Efficient Cu-catalyzed one-pot odorless synthesis of sulfides from triphenyltin chloride, aryl halides and $S_{\mathbf{8}}$ in PEG

Abed Rostami ${ }^{\text {a }}$, Amin Rostami ${ }^{\text {a,* }}$, Nasser Iranpoor ${ }^{\text {b }}$, Mohammad Ali Zolfigol ${ }^{\text {c }}$
a Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran
${ }^{\mathrm{b}}$ Department of Chemistry, Shiraz University, Shiraz 71454, Iran
${ }^{\text {c }}$ College of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran

A R T I C L E I N F O

Article history:

Received 30 June 2015
Revised 11 November 2015
Accepted 29 November 2015
Available online 30 November 2015

Abstract

A novel method for the $\mathrm{Cu}(\mathrm{OAc})_{2}$ catalyzed synthesis of unsymmetrical sulfides from triphenyltin chloride and aryl halides using S_{8} as the sulfur source in PEG200 at $60-80^{\circ} \mathrm{C}$ is reported. Triphenyltin chloride is capable of delivering all of its phenyl groups to the product. Also, the copper catalyzed synthesis of symmetrical diaryl sulfides from aryl halides using S_{8} is described.

© 2015 Elsevier Ltd. All rights reserved.

Keywords:

Triphenyltin chloride
Aryl halide
$\mathrm{Cu}(\mathrm{OAc})_{2}$
Catalyst
Sulfide

Introduction

Symmetrical and unsymmetrical diaryl sulfides are found in numerous drugs displaying a broad spectrum of therapeutic activities such as anti-diabetes, anti-inflammatory, anti-Alzheimer's, anti-Parkinson's, anti-cancer, and anti-HIV. ${ }^{1,2}$

Transition-metal-catalyzed cross-coupling reactions of aryl halides with thiols are the main synthetic methods for the preparation of diaryl sulfides. ${ }^{3-6}$ The main limitations of the aforementioned methodologies include the utilization of volatile and unpleasant smelling thiols that can act as metal deactivators due to their tendency to bind to transition metals. In addition, the oxidative coupling of thiols to disulfides is a known side-reaction. ${ }^{7}$

To overcome these drawbacks, recently, various sulfur sources ${ }^{8-15}$ have been employed for the conversion of aryl (pseudo) halides to aryl thioethers using transition metal catalysis. Although, these efforts have led to significant progress, disadvantages include the requirement for ligands, high reaction temperatures, and harmful organic solvents. Moreover, these methods are inefficient for the synthesis of unsymmetrical diaryl sulfides. To resolve these problems, sulfonyl hydrazides were recently reported as an aryl thiol surrogate for the synthesis of unsymmetrical sulfides. ${ }^{16}$ Although, this finding represents an interesting breakthrough for the synthesis of

[^0]unsymmetrical sulfides, this method employs harsh reaction conditions such as high temperature $\left(130^{\circ} \mathrm{C}\right)$, microwave irradiation, ${ }^{16 a}$ and the use of sulfonyl hydrazides which are less readily available and expensive. ${ }^{16}$ Therefore, there is still interest in finding new reagents for the synthesis of symmetrical and unsymmetrical sulfides under mild reaction conditions.

Result and discussion

Recently, an efficient method for $\mathrm{C}-\mathrm{X}(\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{O})$ bond formation using triphenyltin chloride as a source of the phenyl group was developed by our research group. ${ }^{17}$ These investigations prompted us to further explore the prospective use of this phenyl group source for other reactions.

We report herein, the use of triphenyltin chloride in combination with S_{8} as a thiolating agent in the reaction with aryl halides for the $\mathrm{Cu}(\mathrm{OAc})_{2}$ catalyzed synthesis of phenyl aryl sulfides.

