Hala M. Refat* and Khaled S. Mohamed

Efficient and convenient synthesis of pyrido [2,1-*b*]benzothiazole, pyrimidopyrido[2,1-*b*] benzothiazole and benzothiazolo[3,2-*a*][1,8] naphthyridine derivatives

DOI 10.1515/hc-2015-0018

Received February 1, 2015; accepted May 8, 2015; previously published online July 25, 2015

Abstract: New 3-aryl-pyrido[2,1-*b*][1,3]benzothiazole derivatives **2a**–**e** were synthesized in excellent yields *via* the reaction of benzothiazoleacetonitrile (**1**) with different aromatic aldehydes. The treatment of 2-(benzo[*d*]thiazol-2-yl)-3-(pyridin-4-yl)acrylonitrile (**6**) with malononitrile afforded 1-amino-3-(pyridin-4-yl)-3*H*-pyrido[2,1-*b*][1,3]benzothiazole-2,4-dicarbonitrile (**7**), which was allowed to react with a variety of reagents to provide pyrimido[5',4':5,6]pyrido[2,1*b*][1,3]benzothiazole **8**, **9** and [1,3]benzothiazolo[3,2-*a*][1,8] naphthyridine **10**, **15** derivatives. All synthesized products were confirmed by elemental analysis, IR, ¹H-NMR, ¹³C-NMR, and mass spectral data.

Keywords: benzothiazoleacetonitrile; pyrido[2,1-*b*][1,3] benzothiazole; pyrimidopyrido [2,1-*b*][1,3] benzothiazole.

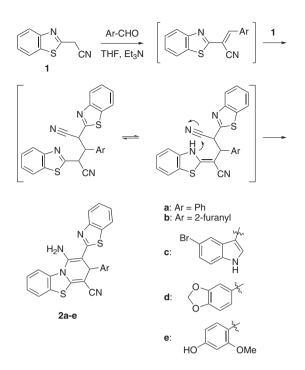
Introduction

Benzothiazole derivatives have been important heterocycles for many years because of their broad bioactivities, including antimicrobial [1–5], anticancer [6–11], anthelmintic [12], anticonvulsant [13], and antidiabetic [14] activities. They also serve as intermediates for dyes [15]. In addition, some fused pyridopyrimidine derivatives are biologically active [16–18].

In a similar way, 1,8-naphthyridine derivatives have received attention recently, primarily because this ring system is present in many compounds isolated from

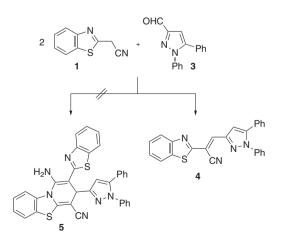
Egypt, e-mail: halamorefat@yahoo.com

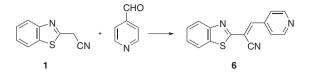
natural sources. They exhibit various biological activities [19], such as antibacterial [20, 21], antitumor [22], and antiplatelet [23, 24] activities. Furthermore, various substituted benzothiazoles such as 2-aryl benzothiazoles have received much attention because of their unique structures and uses as radioactive amyloid imagining agents [25] and anticancer agents [26]. In continuation of our interest in the synthesis of heterocycles containing a benzothiazole moiety [27–30], we report herein a facile route to several new benzothiazole-fused heterocyclic systems. We present efficient synthesis of novel pyrido[2,1-*b*][1,3] benzothiazole, pyrimidopyrido[2,1-*b*][1,3]benzothiazole, and benzothiazolo[3,2-*a*][1,8] naphthyridine derivatives.


Results and discussion

As shown in Scheme 1, condensation of compound 1 with benzaldehyde, furfural, 5-bromo-1H-indole-3-carbaldehyde, piperonal, or 4-hydroxy-2-methoxybenzaldehyde in refluxing THF containing a catalytic amount of TEA furnished the corresponding 1-amino-3-aryl-2-(2benzothiazolyl)-3H-pyrido[2,1-b][1,3]benzothiazole-4-carbonitrile derivatives **2a**–**e**. The assignments of structures **2a-e** were supported by their elemental analyses and spectral data. The ¹H NMR spectra of structures **2a**–**e** show two singlets at δ 4.60–4.82 and 8.10–8.90 ppm for C₂-H and NH₂ protons, respectively. In addition, the ¹H-NMR spectrum of compound **2c** shows a singlet at δ 10.95 ppm assignable to the NH proton of the indole group. Also, compound **2d** showed a signal at δ 6.10 ppm assignable to the methylene group. Compound 2e exhibits singlets at δ 3.80 and 10.10 assignable to the OMe and OH protons, respectively. Mass spectra of 2a-e contain the molecular ion peak for each compound.

