the residue was dissolved in MeOH, and Na (100 mg, 4.30 mmol cut in small pieces) was added to the solution. The mixture was stirred at rt for 60 min, the solvent was evaporated, and the residue was dissolved in H₂O (20 mL) and extracted with EtOAc. The organic layer was then evaporated and the residue was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 47 (59 mg, 40% yield) as an off-white solid. Mp: 132-133 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R}$ =: 6.7 min. ^{1}H NMR (500 MHz, CD₃CN) mixture of rotamers (1:3): δ 9.24 (br s, 1 H, D₂O exchangeable), 7.67 (br s, 1H), 7.44 (d, J = 8 Hz, 1H), 7.27 (s, 1H), 7.18 (dd, J = 7, 7.5 Hz, 1H), 7.09 (dd, J = 7.5, 7 Hz, 1H), 6.75 (br s, 1H, D₂O exchangeable), 5.98 (br s, 1H, D₂O exchangeable), 4.85 (br s, 2H); Additional peaks of minor rotamer 6.93 (br s, 0.5H, D₂O exchangeable), 5.98 (br s, 1H, D₂O exchangeable), 4.47 (br s, 0.5H). ¹³C NMR (500 MHz, CD₃CN): δ 183.1, 136.5, 126.6, 123.8, 121.7, 119.1, 118.7, 111.7, 111.5, 40.2. FTIR v_{max} (KBr): 3295, 1611, 1539, 1457, 1346, 716 cm⁻¹. HREIMS: m/z measured 205.0672 (205.0673 calculated for $C_{10}H_{11}N_3S$). EIMS m/z (% relative abundance) 205 $(M^+, 45), 130 (100), 76 (25).$

4.6.38. *N*-(Indol-3-ylmethyl)-*N*'-methylthiourea (48). Preparation as reported for indol-3-ylmethylthiourea (47) and substituting methylamine for ammonia. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 48 (76 mg, 50% yield) as an offwhite solid. Mp: 110-112 °C, CH₂Cl₂. HPLC $t_{\rm R} = 8.5 \text{ min.}^{1} \text{H NMR}$ (500 MHz, CD₃CN): δ 9.22 (br s, 1H, D_2O exchangeable), 7.68 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.27 (s, 1H), 7.71 (dd, J = 7.5, 7.5 Hz, 1H), 7.08 (dd, J = 7.5, 7, Hz, 1H), 6.51 (br s, 1H, D₂O exchangeable), 6.32 (br s, 1H, D₂O exchangeable), 4.82 (br s, 2H), 2.89 (br s, 3H). ¹³C NMR (500 MHz, CD₃CN) mixture of rotamers: [™] 190.9, 136.4, 126.7, 124.2, 121.8, 119.2, 118.7, 111.4, 111.1, 56.5, 40.6; additional peaks of minor rotamer 190.2, 126.5, 124.2, 119.3, 118.4, 111.5, 111.3, 57.5, 38.0. FTIR v_{max} (KBr): 3347, 1520, 1454, 1337, 1201, 1144, 745 cm⁻¹. HREIMS: *m/z* measured 219.0827 (219.0830 calculated for $C_{11}H_{13}N_3S$). EIMS *m*/*z* (% relative abundance) 219 (M⁺, 50), 130 (100), 90 (81).

4.6.39. *N*-(Indol-3-ylmethyl)-*N*'-propylthiourea (49). Indol-3-ylmethylamine (76, 210 mg, 1.44 mmol) was dissolved in CH₂Cl₂ (5 mL) and propylisothiocyanate (163 μ L, 1.58 mmol) was added. After allowing the reaction mixture to stir for 15 min at rt, the solvent was evaporated and the crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford **49** (305 mg, 86%) yield) as a white solid. Mp: 114–116 °C, CH₂Cl₂. HPLC $t_{\rm R} = 14.8$ min. ¹H NMR (500 MHz, CD₃CN): δ 9.21 (br s, 1H, D₂O exchangeable), 7.68 (d, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.27 (d, J = 2 Hz, 1H), 7.18 (dd, J = 8, 8, Hz, 1H), 7.08 (dd, J = 8, 8 Hz, 1H), 6.45 (br s, 1H, D₂O exchangeable), 6.31 (br s, 1H, D₂O exchangeable), 4.82 (br s, 2H), 3.37 (br s, 2H), 1.53 (m, 2H), 0.87 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 183.1, 136.6, 126.6, 123.8, 121.8, 119.2, 118.3, 112.1, 111.4, 45.5, 39.6, 22.0, 10.5. FTIR $v_{\rm max}$ (KBr): 3251, 1548, 1458, 1135, 744 cm⁻¹. HREIMS: *m*/*z* measured 247.1137 (247.1143 calculated for C₁₃H₁₇N₃S). EIMS *m*/*z* (% relative abundance) 247 (M⁺, 50), 145 (12), 130 (100), 77 (11), 61 (39).

N-(Indol-3-ylmethyl)-*N*'-phenylthiourea 4.6.40. (50). Preparation as reported for N-(indol-3-ylmethyl)-N'propylthiourea (49), starting from 76 (200 mg, 1.37 mmol) and substituting phenylisothiocyanate for propylisothiocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 50 (345 mg, 90% yield) as a white solid. Mp: 153-155 (dec) \degree C, CH₂Cl₂. HPLC $t_{\rm R} = 18.0$. ¹H NMR (500 MHz, CD₃CN): δ 9.21 (br s, 1H, D₂O exchangeable), 8.10(br s, 1H, D₂O exchangeable), 7.70 (d, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.34 (dd, J = 8, 7.5 Hz, 2H), 7.28 (d, J = 7.5 Hz, 3H), 7.19 (m, 2H), 7.09 (dd, J = 7, 8 Hz, 1H), 6.71 (br s, 1H D₂O exchange-able), 4.94 (d, J = 5 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): δ 181.3, 138.3, 136.5, 129.6, 127.1, 126.3, 125.2, 124.5, 122.2, 119.6, 119.2, 112.1, 111.9, 40.7. FTIR v_{max} (KBr): 3261, 1530, 1498, 742 cm⁻¹. HRE-IMS: m/z measured 281.0981 (281.0987 calculated for $C_{16}H_{15}N_3S$). EIMS m/z (% relative abundance) 281 $(M^+, 7), 152 (81), 135 (100), 93, (65).$

