

The Difluoromethyl Group as a Masked Nucleophile: A Lewis Acid/ **Base Approach**

Jacob B. Geri, Michael M. Wade Wolfe, and Nathaniel K. Szymczak*®

Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States

Supporting Information

ABSTRACT: The diffuoromethyl group $(R-CF_2H)$ imparts desirable pharmacokinetic properties to drug molecules and is commonly targeted as a terminal functional group that is not amenable to further modification. Deprotonation of widely available Ar- CF_2H starting materials to expose nucleophilic Ar- CF_2 synthons represents an unexplored, yet promising route to construct benzylic Ar-CF2-R linkages. Here we show that the combination of a Brønsted superbase with a weak Lewis acid enables deprotonation of Ar-CF₂H groups and capture of reactive Ar-CF2⁻ fragments. This route provides access to isolable and reactive Ar-CF₂⁻ synthons that react with a broad array of electrophiles at room temperature. The methodology is highly general in both electrophile and difluoromethyl (hetero)arene and can be applied directly to the synthesis of benzylic difluoromethylene $(Ar-CF_2-R)$ linkages, which are useful lipophilic and metabolically resistant replacements for benzylic linkages in medicinal chemistry.

enzylic methylene linkages (Ar-CH₂-R) are ubiquitous synthesis, which is enabled by easy access to $ArCH_2^+$, $ArCH_2^+$, and ArCH₂⁻ equivalents. The efficiency with which molecules can be decorated with ArCH₂⁻ groups has led to their use in many $(>100)^1$ approved drugs, but their weak C–H bonds (90 $kcal/mol)^2$ can be susceptible to metabolic oxidation and reduce a drug's biological half-life. Doubly benzylic Ar-CH₂-Ar groups (C-H bond: 82 kcal/mol)² are less stable, and are only present in 17 approved drugs.¹ Replacement of the $-CH_2$ – group with the more metabolically stable and lipophilic difluoromethylene $(Ar-CF_2-R)$ linkage is an attractive strategy for structure-activity relationship (SAR) optimization, but remains underutilized (Figure 1a).³ Synthetic pathways to these units are limited, and only three singly benzylic Ar-CF₂-R units and one doubly benzylic Ar-CF₂-Ar unit have been included in commercial pharmaceuticals.

Existing methodologies for the construction of Ar-CF₂-R linkages require reagents that are toxic, explosive, and of limited scope (Figure 1b).⁵ The most common retrosynthetic disconnection is at the C-F bonds of the CF₂ unit through ketone deoxyfluorination using trifluorosulfuranes (e.g., DAST; Et_2NSF_3 ⁶ and radical fluorination of C–H bonds.⁷ However, each of these strategies present significant challenges. Deoxyfluorination of ketones is unreliable and generates explosive byproducts. Radical C-H fluorination is more

Figure 1. (a) Underrepresentation of Ar–CF₂–R groups in medicinal chemistry. (b) Retrosynthetic strategies for Ar-CF₂-R linkages. (c) ArCF₂H groups as ArCF₂⁻ precursors. (d) Synthesis of 1. 18-Crown-6 omitted for clarity.

attractive, but the indiscriminate reactivity of F. leads to low functional group tolerance. In a recent industrial synthesis of a

Received: June 9, 2018

Figure 2. (a) Reactions with ketones, aldehydes, imines, disulfides, Br₂, SO₂, and 1,4-dinitrobenzene. (b) Two-phase C–H difluorobenzylation of pyridines. (c) Chromium(0)(CO)₃ mediated benzene C–H difluorobenzylation. (d) Palladium-mediated difluorobenzylation.

thrombin inhibitor containing an $Ar-CF_2-R$ linkage, significant effort was expended to avoid either of these routes and ultimately the molecule was built outward from bromodi-fluoroacetate.⁸

