### Tetrahedron Letters 53 (2012) 4588-4590

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Direct arylation of benzoxazole C-H bonds with iodobenzene diacetates

Peng Yu<sup>a</sup>, Guangyou Zhang<sup>a</sup>, Fan Chen<sup>a,\*</sup>, Jiang Cheng<sup>b,\*</sup>

<sup>a</sup> College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
<sup>b</sup> School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China

## ARTICLE INFO

## ABSTRACT

Article history: Received 26 April 2012 Revised 13 June 2012 Accepted 15 June 2012 Available online 20 June 2012 A Pd (OAc)<sub>2</sub>-catalyzed direct arylation of benzoxazole C–H bonds has been achieved with iodobenzene diacetates as the arylation reagent in moderate to good yields. The procedure tolerates a series of functional groups, such as methoxy, nitro, cyano, chloro, and bromo groups.

© 2012 Elsevier Ltd. All rights reserved.

Keywords: Arylation C-H Bond activation Benzoxazole

Heteroaromatics are important structural units frequently found in natural products, pharmaceuticals, and other functional compounds.<sup>1</sup> Recently, direct functionalization of heteroarenes C–H bond represents an environmentally and economically attractive strategy, which is a potential alternative to traditional cross-coupling reactions because it avoids the extra introduction of functional groups at one of the coupling partners.<sup>2</sup> Among the direct arylation of C-H bonds,<sup>3</sup> much progress has been made on employing convenient electrophiles, such as ArX<sup>4</sup> (X = I, Br, Cl, OTf and OMs), ArSO<sub>2</sub>Cl, ArSO<sub>2</sub>Na,<sup>5</sup> and ArM (M = Mg, B, Si etc.).<sup>6</sup> Meanwhile, the employment of diaryliodonium salts (usually Ar<sub>2</sub>IBF<sub>4</sub>) as the arylation reagents in the C-H activation received great attentions.<sup>7</sup> For example, in 2006, Sanford developed Pd-catalyzed direct 2-arylation of indoles with Ar<sub>2</sub>IBF<sub>4</sub>.<sup>8</sup> Subsequently, Gaunt reported a site-selective Cu(II)-catalyzed C-H bond functionalization of indoles with Ar<sub>2</sub>IBF<sub>4</sub> or Ar<sub>2</sub>IOTf.<sup>9</sup> Recently, Liu described a Pd(II)-catalyzed ortho C-H arylation of phenol esters with Ph<sub>2</sub>IOTf.<sup>10</sup> However, to our surprise, iodobenzene diacetate (PhI(OAc)<sub>2</sub>) was not found to be arylating reagent for these C-H bond functionalizations. As we know, iodobenzene diacetates mainly served as oxidant<sup>11</sup> and acetoxylation reagent in the C-H bond functionalization.<sup>12</sup> Herein, we report our study in the direct arylation of benzoxazole with iodobenzene diacetate as the arylating reagent.

At the outset of the investigation,  $benzo[d]oxazole was employed as the substrate to react with <math>PhI(OAc)_2$  in the presence of  $Pd(OAc)_2$ ,  $PPh_3$ , and  $Na_2CO_3$  in DMSO at 150 °C under nitrogen. To our delight, 2-phenylbenzoxazole (**3aa**) was detected by GC-MS and isolated in 22% yield (Table 1, entry 1). The preliminary result encouraged us to optimize the reaction conditions. Among the

\* Corresponding authors.

#### Table 1

Selected results of screening the optimal conditions

| $\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & &$ |                  |                                                   |              |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------|--------------|---------------------------------------|
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ligand           | Base                                              | Solvent      | Yield <sup>a</sup> (%)                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | $Na_2CO_3$                                        | DMSO         | 22                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | LiOH                                              | DMSO         | 25                                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | t-BuOLi                                           | DMSO         | <5                                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | NaOH                                              | DMSO         | <5                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | K <sub>2</sub> CO <sub>3</sub>                    | DMSO         | 21                                    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | K <sub>3</sub> PO <sub>4</sub> ·3H <sub>2</sub> O | DMSO         | 17                                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPh <sub>3</sub> | $Cs_2CO_3$                                        | DMSO         | 53                                    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dppb             | $Cs_2CO_3$                                        | DMSO         | 53                                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dppf             | $Cs_2CO_3$                                        | DMSO         | <5                                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dppe             | Cs <sub>2</sub> CO <sub>3</sub>                   | DMSO         | 54                                    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dppp             | Cs <sub>2</sub> CO <sub>3</sub>                   | DMSO         | 31                                    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,2'-Bipyridine  | Cs <sub>2</sub> CO <sub>3</sub>                   | DMSO         | 57                                    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,2'-Biquinoline | Cs <sub>2</sub> CO <sub>3</sub>                   | DMSO         | 27                                    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | $Cs_2CO_3$                                        | DMSO         | 84(46) <sup>b</sup> (60) <sup>c</sup> |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | Cs <sub>2</sub> CO <sub>3</sub>                   | THF          | 26                                    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | $Cs_2CO_3$                                        | DMF          | 52                                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | Cs <sub>2</sub> CO <sub>3</sub>                   | Toluene      | 39                                    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | Cs <sub>2</sub> CO <sub>3</sub>                   | NMP          | 44                                    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | Cs <sub>2</sub> CO <sub>3</sub>                   | Acetonitrile | 20                                    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | Cs <sub>2</sub> CO <sub>3</sub>                   | Dioxane      | <5                                    |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phen             | t-BuOK                                            | DMSO         | 38                                    |

 $^a$  Reaction conditions: 1a (0.2 mmol), 2a (0.25 mmol), Pd(OAc)\_2 (5 mol %), ligand (10 mol %), base (0.2 mmol), dry solvent (2 mL), 150 °C, under  $N_2$ , 20 h, sealed tube. Isolated yield.