4.6.41. N-(Indol-3-ylmethyl)-N-methyl-N'-propylthiourea (51). Propylisothiocyanate (124 μ L, 1.20 mmol) was added to a solution of N-(indol-3-ylmethyl)-N-methylamine (77, 160 mg, 1.0 mmol) in CH₂Cl₂ (5 mL). After allowing the reaction mixture to stir for 15 min at rt, the solvent was evaporated and the crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford **49** (219 mg, 84% yield) as a white solid. Mp: 129–131 °C, CH₂Cl₂. HPLC $t_{\rm R} = 18.1 \text{ min.}^{-1} \text{H} \text{ NMR}$ (500 MHz, CD₃CN): δ 9.26 (br s, 1H, D₂O exchangeable), 7.76 (d, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.26 (s, 1H), 7.16 (dd, J = 7.5, 7.5 Hz, 1H), 7.05 (dd, J = 7.5, 7.5 Hz, 1H), 6.24 (br s, 1H, D₂O exchangeable), 5.24 (s, 2H), 3.58 (m, 2H), 3.0 (s, 3H), 1.62 (m, 2H), 0.91 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 182.1, 137.1, 127.1, 124.6, 122.2, 119.8, 119.5, 111.9, 111.8, 48.6, 47.7, 35.9, 22.7, 11.0. FTIR v_{max} (KBr): 3278 (br), 2962, 1532, 1381, 1343, 745 cm⁻¹. HREIMS: m/z measured 261.1306 (261.1299 calculated for $C_{14}H_{19}N_3S$). EIMS m/z (% relative abundance) 261 $(M^+, 55), 160 (16), 132 (100), 130 (95), 102 (30).$

4.6.42. *N*-(**Indol-3-ylmethyl**)-*N*-methyl-*N*'-phenylthiourea (**52**). Preparation as reported for *N*-(indol-3-ylmethyl)-*N*-methyl-*N*'-propylthiourea (**51**), starting from **77** (200 mg, 1.25 mmol) and substituting phenylisothiocyanate for propylisothiocyanate. The crude reaction mix-

4975

ture was subjected to FCC (silica gel, CH₂Cl₂) to afford **52** (291 mg, 83% yield) as a white solid. Mp: 159–161 °C, CH₂Cl₂. HPLC $t_{\rm R} = 19.6$ min. ¹H NMR (500 MHz, CD₃CN): δ 9.29 (br s, 1H, D₂O exchangeable), 7.81 (d, J = 8 Hz, 2H), 7.46 (d, J = 8 Hz, 1H), 7.36 (d, J = 6.5 Hz, 4H), 7.19 (m, 3H), 7.10 (m, 1H), 5.33 (s, 2H), 3.17 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 182.2, 141.3, 137.1, 128.5, 127.1, 126.4, 125.4, 124.9, 122.3, 119.8, 119.7, 111.8, 111.4, 49.1, 37.0. FTIR $v_{\rm max}$ (KBr): 3361, 3240, 1520, 1382, 1329, 753 cm⁻¹. HREIMS: m/z measured 295.1146 (279.1143 calculated for C₁₇H₁₇N₃S). EIMS m/z (% relative abundance) 295 (M⁺, 3), 160(35), 135 (100), 130 (80), 77 (60).

4.6.43. N-(Naphthalen-2-ylmethyl)-N'-propylthiourea (53). Preparation as reported for N-(indol-3-ylmethyl)-*N*-propylthiourea (49) and substituting 78 (150 mg, 0.95 mmol) for 76. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 53 (192 mg, 78% yield) as a white solid. Mp: 116-117 °C, CH₂Cl₂. HPLC $t_{\rm R} = 19.3$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.87 (m, 3H), 7.74 (s, 1H), 7.57 (br s, 1H, D₂O exchangeable), 7.48 (m, 3 H), 4.82 (br s, 2H), 3.34 (br s, 2H), 1.51 (m 2H), .85 (t, J = 7 Hz, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 138.0, 133.7, 133.0, 128.7, 128.4, 128.3, 127.0, 126.7, 126.5, 126.2, 47.9, 46.2, 40.5, 22.9, 12.2. FTIR v_{max} (KBr): 3257, 3073, 1556, 1359 cm⁻¹. HREIMS: m/z measured 258.1197 (258.1191 calculated for $C_{15}H_{18}N_2S$). EIMS m/z (% relative abundance) 258 (M⁺, 50), 156 (25), 141 (100), 115 (20).

4.6.44. N-(Naphthalen-2-ylmethyl)-N'-phenylthiourea (54). Preparation as reported for N-(indol-3-ylmethyl)-N'-propylthiourea (49), substituting 78 (200 mg, 1.27 mmol) for 76 and phenylisothiocyanate for propylisothiocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 54 (327 mg, 88% yield) as a white solid. Mp: 172–173 °C, CH₂Cl₂. HPLC $t_{\rm R} = 21.8$ min. ¹H NMR ¹H NMR (500 MHz, $(CD_3)_2$ SO): δ 9.66 (br s, 1H, D₂O exchangeable), 8.26 (br s, 1H, D₂O exchangeable), 7.89 (d, J = 8 Hz, 3H), 7.80 (s, 1H), 7.49, (m, 3H), 7.45 (d, J = 8 Hz, 2H), 7.33 (dd, J = 7.5, 8 Hz, 2 H), 7.12 (dd, J = 7, 7 Hz, 1H), 4.91 (d, J = 5 Hz, 2 H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta$ 181.3, 139.5, 137.1, 133.3, 132.6, 129.1, 128.3, 127.9, 126.7, 126.4, 126.1, 125.9, 124.9, 123.9, 118.2, 47.8. FTIR v_{max} (KBr): 3382, 3174, 1544, 1588, 1270 cm⁻¹. HRESIMS: *m/z* measured 293.1116 (293.1106 calculated for C₁₈H₁₇N₂S). ESIMS m/z (% relative abundance) 293 (M+1⁺, 100), 163 (15), 114 (30).