In contrast to the late-stage fluorination strategies described above, fragment coupling with $[ArCF_2]$ units enables a more modular synthetic approach. However, electrophilic ArCF₂⁺ and radical ArCF₂· based disconnections present significant limitations: electrophilic ArCF₂Br starting materials are not widely available, radical cross-coupling between sulfone (R- $(CF_2 - SO_2R)^9$ electrophiles and aryl zinc nucleophiles is limited to aliphatic RCF₂ transfer, and generation of Ar-CF₂· from $Ar-CF_3^{10}$ requires strong reductants and the reported scope in radicalphile is limited. Compared to electrophilic and radical methodologies,¹¹ reactions with $ArCF_2^{-}$ nucleophiles are underdeveloped despite the wide availability of C- electrophilic (Ar-X, carbonyl, imine) functional groups. ArCF₂SiMe₃ reagents are the only access point to this reactivity manifold, but synthetic routes to these reagents are highly limited in scope.^{5c,12}

In contrast to the poor availability of $ArCF_2SiMe_3$ pronucleophiles, difluoromethyl arenes ($ArCF_2H$) could be ideal masked $ArCF_2^-$ nucleophiles upon deprotonation. Recent progress in transition metal catalyzed difluoromethylation has made these compounds accessible and structurally diverse starting materials.¹³ However, $ArCF_2H$ groups have low acidity (no reaction with $KN(SiMe_3)_2$)¹⁴ and, if deprotonated, the revealed $ArCF_2^-$ fragment is unstable to α -fluoride elimination.¹⁵ The use of compatible pairs of strong bases, which deprotonate $ArCF_2H$ groups, and Lewis acids, which stabilize fluoroalkyl anions, may address these issues.¹⁶ Appropriate selection of a Lewis acid that can capture $ArCF_2^-$ after $ArCF_2H$ deprotonation, and later release $ArCF_2^-$ in reactions with electrophiles could enable the broad-scope synthesis of a new class of nucleophilic difluorobenzylation reagents.

Three key requirements must be met to transform ArCF₂H groups into useful ArCF2⁻ synthons using Brønsted base/ Lewis acid pairs: (1) the base used for C-H deprotonation must be sufficiently strong, (2) the Lewis acid must not irreversibly bind the Brønsted base (Figure 1c), and (3) the Lewis acid must be capable of both ArCF₂⁻ capture/ stabilization and ArCF2⁻ release to facilitate subsequent reactions with electrophiles. We hypothesized that PhCH2⁻, a strong base, and hexamethylborazine $(B_3N_3Me_6)$, a privileged Lewis acid for the stabilization of fluoroalkyl anions, could satisfy these criteria. Though pK_a measurements for ArCF₂-H bonds are unavailable, we anticipated that KCH₂Ph would be capable of deprotonating HCF_2Ph ,¹⁵ satisfying criterion (1). This base (KCH₂Ph) forms a reversible adduct with $B_3N_3Me_{61}$ satisfying criterion (2). In silico studies revealed that $B_3N_3Me_6$ has a $PhCF_2^-$ affinity of -23.3 kcal/mol, which is similar to CF_3^{-} (-22.6 kcal/mol). $B_3N_3Me_6$ - CF_3^{-} adducts readily release CF_3^{-} , suggesting that $B_3N_3Me_6$ could serve an appropriate Lewis acid for both stabilization and transfer of PhCF2-, satisfying criterion (3).^{16a,b}

Addition of PhCF₂H to an equimolar combination of $B_3N_3Me_6$, KCH₂Ph, and 18-crown-6 in THF at 25 °C afforded [K(18-crown-6)][PhCF₂- $B_3N_3Me_6$] (1) in 98% chemical yield and 72% isolated yield (>9 g scale) as a crystalline solid (Figure 1d). Similar reactions carried out using KC(Me)Ph₂ (3%) and KCHPh₂ (0%) provided a significantly lower yield of 1, and allowed the pK_a of PhCF₂H to be bracketed between 41 (PhCH₃) and 35 (Ph₂CHMe). We also investigated the use of bulky diisopropylamide bases (Li, Na, and KN(iPr)₂) and found that KN(iPr)₂ afforded the product in high yield (91%), whereas Na- (21%) and LiN(iPr)₂ (0%) afforded lower yields of CF₂Ph⁻ containing product, consistent