<sup>b</sup> Under air.

<sup>c</sup> 130 °C. Phen = 1,10-phenanthroline.

bases tested, such as LiOH, *t*-BuOLi, NaOH, K<sub>2</sub>CO<sub>3</sub>, K<sub>3</sub>PO<sub>4</sub>·3H<sub>2</sub>O, and Cs<sub>2</sub>CO<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub> was the best (Table 1, entries 2–8). Next, a variety



*E-mail addresses:* fanchen@wzu.edu.cn (F. Chen), jiangcheng@cczu.edu.cn (J. Cheng).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.06.076

#### Table 2

Palladium-catalyzed arylation of benzoxazole derivatives with iodobenzene diacetates  $^{\rm a}$ 



 $^a$  Reaction conditions: 1a (0.2 mmol), 2 (0.25 mmol), Pd(OAc)\_2 (5 mol %), Phen (10 mol %), Cs\_2CO\_3 (0.2 mmol), DMSO (2 mL), 150 °C, 20 h, under N\_2, isolated yield.

of bidentate phosphine and nitrogen ligands were screened, and 1,10-phenanthroline (Phen) gave the optimal result (Table 1, entry 14). The solvents were significant to this reaction and the initially used DMSO provided the optimal result (Table 1, entries 17–20). Only 60% yield was obtained when the temperature was decreased to 130 °C (Table 1, entry 14). Finally, we found that the combination of 5 mol % of Pd(OAc)<sub>2</sub>, 10 mol % of Phen, and 1 equiv of Cs<sub>2</sub>CO<sub>3</sub> in DMSO at 150 °C under nitrogen for 24 h served as the optimal conditions for this transformation.

With acceptable conditions in hand (Table 1, entry 14), we first tested the scope of this methodology for different iodobenzene diacetates, as shown in Table 2. As expected, a series of functional groups on the phenyl ring of iodobenzene diacetates, such as methoxy, bromo, chloro, and cyano groups, were compatible for the procedure, providing the arylated products in moderate to good yields (**3aa-3ah**, Table 2). Generally, the reaction was not sensitive to the electronic properties of the substituents on the phenyl ring of iodobenzene diacetates, as both electron-donating groups and electron-withdrawing groups were well-tolerated. Except **3af**, electron-withdrawing groups analogs (**3aa** and **3ab** vs **3ag** and **3ah**, Table 2). Notably, 1-(diacetoxyiodo)-4-chlorobenzene gave the corresponding arylating products in excellent yields (**3af**, Table 2).

After a broad scope of electrophiles established, we were particularly interested in extending the direct arylation to benzo[*d*]oxazole derivatives (Table 3). 5-Methyl, 6-methyl, 5-*tert*-butyl, 5-chloro and 5-nitro analogs could be selectively arylated with an acceptable efficiency. However, the electron-withdrawing groups on the phenyl ring of benzo[*d*]oxazole slightly decreased the reaction efficiency.

When PhI instead of  $PhI(OAc)_2$  was subjected to the procedure, only trace of arylation products was detected by GC–MS. This result ruled out the possibility of ArI as the intermediate in the reaction.

The mechanism of the arylation reaction may involve a Pd(II) insertion into the benzoxazole 2-C-H bond in the presence of base and subsequent oxidation of the Pd(II) complex **A** to a Pd(IV) intermediate **B** by PhI(OAc)<sub>2</sub> (Scheme 1).<sup>8,10</sup> Then, reductive

## Table 3

Palladium-catalyzed arylation of benzoxazole derivatives with iodobenzene diacetates  $^{\rm a}$ 



<sup>a</sup> Reaction conditions: **1** (0.2 mmol), **2** (0.25 mmol), Pd(OAc)<sub>2</sub> (5 mol %), Phen (10 mol %), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), DMSO (2 mL), 150 °C, 20 h, under N<sub>2</sub>, isolated yield.



Scheme 1. Possible mechanism.

elimination from the Pd(IV) complex affords the desired product and regenerates the Pd(II) species.

In conclusion, we have developed a palladium-catalyzed arylation of benzo[*d*]oxazole C–H bond with iodobenzene diacetates.<sup>13</sup> The reaction provides a novel methodology allowing for a wide functional group tolerance. Further mechanistic studies of this process and its application to the synthesis of functional materials are currently underway in our laboratory.