4.6.45. *N*-Methyl-*N*-(naphthalen-2-ylmethyl)-*N*'-propylthiourea (55). Preparation as reported for *N*-(indol-3ylmethyl)-*N*-methyl-*N*'-propylthiourea (51) and substituting 79 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 55 (126 mg, 79% yield) as a light yellow solid. Mp: 67–69 °C, CH₂Cl₂. HPLC $t_{\rm R} = 23.0$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.87 (m, 3H), 7.69 (s, 1H), 7.59 (br s, 1H, D₂O exchangeable), 7.50 (m, 2 H), 7.42 (d, J = 8.5, 1H), 5.23 (s, 2H), 3.49 (m, J = 7.5, 6 Hz, 2H), 3.03 (s, 3H), 1.57 (m, 2H), 0.85 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 182.6, 136.5, 133.7, 133.1, 128.9, 128.4, 128.3, 127.1, 126.6, 126.4, 126.3, 56.7, 48.2, 37.6, 22.9, 12.1. FTIR v_{max} (KBr): 3325, 1581 1253 cm⁻¹. HREIMS: m/z measured 272.1341 (272.1347 calculated for C₁₆H₂₀N₂S). EIMS m/z (% relative abundance) 272 (M⁺, 17), 202 (17), 171 (100), 155 (20), 127 (27).

4.6.46. N-Methyl-N-(naphthalen-2-ylmethyl)-N'-phenylthiourea (56). Preparation as reported for N-(indol-3ylmethyl)-N-methyl-N'-propylthiourea (51), substituting 79 (100 mg, 0.58 mmol) for 77 and phenylisothiocyanate for propylisothiocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 57 (146 mg, 82% yield) as a white solid. Mp: 183–184 °C, CH₂Cl₂. HPLC $t_{\rm R} = 23.9 \text{ min.}^{-1} \text{H} \text{ NMR}$ (500 MHz, $(CD_3)_2SO$: δ 9.24 (s, 1H, D₂O exchangeable), 7.91 (m, 3H), 7.79 (s, 1H), 7.52 (m, 3H), 7.37 (d, J = 8 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2 H), 7.14 (t, J = 7 Hz, 1H), 5.34 (s, 2H), 3.22 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 182.4, 141.9, 136.0, 133.8, 132.2, 129.0, 128.4, 128.7, 128.5, 127.1, 127.0, 126.7, 126.6, 126.5, 125.5, 57.0, 38.6 FTIR v_{max} (KBr): 3239, 1526, 1337 cm⁻¹. HRE-IMS: m/z measured 306.1184 (306.1191 calculated for C19H18N3S). EIMS m/z (% relative abundance) 306 (M⁺, 7), 170 (70), 141 (100), 115 (38), 77 (86).

4.6.47. N-(Naphthalen-1-ylmethyl)-N'-propylthiourea (57). Preparation as reported for N-(indol-3-ylmethyl)-N'-propylthiourea (49), substituting 80 (100 mg, 0.64 mmol) for 76. The crude reaction mixture was subjected to FCC (silica gel, CH_2Cl_2) to afford 57 (133 mg, 81% yield) as a white solid. Mp: 114–115 °C, CH_2Cl_2 . HPLC $t_{\rm R} = 19.5 \text{ min.} {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, (CD_3)_2\text{SO}):$ δ 8.08 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 8 Hz, 1H), 7.85 (d, J = 8 Hz, 1H), 7.76 (br s, 1H, D₂O exchangeable), 7.55 (m, 2H), 7.47 (m, 2H), 5.08 (br s, 2H), 3.33 (br s, 2H), 1.48 (m, 2H), 0.85 (t, J = 7 Hz, 3H). ¹³C NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{SO}): \delta$ 182.3, 135.4, 134.1, 131.8, 129.4, 128.4, 127.1, 126.7, 126.3, 124.4, 46.3, 40.5, 22.9, 12.1. FTIR v_{max} (KBr): 3257, 1550, 793 cm⁻¹. HREIMS: m/z measured 258.1200 (258.1191 calculated for $C_{15}H_{18}N_2S$). EIMS *m/z* (% relative abundance) 258 $(M^+, 35), 156 (18), 141 (100), 115 (21).$

N-(Naphthalen-1-ylmethyl)-N'-phenylthiourea 4.6.48. (58). Preparation as reported for N-(indol-3-ylmethyl)-N'-propylthiourea (49), substituting 80 (100 mg, 0.64 mmol) for 76 and phenylisothiocyanate for propylisothiocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH_2Cl_2) to afford 58 (156 mg, 84%) yield) as a white solid. Mp: 195–196 °C, CH₂Cl₂. HPLC $t_{\rm R} = 21.9 \text{ min.}$ ¹H NMR (500 MHz, (CD₃)₂SO): δ 9.58 (br s, 1H, D₂O exchangeable), 8.15 (br s, 1H, D₂O exchangeable), 7.88 (dd, J = 6.5, 6.5 Hz, 1H), 7.58 (m, 2H), 7.48 (m, 4H), 7.30 (dd, J = 7.5, 8 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 5.18 (d, J = 5 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): δ 181.5, 140.2, 134.9, 134.2, 131.8, 129.4, 128.6, 127.2, 126.8, 126.6, 126.3, 125.0, 124.4, 123.8, 46.3. FTIR v_{max} (KBr): 3275, 1525, 1339 cm^{-1} . HREIMS: m/zmeasured 292.1036

(292.1034 calculated for $C_{18}H_{16}N_2S$). EIMS *m/z* (% relative abundance) 292 (M⁺, 50), 160 (18), 141 (100), 115 (20), 93 (35).