Figure 3. (a) Scope of ArCF₂H deprotonation, $ArCF_2^-$ stabilization by $B_3N_3Me_6$, and transfer of $ArCF_2^-$ equivalents. (b) Coupling a pool of four distinct $ArCF_2^-$ nucleophiles and a pool of four distinct electrophiles. ^a12 h, 25 °C. ^b1. Pyridine and $B(C_6F_5)_3$, 5 min, -80 °C; $ArCF_2H$, $B_3N_3Me_6$, 18-crown-6, and KN(iPr), 10 min, -80 °C; 2. Pyridine $-B(C_6F_5)_3$ and $ArCF_2^-B_3N_3Me_6^-$, 12 h, 25 °C; 3. DDQ, 15 min, 25 °C; 4. NMe₄F, 1 h, 60 °C (combined yield through five steps).

with α -defluorination by these more Lewis acidic countercations. Defluorination is not promoted by less Lewis acidic B₃N₃Me₆ or K(18-crown-6)⁺.

We experimentally evaluated the ability of 1 to transfer CF₂Ph⁻ equivalents to electrophiles. 1 readily difluorobenzylates a variety of simple carbonyl and imine containing electrophiles (2a-2d, 52-84%) (Figure 2). These reactions proceeded to completion at room temperature in 12 h. Unlike the analogous CF_3^- transfer reagent ([K(18-crown-6)][CF_3- $B_3N_3Me_6$]), 1 can transfer PhCF₂⁻ to enolizable carbonyl compounds (2e-2f, 47% to 62%). The nucleophilic addition of ArCF₂⁻ tolerates tertiary amines, tosyl groups, esters, and aromatic halides, and the functional group tolerance is highlighted by the selective difluorobenzylation of haloperidol benzoyl ester (2f), a derivatized antipsychotic. Sulfur dioxide also undergoes 1,2-addition to afford potassium difluorobenzylsulfinate (2i, 49%), which is an oxidatively activated PhCF₂. proradical capable of facilitating addition to α/β -unsaturated tosyl amides.¹⁷ In addition to 1,2-addition reactions, 1 can also difluorobenzylate diphenyldisulfide (Ph_2S_2) and bromine (Br_2) (2h, 78%; 2g, 85%).

Doubly benzylic difluoromethylene linkages are especially difficult to synthesize using current methodologies. The only available approaches use $ArCF_2Br$ starting materials, which must be synthesized through radical bromination or deoxy-fluorination strategies. Using 1, dinitrobenzene can be directly difluorobenzylated in a net nucleophilic aromatic substitution (S_NAr) reaction (2j, 53%). When activated with a bulky and strong Lewis acid, $B(C_6F_5)_3$, pyridines also react with 1 to

generate a LA-stabilized anionic σ -adduct, which can be oxidized with DDQ and deprotected with NMe₄F to generate the aromatic 4-difluorobenzylated pyridine. These reactions can be conducted in one pot with a single solvent, affording the final product in good combined yield through four telescoped steps (**2k**-**2m**, 34–59%). An alternative activation strategy for nonheterocyclic arenes, such as benzene, is to use chromium(0) tricarbonyl. Treatment with **1** affords a stable σ -adduct that can be oxidized with benzoquinone to afford diphenyl difluoromethane (**2n**, 72%).

In addition to direct difluorobenzylation of activated arenes, we assessed the ability of 1 to access Ar-CF₂-Ar species from widely available aryl bromides and iodides through palladiummediated cross coupling. Ar/ArCF₂ coupling reactions are currently limited to pathways in which ArCF2⁻ ligands are constructed through either: CF₂ insertion¹⁸ or ArCF₂Br oxidative addition,¹⁹ which present challenges for broad scope applications; notably, reactions using nucleophilic $ArCF_2^-$ reagents are unknown. We used $Pd(PPh_3)_4$ as a readily available stoichiometric reagent to mediate Ar-Br and Ar-I cross-coupling reactions with 1 as a transmetalation reagent. Treating in situ generated Pd(PPh₃)₂(Ar)X species with 1 afforded Ph-CF₂-Ar products (20-2t, 35-71%), representing the first example of cross coupling using a nucleophilic ArCF₂⁻ transmetalation reagent. This synthetic route provides a complementary strategy to access less electrophilic aryl halide coupling partners that are not amenable to direct nucleophilic addition reactions.

