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Introduction

AMG 221 (1a, Scheme 1) is an inhibitor of 11b-hydroxysteroid
dehydrogenase type 1 (11b-HSD1). Inhibitors of 11b-HSD1 are po-
tential therapeutic agents for the treatment of type 2 diabetes.1

The first-generation synthesis of 1 involved alkylation of 5-iso-
propylthiazolone 2 (>98% ee for the norbornyl moiety) using LDA
as base to afford a 1.1:1 mixture of diastereomers which were sep-
arated by chiral chromatography.1a Importantly, this procedure
afforded the 5,50-dialkylthiazolones 1a and 1b in the absence of
O-, N- and N0-alkylated by-products. While this procedure was suf-
ficient to support early preclinical studies, an asymmetric process
was sought to control the stereochemical outcome of the C–C bond
forming event. We hoped to use a chiral lithium amide base to
introduce facial selectivity into this already chemo- and regioselec-
tive reaction.
ll rights reserved.
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Results and Discussion

In 1990, Koga reported that a chiral lithium amide base (e.g., 8)
could be used to direct the approach of an electrophile selectively
to one face of an achiral tetralone enolate.2 We sought to explore a
similar approach for alkylation of 2.3

As shown in Table 1, an initial screen of chiral bases (3–8,
Scheme 1) revealed that the dilithium enolate of (S,S)-8 afforded
significant selectivity for the desired isomer (1a).4 Further optimi-
zation studies focused on the base structure revealed that the initial
base 8 was optimal for selectivity. Modifying the length of the
tether (Table 1, entries 10 and 11) afforded worse selectivity, as
did replacement of the piperidine ring in 8 with a tetrahydroiso-
quinoline (Table 1, entry 12). Alkyl iodides afforded better selectiv-
ity than the corresponding bromide and sulfate (Table 1, entries 13
and 14). Finally, a significant improvement in both rate and selec-
tivity was observed by the use of TMEDA as an additive, presumably
by affecting the active lithium aggregate.5 Other ethylenediamine
ligands (i.e., TMPDA and TMBDA, entries 18 and 19) did not produce
a similar effect. One drawback to the use of methyl iodide as alkyl-
ating agent was the methylation of (S,S)-8 itself during the course of
the reaction, which rendered recycle of (S,S)-8 impossible. In an
effort to avoid alkylation of the chiral base and enable recycle, we
evaluated the alkylation with isopropyl iodide, 5-methylthiazolone
12, and the antipode of the chiral base, (R,R)-8 (Scheme 2).

To our delight, the alkylation proceeded with a similar level of
selectivity and without alkylation of (R,R)-8, which could now be
recycled via a simple acid/base extraction procedure followed by
crystallization.4 The success of the alkylation of 12 led us to
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Scheme 1. Chiral bases screened for asymmetric alkylation of 2.

Table 1
Alkylation of 2 under various conditions

Entry Basea Conditions Electrophile Additive 1a Diastereoselectivityb (%) % Conversion (HPLC)

1 LDA Toluene, �45 to 0 �C MeI – 5 >95
2 (S)-3 THF, �78 to 0 �C MeI – 0 79
3 (S,S)-4 THF, �78 to 0 �C MeI – �1.5 42
4 (S,S)-5 THF, �78 to 0 �C MeI – 9 85
5 (R,R)-5 THF, �78 to 0 �C MeI – �24 90
6 (R)-6 THF, �78 to 0 �C MeI – �5 94
7 (R)-7 THF, �78 to 0 �C MeI – 12 42
8 (S,S)-8 THF, �78 to 0 �C MeI – 32 90
9 (S,S)-8 Toluene, �45 to 0 �C MeI – 58 93
10 (S,S)-9 Toluene, �45 to 0 �C MeI – 19 87
11 (S,S)-10 Toluene, �45 to 0 �C MeI – 0 83
12 (S,S)-11 Toluene, �45 to 0 �C MeI – 20 75
13 (S,S)-8 Toluene, �45 to 0 �C MeBr – 49 88
14 (S,S)-8 Toluene, �45 to 0 �C Me2SO4 – 34 89
15 (S,S)-8 Toluene, �45 to 0 �C MeI TMEDA (1.0 equiv) 66 >95
16 (S,S)-8 Toluene, �45 to 0 �C MeI TMEDA (2.0 equiv) 86 >95
17 (S,S)-8 Toluene, �45 to 0 �C MeI TMEDA (4.0 equiv) 64 >95
18 (S,S)-8 Toluene, �45 to 0 �C MeI TMPDA (2.0 equiv) 64 89
19 (S,S)-8 Toluene, �45 to 0 �C MeI TMBDA (2.0 equiv) 59 84

a 3 equiv of chiral bases 3–7 were used, 2 equiv of chiral bases 8–1 were used.
b Determined by Chiral HPLC.
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explore other substrates under similar conditions. As can be seen
from Table 2, (R,R)-8 affords good selectivity with a range of substi-
tuted 5-alkylthiazolones.6 In general, secondary alkyl iodides affor-
ded better selectivity than primary alkyl iodides.
In conclusion, C2-symmetric chiral base (R,R)-8 enables efficient
reagent-controlled alkylation of 5-alkyl-2-aminothiazolones with a
high degree of regio-, chemo-, and stereochemical control,
overriding any intrinsic stereocontrol element. Importantly, use
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Table 2
Scope of 5-alkylthiazolone alkylations using (R,R)-8
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Substrate R R0 % de 14aa Yieldb (%)

12 2-Propyl 86 79

12 1-Propyl 27 76

13a 2-Propyl 81 86

13a 1-Propyl 43 71

13b

Me

2-Propyl 89 70

13b

Me

1-Propyl 86 65

a Determined by Chiral HPLC.
b Isolated yields as diastereomeric mixture.
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of electrophiles more sterically hindered than methyl iodide pre-
vents alkylation of the chiral base itself, enabling facile recycle of
the chiral controller.
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cannula. 5-methylthiazolone (13a, 361.6 g, 1.63 mol, 1.0 equiv) was slurried in
anhydrous toluene (1.45 L) in a separate 5 L, 3-neck round-bottom flask under a
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resulting exotherm. The reaction mixture was warmed to room temperature and
agitation was halted. Phases were allowed to separate and the lower aqueous
layer was drained. 4.82 L of saturated NH4Cl solution was added and the mixture
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layer was drained. Acetic acid solution (2 M, 3 L) was charged to the reactor and
the mixture agitated for 30 min. The phases were allowed to separate and the
lower aqueous layer was drained. The acetic acid wash was repeated. Saturated
NaHCO3 (3 L) was charged to the reactor slowly while agitating for 20 min. The
phases were allowed to separate (at least 20 min). The lower aqueous phase was
drained. The toluene layer was solvent-exchanged into octane, with the final
ratio of solvents 20:1 octane–toluene. After the desired solvent ratio was
reached, with a final volume of 3.9 L, the slurry was filtered through a medium-
porosity sintered glass funnel, rinsing with two portions of octane (1400 mL
total). The solids were dried on the filter for 1–1.5 h, and then transferred to a
drying dish and dried in a vacuum oven at 45–55 �C, 3–30 torr for 18–42 h.
Obtained 370 g of a white solid, 86% yield, 80.5% de.
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