4.6.49. N-Methyl-N-(naphthalen-1-vlmethyl)-N'-propylthiourea (59). Preparation as reported for N-(indol-3ylmethyl)-N-methyl-N'-propylthiourea (51) and substituting 81 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 59 (126 mg, 79% yield) as a white solid. Mp: 81–82 °C, CH₂Cl₂. HPLC $t_{\rm R} = 22.7$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.11 (d, J = 6 Hz, 1H), 7.94 (d J = 6 Hz, 1H), 7.84 (d, J = 8 Hz, 1H), 7.63 (br s, 1H, D₂O exchangeable), 7.54 (m, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7 Hz, 1H), 5.52 (s, 2H), 3.52 (m, 2H), 3.05 (s, 3H), 1.59 (m, 2H), 0.86 (t, J = 7.5, 1H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 182.5, 134.3, 133.8, 131.8, 129.4, 128.4, 127.0, 126.7, 126.3, 125.1, 124.4, 54.8, 48.2, 38.0, 22.9, 12.1. FTIR v_{max} (KBr): 3361, 1530, 1544, 742 cm⁻¹. HREIMS: m/z272.1346 (272. 1347 calculated for measured $C_{16}H_{20}N_2S$). EIMS m/z (% relative abundance) 272 (M⁺, 100), 170 (52), 141 (55), 115 (13).

4.6.50. N-Methyl-N-(naphthalen-1-ylmethyl)-N'-phenylthiourea (60). Preparation as reported for N-(indol-3ylmethyl)-N-methyl-N'-propylthiourea (51), substituting 81 (100 mg, 0.58 mmol) for 77 and phenylisothiocyanate for propylisothiocyanate. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 60 (147 mg, 82% yield) as a white solid. Mp: 153-154 °C, CH_2Cl_2 . HPLC $t_R = 23.7$. ¹H NMR (500 MHz, (CD₃)₂SO): δ 9.28 (br s, 1H, D₂O exchangeable), 8.12 (d, J = 8 Hz, 1H), 7.97 (d, J = 8 Hz, 1H), 7.88 (d, J = 8 Hz, 1H), 7.55 (m, 3H), 7.33 (m, 5H), 7.14 (t, J = 7 Hz, 1H), 5.62 (s, 2H), 3.22 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 182.8, 141.9, 134.3, 133.4, 131.8, 129.4, 128.8, 128.4, 127.1, 126.9, 126.8, 126.4, 125.5, 125.2, 55.1, 39.0. FTIR v_{max} (KBr): 3257, 1538, 1341 cm⁻¹. HRMS: m/z measured 306.1181 (306.1190 calculated for C₁₉H₁₈N₂S). EIMS m/z (% relative abundance) 306 (M⁺, 51), 170 (31), 141 (100), 77 (46).

4.6.51. Indol-3-ylmethylsulfamide (61). A mixture of indol-3-ylmethylamine (76, 200 mg, 1.37 mmol) and sulfamide (147 mg, 1.50 mmol) in H_2O (5 mL) was heated at 100 °C for 120 min. The reaction mixture was cooled to rt, was extracted with EtOAc, the extract was dried, and the solvent was evaporated. The residue was subjected to FCC (CH₂Cl₂/MeOH, 98:2) to give 61 (135 mg, 44% yield) as a white solid. Mp: 132-134 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 8.6 \text{ min.}^{-1} \text{H}$ NMR (500 MHz, CD₃CN): δ 9.24 (br s, 1H, D₂O exchangeable), 7.69 (d, J = 8 Hz, 1H), 7.44 (d, J = 8 Hz, 1H), 7.28 (d, J = 2.5 Hz, 1H), 7.18 (dd, J = 8, 8 Hz, 1H), 7.11 (dd, J = 8,8 Hz, 1H), 5.17 (br s, 3H D₂O exchangeable), 4.38 (d, J = 6 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): δ 136.6, 126.7, 124.0, 121.8, 119.2, 118.7, 111.4, 111.1, 38.7. FTIR v_{max} (KBr): 3400, 3277, 1340, 1150, 744 cm⁻¹. HREIMS: *m/z* measured 225.0569 (225.0572 calculated for C₉H₁₁N₃O₂S). EIMS m/z (% relative abundance) 225 (M⁺, 38), 144 (48), 130 (100), 118 (15).

4.6.52. N-(Indol-3-ylmethyl)-N'-methylsulfamide (62). A mixture of N-(indol-3-vlmethyl)-N-methylamine (77, 220 mg, 2.0 mmol) and sulfamide (211 mg, 2.20 mmol) in H₂O (5 mL) was heated at 100 °C for 120 min. The reaction mixture was cooled to rt, was extracted with EtOAc, the extract was dried, and the solvent was evaporated. The residue obtained was subjected to FCC (CH₂Cl₂/MeOH, 98:2) to give **62** (115 mg, 35% yield) as a, off-white solid. Mp: 142-144 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 5.8 \text{ min.} {}^{1}\text{H} \text{ NMR}$ (500 MHz, CD₃CN): 7.69 (d, J = 8 Hz, 1H), 7.39 (d, J = 8 Hz, 1H, 7.24 (dd, J = 8, 8 Hz, 1H), 7.19 (s, 1H), 7.12 (dd, J = 8, 8 Hz, 1H), 5.02 (br s, 1H, D₂O exchangeable), 5.16 (br s, 2H, D₂O exchangeable), 4.37 (d, J = 6 Hz, 2H), 3.78 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 137.2, 127.5, 125.5, 122.4, 119.8, 119.4, 112.0, 110.1, 46.22, 34.2. FTIR v_{max} (KBr): 3409, 1341, 1161, 746 cm⁻¹. HRE-IMS: m/z measured 239.0729 (239.0728 calculated for $C_{10}H_{13}N_3O_2S$). EIMS *m/z* (% relative abundance) 239 (M⁺, 17), 147 (8), 130 (100).