We next investigated the activation of difluoromethyl arenes beyond PhCF₂H. A wide variety of difluoromethyl (hetero)arenes react with KN(iPr)₂/B₃N₃Me₆/18-crown-6 in THF at -80 °C to form stabilized ArCF₂⁻ synthons 3a-3k in high yield (Figure 3a). When KCH₂Ph was used in place of KN(iPr)₂, significantly lower yields were observed. Aryl bromides are not tolerated by electrochemical and photoredox benzylic fluorination methods,^{7,10,20} and are susceptible to ometalation/benzyne formation. However, we accessed these nucleophilic ArCF₂⁻ units through deprotonation/capture reactions. 2- (3a, 67%), 3- (3b, 93%), and 4- (3c, 99%) bromobenzenes were all transformed into B₃N₃Me₆/ArCF₂⁻ adducts in high yield. Difluoromethyl heteroarenes were also deprotonated to reveal ArCF2⁻ synthons. In addition resonance-activated 2- and 4-difluoromethylpyridine (3d, 83%, 3f, 98% chemical yield), 3-difluoromethylpyridine and 7-difluoromethylquinoline were deprotonated in high yield (3e, 3h, 91%, 94%). Difluoromethylated five-membered heterocycles also undergo ArCF₂H deprotonation, with 2difluoromethyl benzofuran (3i, 67%), N-benzyl-2-difluoromethyl-benzimidazole (3g, 94%), 1-difluoromethyl-4-(1-methyl-4- pyrazolyl)benzene (3k, 95%), and 2-difluoromethyl-5-(tert-butylacetylenyl)-thiophene (3j, 95%) providing access to $B_3N_3Me_6/ArCF_2^-$ adducts. The generated reagents efficiently transfer ArCF₂⁻ to Ph₂CO, affording the 1,2-addition products from $ArCF_2H$ (4a-4j). Finally, a control reaction that omitted B₃N₃Me₆ from the reaction to form 4b did not afford the desired product. This result illustrates the synergistic requirement of a compatible Lewis acid/base pair for both ArCF₂⁻ capture and transfer.

We demonstrated the robustness of this methodology by combining a pool of four structurally distinct difluoromethyl-(hetero)arenes with a pool of four representative organic electrophiles (Figure 3b; imine, aldehyde, disulfide, and LA-activated pyridine) to generate 16 unique products (5a-5p, 41-87%) over two steps. The reactions provide rapid access to structural diversity from simple precursors. Notably, several of the products contain first-in-class Ar-CF₂-R linkages, such as imidazole-CF₂-SR (5c) and thiophene-CF₂-carbamine (5d), structural cores that can be mapped onto biologically active nonfluorinated molecules.

In conclusion, we have developed a general approach for the conversion of common difluoromethyl (hetero)arenes into stabilized, structurally diverse, and previously inaccessible $ArCF_2^-$ transfer reagents. The reagents are highly reactive, transferring $ArCF_2^-$ to a wide variety of organic electrophiles to form $ArCF_2^-C$ bonds, and enable four new methods for the construction of $Ar-CF_2-Ar$ linkages. We anticipate that the use of difluoromethyl groups as sources of $ArCF_2^-$ will enable the introduction of difluoromethylene linkages as easily accessible functional groups that will find applications in drug discovery.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b06093.

Crystallographic information for 1 (CIF)

Synthetic details, characterization (PDF)

AUTHOR INFORMATION

Corresponding Author

*nszym@umich.edu

ORCID [©]

Nathaniel K. Szymczak: 0000-0002-1296-1445

Notes

The authors declare the following competing financial interest(s): A patent application on this material has been submitted.

ACKNOWLEDGMENTS

We are grateful to the Schindler lab for assistance with purification, Jeff Kampf for crystallographic assistance, and Devin Ferguson and the Sanford lab for helpful conversations. This work was supported by the University of Michigan Department of Chemistry, a Rackham Predoctoral Fellowship (JBG), and an NSF CAREER (grant CHE-1350877). X-ray diffractometers used were funded by the NSF (CHE 1625543).

REFERENCES

(1) Drugbank, http://www.drugbank.ca/ (accessed January 30, 2018).