Optimization of the reaction conditions was performed upon the model reaction of 4-iodoanisole with triphenyltin chloride using various sulfur sources, KF as an activator, various Cu salts as catalysts and organic and inorganic bases in different solvents at $60^{\circ} \mathrm{C}$ (Table 1). The nature of the base was found to be important and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was found to be the most effective (Table 1, entries 1-6). When $\mathrm{Et}_{3} \mathrm{~N}$ in DMF was used as a base, diphenyl disulfide was the main product formed (Table 1, entry 1). The reaction was conducted in PEG200, DMF, dioxane, and $\mathrm{CH}_{3} \mathrm{CN}$, and among

Table 1
Optimization of the reaction conditions using 4-iodoanisole with triphenyltin chloride ${ }^{\text {a }}$

Entry	Base	S-source	Solvent	Cu salts	GC yield ${ }^{\text {b,c }}$ (\%)
1	$\mathrm{Et}_{3} \mathrm{~N}$	S_{8}	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}$	0/100
2	DABCO	S_{8}	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}$	20/80
3	NaOH	S_{8}	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}$	35/45
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	S_{8}	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}$	78/22
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0 ${ }^{\text {d }}$
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0 ${ }^{\text {d }}$
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	Dioxane	$\mathrm{Cu}(\mathrm{OAc})_{2}$	65/0
8	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	76/0
9	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	CuI	76/0
10	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	CuCl_{2}	81/0
11	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$35 / 0^{\text {e }}$
12	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$78 / 0^{\text {f }}$
13	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$100 / 0^{\text {g }}$
14	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$78 / 0^{\text {h }}$
15	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	75/0 ${ }^{\text {i }}$
16	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	NR/NR ${ }^{\text {j }}$
17	NaOH	S8	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	58/21 ${ }^{\text {j }}$
18	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{~S} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	48/52 ${ }^{\text {j }}$
19	$\mathrm{K}_{2} \mathrm{CO}_{3}$	KSCN	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	0/100 ${ }^{\text {j }}$
20	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	NR/NR ${ }^{\text {j }}$
21	$\mathrm{K}_{2} \mathrm{CO}_{3}$	S_{8}	PEG200	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$0 / 100^{\text {k }}$

The bold letters represent the most effective reaction conditions.
${ }^{\text {a }}$ Reactions conditions: 4-iodoanisole (1 mmol), triphenyltin chloride (0.35 mmol), $\mathrm{S}_{8}(1.5 \mathrm{mmol}), \mathrm{Cu}$ salts ($10 \mathrm{~mol} \%$), $\mathrm{KF}(3 \mathrm{mmol})$, base (2 mmol), solvent (2 mL).
${ }^{\mathrm{b}}$ 4-Methoxy diphenyl sulfide.
${ }^{\text {c }}$ Diphenyl sulfide.
${ }^{\text {d }}$ Optimal reaction conditions.
${ }^{e}$ KF (2 mmol).
${ }^{\mathrm{f}} \mathrm{KF}(1.5 \mathrm{mmol})$.
g $70^{\circ} \mathrm{C}$.
${ }^{\mathrm{h}} \mathrm{S}_{8}(1 \mathrm{mmol})$.
${ }^{i} \mathrm{Cu}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$).
${ }^{\mathrm{j}}$ Without KF.
${ }^{\mathrm{k}}$ Without 4-iodoanisole.
these solvents the most effective were DMF and PEG200 (Table 1, entries 5-8). Among the copper salts tested, the most suitable was $\mathrm{Cu}(\mathrm{OAc})_{2}$ (Table 1, entries 9 and 10). In the absence of KF , no product was observed (Table 1, entry 16). No improvement in yield was observed when other S-sources; $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{KSCN}$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, were used (Table 1, entries 18-20). The optimized reaction conditions were found to be $\mathrm{S}_{8}(1.5 \mathrm{mmol}), \mathrm{KF}(3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{mmol})$ in the presence of catalytic $\mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ in PEG200 or DMF.

In order to examine the reaction scope, a series of structurally diverse aryl halides were reacted with triphenyltin chloride under the optimized reaction conditions in PEG200. The reactions produced the corresponding phenyl aryl sulfides in moderate to excellent yields ranging from 70% to 95% (Table 2). Interestingly, aryl bromides and chlorides which are relatively unreactive substrates, were also converted to the corresponding aryl phenyl sulfides in good yields (Table 2, entries 7-15). It was observed that aryl halides with electron-withdrawing groups showed greater activities than those with electron-donating groups (Table 2, entries 2-6), and sterically demanding substrates gave the desired products in good yields (Table 2, entries 4 and 9). The reaction of dihalogenated 1-bromo-4-chlorobenzene was also studied to investigate the selectivity of the reaction. The bromide functional group showed higher reactivity (Table 2 , entry 15) and this selectivity allows the remaining active halide site to potentially undergo further functionalization. Benzyl bromide and benzyl chloride satisfactorily underwent C-S bond formation (Table 2, entries 16 and