4.6.53. Naphthalen-2-ylmethylsulfamide (63). Preparation as reported for indol-3-ylmethylsulfamide (61) and substituting **78** (200 mg, 1.27 mmol) for **76**. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **63** (228 mg, 76% yield) as a white solid. Mp: 164–166 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R}$ = 11.1 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.91 (m, 4H), 7.52 (m, 3H), 5.57 (br s, 1H, D₂O exchangeable), 5.24 (br s, D₂O exchangeable), 4.36 (d, J = 5.5 Hz, 2H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 134.2, 133.3, 131.8, 128.9, 128.8, 127.1, 126.7, 126.4, 125.8, 124.1, 45.5. FTIR $v_{\rm max}$ (KBr): 3272, 1329, 1154 cm⁻¹. HREIMS: m/z measured 236.0613 (236.0619 calculated for C₁₁H₁₂N₂O₂S). EIMS m/z (% relative abundance) 236 (M⁺, 54), 155 (100), 141 (38), 128 (24).

4.6.54. *N*-Methyl-*N*-(naphthalen-2-ylmethyl)sulfamide (64). Preparation as reported for N-(indol-3-ylmethyl-N'-methylsulfamide (62) and substituting 79 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford 64 (109 mg, 71% yield) as a white solid. Mp: 140–142 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 13.3$ min. ¹H NMR (500 MHz, (CD₃)₂SO):[™] 7.91 (m, 4H), 7.85 (s, 1H), 7.51 (m, 3H), 6.97 (s, 2H, D₂O exchangeable), 4.25 (s, 2H), 2.56 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 135.4, 133.7, 133.3, 129.0, 128.5, 128.4, 127.7, 127.2, 127.1, 126.8, 54.8, 35.6. FTIR v_{max} (KBr): 3269, 1341, 1157 cm^{-1} . HREIMS: m/z measured 250.0777 (250.0776 calculated for $C_{12}H_{14}N_2O_2S$). EIMS *m/z* (% relative abundance) 250 (M⁺, 43), 168 (54), 141 (100), 115 (11).

4.6.55. Naphthalen-1-ylmethylsulfamide (65). Preparation as reported for indol-3-ylmethylsulfamide (61) and substituting **80** (200 mg, 1.27 mmol) for **76**. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **65** (231 mg, 77% yield) as a white solid. Mp: 117–118 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 10.7$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.15 (d, J = 8 Hz, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.86

(d, J = 8 Hz, 1H), 7.55 (m, 3H), 7.47 (t, J = 7.5 Hz, 1H), 7.06 (br s, 1H, D₂O exchangeable), 6.74 (br s, D₂O exchangeable), 4.51 (d, J = 6 Hz, 2H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 134.4, 134.0, 131.9, 129.3, 128.6, 127.1, 127.0, 126.6, 126.2, 124.6, 45.2. FTIR v_{max} (KBr): 3270, 1310, 1164, 795 cm⁻¹. HREIMS: m/z measured 236.0622 (236.0619 calculated for C₁₁H₁₂N₂O₂S). EIMS m/z (% relative abundance) 236 (M⁺, 39), 154 (100), 141 (36), 115 (15).

4.6.56. N-Methyl-N-(naphthalen-1-ylmethyl)sulfamide (66). Preparation as reported for N-(indol-3-ylmethyl-N2-methylsulfamide ($6\overline{2}$) and substituting 81 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂/MeOH, 98:2) to afford **66** (99 mg, 68% yield) as a white solid. Mp: 145–146 °C, CH₂Cl₂/MeOH. HPLC $t_{\rm R} = 14.6 \text{ min.}^{-1}$ H NMR (500 MHz, (CD₃)₂SO): δ 8.28 (d, J = 8 Hz, 1H), 7.96 (d, J = 8 Hz, 1H), 7.91 (d, J = 8 Hz, 1H), 7.53 (m, 4H),7.50 (m, 1H), 7.02 (s, 2H, D₂O exchangeable), 4.48 (s, 2H), 2.46 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 134.4, 132.6, 132.4, 129.4, 129.3, 128.6, 127.1, 126.8, 126.2, 124.9, 53.3, 35.4. FTIR v_{max} (KBr): 3350, 3275, 1324, 1163, 782 cm⁻¹. HRMS: m/z measured 250.0768 (250.0776 calculated for $C_{12}H_{14}N_2O_2S$). EIMS *m/z* (% relative abundance) 250 (M⁺, 47), 168 (60), 141 (100).

4.6.57. Indol-3-ylmethylmethanesulfonamide (67). Methanesulfonyl chloride (92 µL, 1.20 mmol) was added to a solution of indol-3-ylmethylamine (76, 146 mg, 1.0 mmol) and triethylamine (265 µL, 2.0 mmol) in THF (4 mL) at 0 °C. The reaction mixture was allowed to stir at rt for 60 min, the precipitate formed was filtered off, the filtrate was concentrated, and the residue was subjected to FCC (silica gel, CH₂Cl₂) to give indol-3-ylmethyl methanesulfonamide (67) (146 mg, 65%) yield) as a light brown solid. Mp: 131–133 °C, CH₂Cl₂. HPLC $t_{\rm R} = 6.1 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN): δ 9.29 (br s, 1H, D₂O exchangeable), 7.71 (d, J = 8 Hz, 1H), 7.46 (d, J = 8 Hz, 1H), 7.29 (s, 1H), 7.20 (dd, J = 7, 8 Hz, 1H), 7.13 (dd, J = 8, 8 Hz, 1H), 5.45 (br s, 1H, D₂O exchangeable), 4.44 (d, J = 5 Hz, 1H), 2.83 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 137.0, 126.9, 124.5, 124.4 119.7, 119.1, 111.9, 111.6, 39.8, 38.9. FTIR v_{max} (KBr): 3412, 1310, 1147, 749 cm⁻¹. HRMS: *m*/*z* measured 224.0611 (224.0619 calculated for $C_{10}H_{12}N_2O_2S$). EIMS *m/z* (% relative abundance) 224 (M⁺, 55), 144 (87), 130 (100), 80 (20).