(2) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1992, 114, 9787.
(3) Burgey, C. S.; Robinson, K. A.; Lyle, T. A.; Sanderson, P. E. J.; Lewis, S. D.; Lucas, B. J.; Krueger, J. A.; Singh, R.; Miller-Stein, C.; White, R. B.; Wong, B.; Lyle, E. A.; Williams, P. D.; Coburn, C. A.; Dorsey, B. D.; Barrow, J. C.; Stranieri, M. T.; Holahan, M. A.; Sitko, G. R.; Cook, J. J.; McMasters, D. R.; McDonough, C. M.; Sanders, W. M.; Wallace, A. A.; Clayton, F. C.; Bohn, D.; Leonard, Y. M.; Detwiler, T. J., Jr.; Lynch, J. J., Jr.; Yan, Y.; Chen, Z.; Kuo, L.; Gardell, S. J.; Shafer, J. A.; Vacca, J. P. J. Med. Chem. 2003, 46, 461.

(4) Lu, T. B.; Alexander, R.; Connors, R. W.; Cummings, M. D.; Galemmo, R. A.; Hufnagel, H. R.; Johnson, D. L.; Khalil, E.; Leonard, K. A.; Markotan, T. P.; Maroney, A. C.; Sechler, J. L.; Travins, J. M.; Tuman, R. W. Triazolopyridazines as tyrosine kinase modulators. W.O. Patent 2007/075567, 2007.

(5) (a) Fawcett, F. S.; Coffman, D. D.; Tullock, C. W. J. Am. Chem. Soc. 1962, 84, 4275. (b) Hagooly, Y.; Rozen, S. Org. Lett. 2012, 14, 1114. (c) Aikawa, K.; Maruyama, K.; Nitta, J.; Hashimoto, R.; Mikami, K. Org. Lett. 2016, 18, 3354. (d) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2013, 15, 917. (e) Smirnov, V. O.; Maslov, A. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Russ. Chem. Bull. 2014, 63, 2564. (f) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2015, 171, 97. (g) Ashirbaev, S. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2018, 83, 478.

(6) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 1973, 787.

(7) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494.
(8) Ashwood, M. S.; Alabaster, R. J.; Cottrell, I. F.; Cowden, C. J.; Davies, A. J.; Dolling, U. H.; Emerson, K. M.; Gibb, A. D.; Hands, D.; Wallace, D. J.; Wilson, R. D. Org. Process Res. Dev. 2004, 8, 192.

(9) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M. R.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. *Science* **2018**, 360, 75.

(10) Chen, K.; Berg, N.; Gschwind, R.; König, B. J. Am. Chem. Soc. 2017, 139, 18444.

(11) Douglas, J. J.; Albright, H.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2015, 54, 14898.

(12) (a) Guidotti, J.; Metz, F.; Tordeux, M.; Wakselman, C. Synlett 2004, 2004, 1759. (b) Clavel, P.; Léger-Lambert, M. P.; Biran, C.; Serein-Spirau, F.; Bordeau, M.; Roques, N.; Marzouk, H. Synthesis 1999, 1999, 829.

(13) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem. - Eur. J. 2017, 23, 14676.

(14) Wang, L.; Wei, J.; Wu, R.; Cheng, G.; Li, X.; Hu, J.; Hu, Y.; Sheng, R. Org. Chem. Front. 2017, 4, 214.

(15) Streitwieser, A.; Mares, F. J. Am. Chem. Soc. 1968, 90, 2444.

(16) (a) Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. Angew. Chem., Int. Ed. 2018, 57, 1381. (b) Geri, J. B.; Szymczak, N. K. J. Am. Chem. Soc. 2017, 139, 9811. (c) Trost, B. M.; Bartlett, M. Acc. Chem. Res. 2015, 48, 688. (d) Shibasaki, M.; Kumagai, N. in Cooperative Catalysis: Designing Efficient Catalysts for Synthesis, Peters, R., Eds.; Wiley-VCH: New York, 2015; Chapter 1.

(17) He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
(18) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 11662.

(19) Gu, J.-W.; Guo, W.-H.; Zhang, X. Org. Chem. Front. 2015, 2, 38.

(20) Utsumi, S.; Katagiri, T.; Uneyama, K. J. Fluorine Chem. 2013, 152, 84.