Table 2
Synthesis of phenyl aryl/benzyl sulfides from the reaction of aryl/benzyl halides with triphenyltin chloride
(
${ }^{\text {a }}$ Isolated yield.
${ }^{\text {b }}$ In parenthesis; yield performed using 1-bromo-4-nitrobenzene (10 mmol), Cu $(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, triphenyltin chloride $(3.5 \mathrm{mmol}), \mathrm{S}_{8}(15 \mathrm{mmol}), \mathrm{KF}(30 \mathrm{mmol})$, PEG200 (20 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mmol})$.
17). It was also shown that the method was suitable for large scale reactions. For this purpose, the reaction of 1-bromo-4-nitrobenzene with triphenyltin chloride was scaled-up 10 times and the desired sulfide was isolated in 89% yield (Table 2, entry 10).

To ascertain the nature of the reaction mechanism and illustrate the efficiency of this method, a control experiment was performed using thiophenol (instead of $\mathrm{Ph}_{3} \mathrm{SnCl} / \mathrm{S}_{8}$) and 4-iodoanisole under same reaction conditions. It was observed that both the desired product and the diphenyl disulfide by-product were obtained after 24 h (Scheme 1). The results show that when thiophenol was used directly, both the deactivation of $\mathrm{Cu}(\mathrm{OAc})_{2}$ (an extended time was required for complete conversion) and oxidation to diphenyl disulfide by air in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2}$ occur, ${ }^{7}$ while the $\mathrm{Ph}_{3} \mathrm{SnCl} / \mathrm{S}_{8}$ system generates thiophenol or thiolate in situ relieving these difficulties.

Although the exact mechanism of this reaction is not clear, on the basis of preliminary results (Table 1 , entries $1,6,16,17$, and 20), control experiment, and related studies, ${ }^{14 \mathrm{~h}, 17}$ we believe that potassium disulfide is initially produced from the reaction of S_{8}

Scheme 1. Control experiment.
with KF. Potassium disulfide then reacts with $\mathrm{Cu}(\mathrm{OAc})_{2}$ to generate copper sulfide which reacts with triphenyltin chloride by oxidative addition to form intermediate $\mathbf{1}$. Intermediate $\mathbf{1}$ is transformed into intermediate 2 via phenyl group migration. Dissociation of intermediate 2 via reductive elimination gives two intermediates, 3 and 6, of which intermediate $\mathbf{3}$ is transformed into intermediate 4 in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The aryl/benzyl halide reacts with intermediate 4 by oxidative addition to form compound 5, which undergoes reductive elimination to afford the product and releases $\mathrm{Cu}(\mathrm{II})$ (Scheme 2). Intermediate $\mathbf{6}$ then reacts with potassium disulfide to give intermediate $\mathbf{7}$ which is capable of transfer to intermediate 3. Intermediate $\mathbf{3}$ could also produce diphenyl disulfide when $\mathrm{Et}_{3} \mathrm{~N}$ was used instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF (Table 1, entry 1). Further studies regarding the mechanism are ongoing.

As shown in Scheme 1, in the synthesis of phenyl aryl/benzyl sulfide the $\mathrm{Ph}_{3} \mathrm{SnCl} / \mathrm{S}_{8}$ system acts as a thiolating agent. To demonstrate this, the reaction of iodobenzene with S_{8} was investigated under same reaction conditions. It was found that the reaction did not take place in the absence of $\mathrm{Ph}_{3} \mathrm{SnCl}$. Interestingly, upon increasing the reaction temperature to $100^{\circ} \mathrm{C}$, two products, thiophenol and diphenyl sulfide, were detected.