4.6.58. N-(Indol-3-ylmethyl)-N-methylmethanesulfonamide (68). Methanesulfonyl chloride (79 µL, 1.02 mmol) was added to a solution of indol-3-ylmethylamine (77, 150 mg. 0.93 mmol) and triethylamine (247 μ L, 1.86 mmol) in THF (4 mL) at 0 °C. The reaction mixture was allowed to stir at rt for 60 min, the precipitate formed was filtered off, the filtrate was concentrated, and the residue was subjected to FCC (silica gel, CH₂Cl₂) to give indol-3-ylmethyl methanesulfonamide (68) (156 mg, 70%) yield) as a white solid. Mp: 131-132 °C, CH₂Cl₂. HPLC $t_{\rm R} = 8.3 \text{ min.}$ ¹H NMR (500 MHz, CD₃CN): δ 9.32 (br s, 1H, D₂O exchangeable), 7.73 (d, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.28 (s, 1H), 7.17 (dd, J = 7, 8 Hz, 1H), 7.09 (dd, J = 7, 8 Hz, 1H), 4.45 (s, 2H), 2.78 (s, 3H), 2.68 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 137.2, 127.4, 125.6, 122.4, 119.9, 119.4, 112.0, 109.9, 45.6, 34.8, 33.9. FTIR v_{max} (KBr): 3406, 1322, 1148, 749 cm⁻¹. HREIMS: *m/z* measured 238.0774 (238.0776 calculated for C₁₁H₁₄N₂O₂S). EIMS *m/z* (% relative abundance) 238 (M⁺, 29), 158 (23), 130 (100).

4.6.59. *N*-(Naphthalen-2-ylmethyl)methanesulfonamide (69). Preparation as reported for indol-3-ylmethyl methanesulfonamide (67) and substituting 78 (250 mg, 1.60 mmol) for 76. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 69 (303 mg, 81% yield) as a white solid. Mp: 132–134 °C, CH₂Cl₂. HPLC $t_{\rm R}$ = 13.4 min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 7.90 (m, 3H), 7.84 (s, 1H), 7.67 (t, *J* = 6 Hz, 1H, D₂O exchangeable), 7.51 (m, 3H), 4.33 (d, *J* = 6 Hz, 2H), 2.88 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 136.7, 133.7, 133.1, 128.7, 128.5, 128.4, 127.1, 126.9, 126.8, 126.7, 47.0, 40.8. FTIR $v_{\rm max}$ (KBr): 3275, 1312, 1151 cm⁻¹. HRMS: *m/z* measured 235.0671 (235.0667 calculated for C₁₂H₁₃NO₂S). EIMS *m/z* (% relative abundance) 235 (M⁺, 28), 155 (100), 141 (19), 128 (24).

4.6.60. N-Methyl-N-(naphthalen-2-ylmethyl)methanesulfonamide (70). Preparation as reported for N-(indol-3vlmethyl)-*N*-methyl methanesulfonamide (68) and substituting 79 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 70 (113 mg, 78% yield) as a white solid. Mp: 140–142 °C, CH₂Cl₂. HPLC $t_{\rm R}$ = 18.0 min. ¹H NMR (500 MHz, $(CD_3)_2SO$): δ 7.93 (m, 3H), 7.84 (s, 1H), 7.52 (m, 2H), 7.48 (d, J = 8.5 Hz, 4.39 (s, 2H), 2.99 (s, 3H), 2.69 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): 134.9, 133.7, 133.3, 129.1, 128.5, 128.4, 127.6, 127.2, 127.0, 126.9, 54.1, 35.9, 35.2. FTIR v_{max} (KBr): 3292, 2962, 1531, 1377 cm⁻¹. HRMS: *m*/*z* measured 249.0815 (249.0823 calculated for C₁₃H₁₅NO₂S). EIMS m/z (% relative abundance) 249 (M⁺, 48), 168 (95), 141 (100), 115 (27).

N-(Naphthalen-1-vlmethyl)methanesulfonamide 4.6.61. (71). Preparation as reported for indol-3-ylmethyl methanesulfonamide (67) and substituting 80 (100 mg, 0.64 mmol) for 76. The crude reaction mixture was subjected to FCC (silica gel, CH₂Cl₂) to afford 71 (119 mg, 80% yield) as a white solid. Mp: 130–131 °C, CH_2Cl_2 . HPLC $t_{\rm R} = 13.5$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.17 (d, J = 8 Hz, 1H), 7.96 (d, J = 8 Hz, 1H), 7.88 (d, J = 8 Hz, 1H), 7.57 (m, 4H), 7.49 (dd, J = 8, 8 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 2.95 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): δ 134.3, 134.2, 131.7, 129.4, 128.9, 127.1, 127.0, 126.7, 126.2, 124.5, 45.0, 40.8. FTIR v_{max} (KBr): 3279, 1310, 1142, 773 cm⁻¹. HRMS: *m*/*z* measured 235.0666 (235.0667 calculated for $C_{12}H_{13}NO_2S$). EIMS *m*/*z* (% relative abundance) 235 $(M^+, 36), 154 (100), 141 (19), 129 (22).$

4.6.62. *N*-Methyl-*N*-(naphthalen-1-ylmethyl)methanesulfonamide (72). Preparation as reported for *N*-(indol-3-ylmethyl)-*N*-methylmethanesulfonamide (68) and substituting 81 (100 mg, 0.58 mmol) for 77. The crude reaction mixture was subjected to FCC (silica gel, CH_2Cl_2) to afford 72 (107 mg, 74% yield) as a white sol-

id. Mp: 98–99 °C, CH₂Cl₂. HPLC $t_{\rm R} = 14.1$ min. ¹H NMR (500 MHz, (CD₃)₂SO): δ 8.30 (d, J = 8 Hz, 1H), 7.96 (d, J = 8 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.53 (m, 4H), 4.68 (s, 2H), 3.06 (s, 3H), 2.60 (s, 3H). ¹³C NMR (500 MHz, (CD₃)₂SO): 134.4, 132.2, 132.1, 129.5, 129.4, 128.3, 127.2, 126.8, 126.2, 124.5, 52.4, 35.0, 34.9. FTIR $v_{\rm max}$ (KBr): 1330, 1154, 790 cm⁻¹. HRMS: m/z measured 249.0822 (249.0823 calculated for C₁₃H₁₅NO₂S). EIMS m/z (% relative abundance) 249 (M⁺, 50), 168 (92), 141 (100), 115 (18).