## Acknowledgments

We thank the National Natural Science Foundation of China (No. 209072115) and the Natural Science Foundation of Zhejiang Province (No. R4110294 and LY12B02010) and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.06.076.

## **References and notes**

- (a) Eicher, T.; Hauptmann, S. *The Chemistry of Heterocycles*, 2nd ed.; Wiley-VCH: Weinheim, 2003; (b) Patil, N. T.; Yamamoto, Y. *Chem. Rev.* 2008, 108, 3395; (c) Cacchi, S.; Fabrizi, G. *Chem. Rev.* 2005, 105, 2873.
- Selected recent reviews: (a) Daugulis, O. Top. Curr. Chem. 2010, 292, 57; (b) Ackermann, L. Angew. Chem., Int. Ed. 2011, 50, 3842; (c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293; (d) Fagnou, K. Top. Curr. Chem. 2010, 292, 35; (e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780; (f) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740; (g) Davies, H. M. L; Bois, J. D.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1855; (h) Pan, C.; Jia, X.; Cheng, J. Synthesis 2012, 44, 677; (i) Hirano, K.; Miura, M. Synlett 2011, 294; (j) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
- (a) Aberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (b) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404; (c) Cao, H.; Zhan, H.; Lin, Y.; Lin, X.; Du, Z.; Jiang, H. Org. Lett. 2012, 14, 1688; (d) Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822.
- Reviews: (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792; (b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677; (c) Ackermann, L. Chem. Commun. 2010, 46, 4866; (d) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269.
- (a) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466; (b) Zhao, X.; Dong, V. M. Angew. Chem., Int. Ed. 2010, 50, 932; (c) Zhang, M.; Zhang, S.; Liu, M.; Cheng, J. Chem. Commun. 2011, 47, 11522; (d) Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G.-J. Org. Biomol. Chem. 2011, 9, 7675; (e) Liu, B.; Guo, Q.;

Cheng, Y.; Lan, J.; You, J. Chem. Eur. J. 2011, 17, 13415; (f) Wang, M.; Li, D.; Zhou, W.; Wang, L. Tetrahedron 2012, 68, 1926.

- (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094; (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417; (c) Tredwell, M. J.; Gulias, M.; Bremeyer, N. G.; Johansson, C. C. C.; Collins, B. S. L.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 1076; (d) Li, B.; Wu, Z.-H.; Gu, Y.-F.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 1109; (e) Yang, F.; Xu, Z.; Wang, Z.; Yu, Z.; Wang, R. Chem. Eur. J. 2011, 17, 6321; (f) Ranjit, S.; Liu, X. Chem. Eur. J. 2011, 17, 1105; (g) Liang, Z.; Yao, B.; Zhang, Y. Org. Lett. 2010, 12, 3185.
- (a) Wagner, A. M.; Sanford, M. S. Org. Lett. 2011, 13, 288; (b) Zhou, Y.; Zhao, J.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 7126; (c) Harvey, J. S.; Simonovich, S. P.; Jamison, C. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782; (d) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260; (e) Ackermann, L.; Dell'Acqua, M.; Fenner, S.; Vicente, R.; Sandmann, R. Org. Lett. 2011, 13, 2358; (f) Merritt, E.; Olofsson, A. B. Angew. Chem., Int. Ed. 2009, 48, 9052; (g) Lubriks, D.; Sokolovs, I.; Suna, E. Org. Lett. 2011, 13, 4324; (h) Wen, J.; Zhang, R.-Y.; Chen, S.-Y.; Zhang, J.; Yu, X.-Q. J. Org. Chem. 2012, 77, 766; (i) Duong, H. A.; Cilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463; (j) Bigot, A.; Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778.
- Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972.
- 9. Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
- Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
- (a) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009, 11, 5726; (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 136, 2300; (c) Piechowska, J.; Gryko, D. T. J. Org. Chem. 2011, 76, 10220; (d) Pradal, A.; Toullec, P. Y.; Michelet, V. Org. Lett. 2011, 13, 6086.
- (a) Li, Y.; Song, D.; Dong, V. J. Am. Chem. Soc. 2008, 130, 2962; (b) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2011, 76, 80; (c) Qiu, D.; Zheng, Z.; Mo, F.; Xiao, Q.; Tian, Y.; Zhang, Y.; Wang, J. B. Org. Lett. 2011, 13, 4988; (d) Wang, W.; Wang, F.; Shi, M. Organometallics 2010, 29, 928; (e) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300; (f) Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584.
- 13. Gerenal procedure: Under N<sub>2</sub>, a reaction tube was charged with benzoxazole (0.2 mmol), PhI(OAc)<sub>2</sub> (80.5 mg, 0.25 mmol), Pd(OAc)<sub>2</sub> (2.2 mg, 5 mol %), 1,10-phenanthroline (7.9 mg, 10 mol %) and DMSO (2 mL). The mixture was stirred at 150 °C for 20 h. After the completion of the reaction, as monitored by TLC, 10 mL of ethyl acetate was added and the mixture was washed with water (3 × 5 mL). Then the organic layer was concentrated in vacuo and the residue was purified by flash column chromatography on a silica gel to give the desired product.