The above observation encouraged us to investigate the possible synthesis of symmetrical diaryl sulfides from the C-S coupling reaction of aryl halides and S_{8}. Iodobenzene was chosen as a model substrate to optimize the reaction conditions (Table 3). Increasing the reaction temperature to $110^{\circ} \mathrm{C}$ led to an increased conversion to diphenyl sulfide (Table 3, entry 2). The base also affected the yield of the desired product. When $\mathrm{Et}_{3} \mathrm{~N}$ was used under the same reaction conditions, the yield of the desired product decreased to 30% (Table 3, entry 3). $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was found to be the most appropriate base and no undesired thiophenol was detected (Table 3, entry 4). When dioxane and $\mathrm{Et}_{3} \mathrm{~N}$ were used under the same reaction conditions, thiophenol was formed as the main product (Table 3, entry 7).

Further optimization of the reaction conditions revealed that PEG200 and $\mathrm{Cu}(\mathrm{OAc})_{2}$ were the most suitable solvent and catalyst, respectively. With optimized conditions in hand, a number of aryl halides were examined to explore the reaction scope (Table 4). Aryl halides possessing electron-donating and electron-withdrawing groups afforded the corresponding diaryl sulfides in good yields (Table 4). A steric effect was observed, for instance, p-iodotoluene and p-bromotoluene gave the desired products in 90% and 72% yields, respectively (entries 3 and 8), while 80% and 61% yields were obtained, respectively, in the cases of o-iodotoluene and

Scheme 2. Proposed mechanism for the synthesis of phenyl aryl/benzyl sulfides catalyzed by $\mathrm{Cu}(\mathrm{OAc})_{2}$.

Table 3
Optimization of the reaction conditions for the conversion of iodobenzene to diphenyl sulfide using $\mathrm{S}_{8}{ }^{\text {a }}$

Entry	Base	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	Cu salts	GC yield ${ }^{\text {b/c }}$ (\%)
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PEG200	100	$\mathrm{Cu}(\mathrm{OAc})_{2}$	65/35
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	80/20
3	$\mathrm{Et}_{3} \mathrm{~N}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	30/70
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0
6	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	dioxane	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	72/28
7	$\mathrm{Et}_{3} \mathrm{~N}$	dioxane	110	$\mathrm{Cu}(\mathrm{OAC})_{2}$	0/100
8	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0 ${ }^{\text {d }}$
9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	CuI	96/0
10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	CuCl_{2}	96/0
11	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$100 / 0^{\text {e }}$
12	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$93 / 0^{\text {f }}$
13	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAc})_{2}$	100/0 ${ }^{\text {g }}$
14	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PEG200	110	$\mathrm{Cu}(\mathrm{OAC})_{2}$	70/30 ${ }^{\text {h }}$

The bold letters represent the most effective reaction conditions.
${ }^{\text {a }}$ Reaction conditions: iodobenzene (1 mmol), $\mathrm{S}_{8}(0.5 \mathrm{mmol}), \mathrm{Cu}$ salts ($10 \mathrm{~mol} \%$),
KF (1 mmol), base (2 mmol), solvent (1.5 mL).
${ }^{\mathrm{b}}$ Diphenyl sulfide,
${ }^{\text {c }}$ Thiophenol,
${ }^{\mathrm{d}} \mathrm{KF}(2 \mathrm{mmol}), \mathrm{S}_{8}(1 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(15 \mathrm{~mol} \%)$.
${ }^{\mathrm{e}} \mathrm{S}_{8}(1 \mathrm{mmol})$.
${ }^{\mathrm{f}} \mathrm{KF}(1.5 \mathrm{mmol})$.
${ }^{\mathrm{g}} \mathrm{Cu}(\mathrm{OAc})_{2}(0.2 \mathrm{~mol} \%)$.
${ }^{\mathrm{h}} \mathrm{Cs}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$.

Table 4
The reaction of various aryl halides with S_{8} for the synthesis of symmetrical diaryl sulfides ${ }^{\text {a }}$
Entry

[^1]

Scheme 3. Proposed mechanism.
o-bromotoluene (Table 4, entries 4 and 9). Aryl chlorides could also be transformed into diaryl sulfides under the same reaction conditions in moderate to good yields (Table 4, entries 12-14).