4.6.63. 3-(Indolyl-3)propanamide (73). A solution of 3-(indolyl-3)propanoic acid (92, 200 mg, 1.05 mmol) and triethylamine (155 µL, 1.16 mmol) in THF (8 mL) was cooled to 0 °C on an ice bath. Methyl chloroformate (92 µL, 1.16 mmol) was added dropwise to the cold solution. After allowing the reaction mixture to stir for 10 min at 0 °C, dry ammonia gas was bubbled in for 60 min. The precipitate formed was filtered off, and the filtrate was concentrated to give 73 (188 mg, 95% yield) as a white solid. Mp: 134-136 °C, THF. HPLC $t_{\rm R} = 6.1 \text{ min.} {}^{1}\text{H} \text{ NMR}$ (500 MHz, CD₃CN): δ 9.11 (br s, 1H, D_2O exchangeable), 7.57 (d, J = 8 Hz, 1 H), 7.37 (d, J = 8 Hz, 1H), 7.12 (dd, J = 8, 7 Hz, 1 H), 7.04 (m, 2H), 6.15 (br s, 1H, D₂O exchangeable), 5.68 (br s, 1H, D₂O exchangeable), 3.0 (t, J = 7 Hz, 2H,), 2.52 (t, J = 8 Hz, 2H). ¹³C NMR (500 MHz, CD₃CN): δ 175.8, 137.6, 128.3, 123.1, 123.0, 122.5, 119.7, 119.5, 115.6, 112.4, 37.0, 21.8. FTIR v_{max} (KBr): 3396, 3177, 1648, 740 cm⁻¹. HREIMS: m/z measured 188.0949 (188.0950 calculated for C₁₁H₁₂N₂O). EIMS m/z (% relative abundance) 188 (M⁺, 43), 144 (21), 130 (100).

4.6.64. N-Methyl-3-(indolyl-3)propanamide (74). A solution of 3-(indolyl-3)propanoic acid (92, 50 mg, 0.26 mmol) and triethylamine (141 µL, 1.06 mmol) in THF (3 mL) was cooled to 0 °C on an ice bath. Methyl chloroformate (23 µL, 0.29 mmol) was then added dropwise to the cold solution. After stirring for 10 min at 0 °C, methylamine hydrochloride (270 mg, 4.0 mmol) was added and the reaction mixture was stirred for 60 min at 0 °C. The precipitate formed was filtered off, the filtrate was concentrated, and the resulting yellow oil was subjected to FCC (silica gel, CHCl₃/MeOH, 95:5) to give 74 (46 mg, 85% yield) as an off-white solid. Mp: 99–101 °C (lit.¹⁹ 97–99 °C), CHCl₃/MeOH. HPLC $t_{\rm R} = 6.9 \text{ min.} {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CD}_{3}\text{CN}): \delta 9.30 \text{ (br}$ s, 1H, D_2O exchangeable), 7.58 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.17 (dd, J = 7, 8 Hz, 1H), 7.07 (m, 2H), 6.46 (br s, 1H, D₂O exchangeable), 3.05 (t, J = 7 Hz, 2 H,), 2.68 (\tilde{d} , J = 5 Hz, 3H), 2.51 (t, J = 8 Hz, 3H). ¹³C NMR (500 MHz, CD₃CN): δ 173.6, 137.0, 127.7, 122.4, 121.8, 119.0, 118.9, 114.9, 111.7, 37.0, 26.7, 21.5. FTIR v_{max} (KBr): 3282, 1644, 1546, 743 cm⁻¹. HREIMS: m/z measured 202.1106 (202.1106 calculated for $C_{12}H_{14}N_2O$). EIMS m/z (% relative abundance) 202 (M⁺, 44), 189 (6), 144 (25), 130 (100).

4.6.65. Methyl 3-(indolyl-3)propanoate (75). H_2SO_4 (250 µL, concd) was added to a solution of 3-(indol-3-yl)propanoic acid (92, 110 mg, 0.58 mmol) in MeOH (2 mL) and the mixture was allowed to reflux for

60 min. The reaction mixture was neutralized using saturated solution of Na₂CO₃ and extracted with EtOAc. The organic extracts were combined, dried, and evaporated to yield **75** (115 mg, 97% yield) as a white solid. Mp: 80–82 °C (lit.¹⁹ 79–80 °C), MeOH. ¹H NMR (300 MHz, CD₃CN): δ 7.99 (br s, 1H, D₂O exchangeable), 7.62 (dd, J = 8, 1 Hz, 1H), 7.36 (dd, J = 8 Hz, 1, 1H), 7.18 (m, 2H), 7.0 (s, 1H), 3.7 (s, 3H), 3.12 (t, J = 8 Hz, 2H), 2.74 (t, J = 8 Hz, 2H).

4.7. Metabolism

4.7.1. Isolation of methyl 3-phenylthiocarbazate (94, $t_{\rm R}$ = 11.4 min), the biotransformation product of methyl **3-phenyldithiocarbazate** (20). Five Erlenmeyer flasks (250 mL) containing 100 mL of media inoculated with spores (10⁸ spores/100 mL) of L. maculans were incubated at 24 ± 1 °C on shaker at 120 rpm under constant light. After 48 h, a solution of 20 (100 µL, 0.1 M) in DMSO was added to the cultures. The flasks were then incubated on shaker at 120 rpm for further 48 h. The mycelia were filtered, the filtrates were combined, were extracted with EtOAc to yield 9.3 mg of crude extract. The crude extract was separated using prep TLC (silica gel, $CH_2Cl_2/MeOH$, 98:2) to yield 6.2 mg of 94 as a white solid. Mp: 151–152 °C, $CH_2Cl_2/MeOH$. HPLC $t_{\rm R} = 11.4 \text{ min.}$ ^fH NMR (500 MHz, CD₃CN): δ 7.77 (br s, 1H, D₂O exchangeable), 7.25 (t, J = 7 Hz, 2H), 6.89 (br s, 1H), 6.82 (d, J = 7.5 Hz, 2H), 6.56 (s, 1H, D₂O exchangeable), 2.18 (s, 3H). ¹³C NMR (500 MHz, CD₃CN): *δ* 175.0, 147.9, 129.5, 121.0, 113.8, 11.2. FTIR v_{max} (KBr): 3308, 1661, 1245, 753 cm⁻¹. HREIMS: *m*/*z* 182.0515 (182.0514 measured calculated for $C_8H_{10}N_2OS$). EIMS m/z (% relative abundance) 182 (M⁺, 52), 107 (100), 77 (35).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2006.03.014.

References and notes

- 1. Bailey, J. A.; Mansfield, J. W., Eds.; *Phytoalexins*; Blackie & Son: Glasgow, UK, 1982, pp 1–334.
- For recent reviews on cruciferous phytoalexins, see: (a) Pedras, M. S. C.; Zaharia, I. L.; Khan, A. Q. *Phytochemistry* 2000, 53, 161; (b) Pedras, M. S. C.; Jha, M.; Ahiahonu, P. W. K. *Curr. Org. Chem.* 2003, 7, 1635.
- For a recent review on metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi, see: Pedras, M. S. C.; Ahiahonu, P. W. K. *Phytochemistry* 2005, 66, 391.
- Pedras, M. S. C.; Jha, M.; Okeola, O. G. *Phytochemistry* 2005, 66, 2609.
- 5. Pedras, M. S. C.; Ahiahonu, P. W. K.; Hossain, M. *Phytochemistry* **2004**, *65*, 2685.
- Thorn, G. D.; Ludwig, R. A. In *The Dithiocarbamates* and *Related Compounds*; Elsevier: New York, 1962; pp 1–298.

- 7. For review of bioisosteres, see: Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.
- 8. Pedras, M. S. C.; Taylor, J. L. J. Nat. Prod. 1993, 56, 731.
- Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H. *Tetrahedron* 2000, 56, 629.
- Pedras, M. S. C.; Okanga, F. I. Can. J. Chem. 2000, 78, 338.
- 11. Young, C. M. U.S. Pat. Appl. Publ., US 2003144309, 2003.
- 12. Giuliani, A. M.; Trotta, E. Polyhedron 1988, 7, 1211.
- Qureshi, S. K.; Rasheed, K.; Mekeri, A. K.; Hahn, G. Pakistan J. Sci. Ind. Res. 1958, 1, 101.
- Suvorov, N. N.; Velezheva, V. S.; Yarosh, A. V.; Erofeev, Y. V.; Kozik, T. N. *Khim. Geterotsikl. Soedin.* 1975, 8, 1099.
- Gaspari, P.; Banerjee, T.; Malachowski, W. P.; Muller, A. J.; Prendergast, G. C.; DuHadaway, J.; Bennett, S.; Donovan, A. M. J. Med. Chem. 2006, 49, 684.
- 16. Anon, U.K. Research Disclosure 1991, 331, 888.
- Mewshaw, R. E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby, G.; Spangler, T.; Scerni, R.; Smith, D.; Schechter, L. E.; Andree, T. H. J. Med. Chem. 2004, 47, 3823.
- Kononova, V. V.; Vereshchagin, A. L.; Polyachenko, V. M.; Semenov, A. A. *Khim.-Farm. Zh.* **1978**, *12*, 30.
- Iqbal, Z.; Jackson, A. H.; Rao, K. R. N. *Tetrahedron Lett.* 1988, 29, 2577.
- SanMartin, R.; Olivera, R.; Martinez de Marigorta, E.; Dominguez, E. *Tetrahedron* 1995, 51, 5361.
- Kutschy, P.; Dzurilla, M.; Takasugi, M.; Torok, M.; Achbergerova, I.; Homzova, R.; Racova, M. *Tetrahedron* 1998, 54, 3549.
- 22. Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.

- Alajarin, M.; Vidal, A.; Ortin, M. M. Org. Biomol. Chem. 2003, 1, 4282.
- 24. Sun, W. Y.; Hu, J. Q.; Shi, Y. P. Synlett 1997, 1279.
- Dubenko, R. G.; Bazavova, I. M.; Pel'kis, P. S. Zh. Org. Khim. 1968, 4, 1057.
- Kozhushko, B. N.; Lomakina, A. V.; Paliichuk, Yu. A.; Shokol, V. A. *Zh. Org. Khim.* **1984**, *20*, 721.
- Dimmock, J. R.; Vashishtha, S. C.; Stables, J. P. *Pharmazie* 2000, 55, 490.
- 28. Herr, R. J.; Kuhler, J. L.; Meckler, H.; Opalka, C. J. Synthesis 2000, 1569.
- 29. Thompson, M. E. J. Org. Chem. 1984, 49, 1700.
- 30. Lee, C. H.; Kohn, H. J. Org. Chem. 1990, 55, 6098.
- Dornyei, G.; Incze, M.; Kajtar-Peredy, M.; Szantay, C. Collect. Czech. Chem. Commun. 2002, 67, 1669– 1680.
- Kost, A. N.; Yudin, L. G.; Chernyshova, N. B.; Terenin, V. I. Vestn. Mosk. Univ. Ser. 2: Khim. 1975, 16, 222.
- Rao, A. V. R.; Chavan, S. P.; Sivadasan, L. Tetrahedron 1986, 42, 5065–5071.
- Pedras, M. S. C.; Khan, A. Q.; Smith, K. C.; Stettner, S. L. Can. J. Chem. 1997, 75, 825.
- 35. Goosey, M. W. Pestic. Sci. 1992, 34, 313.
- Pedras, M. S. C.; Khan, A. Q. J. Agric. Food Chem. 1996, 44, 3403.
- 37. Pedras, M. S. C.; Suchy, M. Bioorg. Med. Chem. 2006, 14, 714.
- Takasugi, M.; Monde, K.; Katsui, N.; Shirata, A. Bull Chem. Soc. Jpn. 1988, 61, 285.
- Pilkington, B. L.; Russell, S. E.; Whittle, A. J.; Mound, W. R.; Turnbull, M. D.; Kozakiewicz, A. M.; Hughes, D. J.; Whittingham, W. G. Br. UK Pat. Appl., GB 2329180, 1999.