On the basis of our observations (Table 3, entries 4, 6, and 7) and previously reported mechanism ${ }^{14 \mathrm{~h}}$ we believe that the synthesis of the symmetrical diaryl sulfides proceeds through a mechanism similar to that suggested for the synthesis of phenyl aryl/benzyl sulfide (Scheme 3). Copper sulfide reacts with the aryl halide by oxidative addition to give intermediate $\mathbf{1}$ and gives intermediate $\mathbf{2}$ via aryl group migration. The thiol can be generated by the reaction of intermediate 2 with wet-PEG. The thiol then reacts with $\mathrm{Cu}(\mathrm{II})$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to form an organocopper species which undergoes oxidative addition with the aryl halide. Finally, reductive elimination occurs to produce the symmetrical diaryl sulfide.

Conclusions

In summary, we have developed an efficient methodology for the synthesis of phenyl aryl/benzyl sulfides via the C-S bond formation reaction of triphenyltin chloride with aryl/benzyl halides using S_{8} as a sulfur surrogate and $\mathrm{Cu}(\mathrm{OAc})_{2}$ as catalyst. Additionally, symmetrical diaryl sulfides were obtained from the copper-catalyzed reaction of aryl halides and S_{8}. These procedures offer several advantages. First, the synthesis of structurally diverse symmetrical and unsymmetrical sulfides in good to high yields has been reported. Second, the in situ release of thiol makes the methods more practical for $\mathrm{C}-\mathrm{S}$ bond formation. Third, commercially available, inexpensive and chemically stable sulfur sources, starting materials, and catalyst have been used. Further studies on additional applications for this methodology are currently underway in our laboratory.

Acknowledgments

We are grateful to the Iran National Science Foundation (INSF) and the University of Kurdistan Research Councils for partial support of this work. We are also thankful to Dr. A. Ghaderi for his improvement suggestions.

Supplementary data

Supplementary data including experimental details and ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. tetlet.2015.11.093.

References and notes

1. (a) Stump, B.; Eberle, C.; Kaiser, M.; Brun, R.; Krauth-Siegel, R. L.; Diederich, F. Org. Biomol. Chem. 2008, 6, 3935-3947; (b) Pasquini, S.; Mugnaini, C.; Tintori, C.; Botta, M.; Trejos, A.; Arvela, R. K.; Larhed, M.; Witvrouw, M.; Michiels, M.; Christ, F.; Debyser, Z.; Corelli, F. J. Med. Chem. 2008, 51, 5125-5129.
2. Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; De-Vries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; Von-Geldern, T. W. J. Med. Chem. 2001, 44, 1202-1210.
3. For selected Pd-catalyzed S-arylation of thiols, see: (a) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 13851389; (b) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397-7403; (c) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587-4590; (d) Fernandez-Rodroeguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180-2181; (e) Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677-8681; (f) FernandezRodroeguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782-7796; (g) Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069-3073; (h) Iranpoor, N.; Firouzabadi, H.; Rostami, A. Appl. Organomet. Chem. 2013, 27, 501-505.
4. For selected copper-catalyzed S-arylation of thiols, see (a) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019-2022; (b) Xu, H.-J.; Zhao, Y.-Q.; Feng, T.; Feng, Y.-S. J. Org. Chem. 2012, 77, 2878-2884; (c) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517-3520; (d) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803-2806; (e) Chen, Y.-J.; Chen, H. H. Org. Lett. 2006, 8, 5609-5612; (f) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583-5586; (g) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863-3867; (h) Carril, M.; San-Martin, R.; Domínguez, E.; Tellitu, I. Chem. Eur. J. 2007, 13, 5100-5105; (i) Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199-7202; (j) Sperotto, E.; Klink, G. P. M. V.; De-Vries, J. G.; Koten, G. V. J. Org. Chem. 2008, 73, 5625-5628; (k) Bahekar, S. S.; Sarkate, A. P.; Wadhai, V. M.; Wakte, P. S.; Shinde, D. B. Catal. Commun. 2013, 41, 123-125.
5. (a) Wu, J. R.; Lin, C. H.; Lee, C. F. Chem. Commun. 2009, 4450-4452; (b) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880-2883.
6. (a) Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett. 2006, 8, 5613-5616; (b) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697-1700; (c) Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K.; Barman, P. Tetrahedron 2014, 70, 7484-7489.
7. Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205-3220.
8. (a) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv. Synth. Catal. 2010, 352, 119-124; (b) Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100-4103; (c) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Samadi, A. J. Mol. Catal. A: Chem. 2013, 377, 190-196; (d) Gholinejad, M.; Karimi, B.; Mansouri, F. J. Mol. Catal. A: Chem. 2014, 386, 20-27; (e) Mondal, J.; Modak, A.; Dutta, A.; Basu, S.; Jha, S. N.; Bhattacharyya, D.; Bhaumik, A. Chem. Commun. 2012, 8000-8002.
9. Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76, 4371-4378
10. (a) You, W.; Yan, X.; Liao, Q.; Xi, C. Org. Lett. 2010, 12, 3930-3933; (b) Wang, F.; Chen, C.; Deng, G.; Xi, C. J. Org. Chem. 2012, 77, 4148-4151.
11. Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008-1010.
12. Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454-457.
13. (a) Wang, F.; Cai, S.; Wang, Z.; Xi, C. Org. Lett. 2011, 13, 3202-3205; (b) Zhao, P.; Wang, F.; Xi, C. Synthesis 2012, 1477-1480; (c) Zhao, P.; Liao, Q.; Gao, H.; Xi, C. Tetrahedron Lett. 2013, 54, 2357-2361; (d) Zhao, P.; Yin, H.; Gao, H.; Xi, C. J. Org. Chem. 2013, 78, 5001-5006; (e) Firouzabadi, H.; Iranpoor, N.; Samadi, A. Tetrahedron Lett. 2014, 55, 1212-1217.
14. For selected examples of S_{8} as a sulfur source see (a) Jiang, Y. W.; Qin, Y. X.; Xie, S. W.; Zhang, X. J.; Dong, J. H.; Ma, D. W. Org. Lett. 2009, 11, 5250-5253; (b) Wang, H.; Jiang, L.; Chen, T.; Li, Y. Eur. J. Org. Chem. 2010, 12, 2324-2329; (c) Martinek, M.; Korf, M.; Srogl, J. Chem. Commun. 2010, 4387-4389; (d) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732-6735; (e) Cheng, J.-H.; Yi, C.-L.; Liu, T.-J.; Lee, C.-F. Chem. Commun. 2012, 8440-8442; (f) Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.; Braga, A. L. Org. Lett. 2010, 12, 3288-3291; (g) Beletskaya, P. I.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596-1636; (h) Chen, H. Y.; Peng, W. T.; Lee, Y. H.; Chang, Y. L.; Chen, Y. J.; Lai, Y. C.; Jheng, N. Y.; Chen, H. Y. Organometalics 2013, 32, 5514-5522; (i) Chen, C.; Xie, Y.; Chu, L.; Wag, R.-W.; Zhang, X.; Qing, F.-L. Angew. Chem., Int. Ed. 2012, 52, 2492-2496.
15. (a) Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. Org. Lett. 2013, 15, 2594-2597; (b) Hou, C.; He, Q.; Yang, C. Org. Lett. 2014, 16, 5040-5043; (c) Li, Y.; Pu, J.; Jiang, X. Org. Lett. 2014, 16, 2692-2695; (d) Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16, 1212-1215; (e) Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H. Org. Lett. 2014, 16, 1196-1199; (f) Zhang, Y.; Li, Y.; Zhang, X.; Jiang, X. Chem. Commun. 2015, 941-944.
16. (a) Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874-5877; (b) Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202-4205; (c) Guo, S. R.; He, W. M.; Xiang, J. N.; Yuan, Y. Q. Chem. Commun. 2014, 8578-8581.
17. Iranpoor, N.; Firouzabadi, H.; Etemadi-Davan, E.; Rostami, A.; Nematollahi, A. J. Organomet. Chem. 2013, 740, 123-130.

[^0]: * Corresponding author. Tel.: +98 918373 0910; fax: +98 8716624004.

 E-mail address: a.rostami@uok.ac.ir (A. Rostami).

[^1]: ${ }^{\text {a }}$ Reactions conditions: aryl halide (1 mmol), $\mathrm{S}_{8}(0.5 \mathrm{mmol}), \mathrm{KF}(1 \mathrm{mmol}), \mathrm{Cu}$ $(\mathrm{OAc})_{2}(0.1 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{mmol})$, PEG200 (1.5 mL).
 ${ }^{\mathrm{b}}$ Isolated yield after column chromatography.