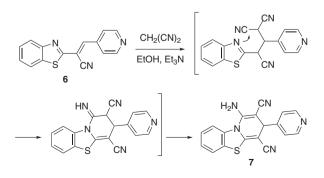
In contrast to the above-mentioned reaction, the treatment of compound **1** with 1,5-diphenyl-1*H*-pyrazole-3-carbaldehyde (**3**) in THF in the presence of a catalytic amount of TEA furnished 2-(benzo[d]thiazol-2-yl)-


^{*}Corresponding author: Hala M. Refat, Faculty of Science, Department of Chemistry, Suez Canal University, Al-Arish 45511,


Khaled S. Mohamed: Higher Institute for Engineering and Technology, Engineering Chemistry Department, New Damietta 34518, Egypt

Scheme 1

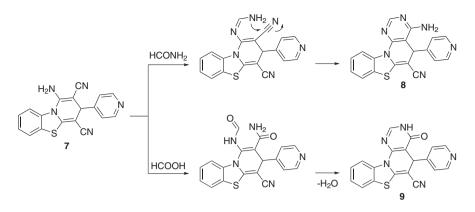
3-(1,5-diphenyl-1*H*-pyrazol-3-yl)acrylonitrile (**4**) rather than the expected product **5** (Scheme 2). The IR spectrum of **4** shows the absence of NH₂ absorption band, but the absorption band at 2198 cm⁻¹ corresponding to a CN group is seen clearly. The structure of **4** is consistent with the ¹H NMR spectrum, which shows the absence of any D₂O exchangeable signal. There is a precedence in the literature for this outcome, in which the condensation between **1** and isonicotinaldehyde in boiling THF containing a catalytic amount of TEA afforded the (*E*)-2-(benzo[*d*]thiazol-2-yl)-3-(pyridin-4-yl)acrylonitrile (**6**) [31] (Scheme 3). Heating under reflux of compound **6** with malononitrile in ethanol in the presence of a catalytic amount of TEA afforded

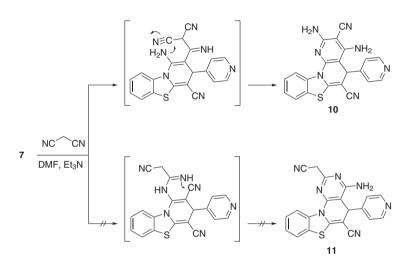


Scheme 3

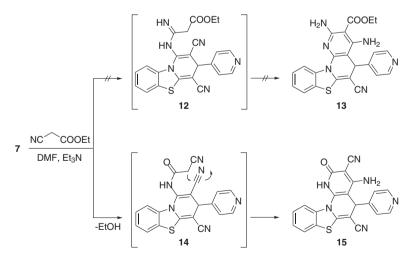
1-amino-3-(pyridin-4-yl)-3*H*-pyrido[2,1-*b*][1,3]benzothiazole-2,4-dicarbonitrile (**7**) [32] (Scheme 4). The IR spectrum of **7** displays stretching vibration bands at 3363, 3243, 2208, and 2191 cm⁻¹ corresponding to NH₂ and two CN groups, respectively. Its ¹H NMR spectrum reveals the presence of signals at δ 4.71 and 6.52 ppm assignable to the C₃-H and NH₂ protons, respectively. The mass spectrum shows the molecular ion peak at *m*/*z* 329 (M⁺, 49%), corresponding to the molecular formula C₁₈H₁₁N₅S.

Compound 7 was utilized as a starting material for preparation of a wide variety of fused heterocyclic compounds. Thus, heating of compound 7 with formamide afforded 4-amino-5-(pyridin-4-yl)-5H-pyrimido[5',4':5,6] pyrido[2,1-*b*][1,3]benzothiazole-6-carbonitrile (8). Similarly, a cyclocondensation of compound 7 with hot formic acid afforded 4-oxo-5-(pyridin-4-yl)-3,5-dihydropyrimido[5',4':5,6]pyrido[2,1-b][1,3]benzothiazole-6-carbonitrile (9) (Scheme 5). The IR spectrum of compound 9 displays stretching vibration bands at 3284, 2195, and 1645 cm⁻¹ corresponding to NH, CN, and C=O groups, respectively. Its ¹H NMR spectrum reveals the presence of three singlet signals at δ 4.71, 8.68, and 11.23 ppm assignable to the respective protons C_r-H, C₂-H, and NH protons. The mass spectrum shows the molecular ion peak at m/z 357 (M⁺, 25%) corresponding to the molecular formula C₁₉H₁₁N₅OS. Compound 9 is apparently formed by partial nitrile hydrolysis, amine formylation, and cyclodehydration.


Compound **7** can be transformed into a number of derivatives. For example, heating compound **7** with malononitrile in DMF and a catalytic amount of TEA under reflux conditions afforded 2,4-diamino-5-(pyridin-4-yl)-5*H*-[1,3] benzothiazolo[3,2-*a*][1,8]naphthyridine-3,6-dicarbonitrile



Scheme 4


Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 8/5/15 3:17 PM

Scheme 5

Scheme 6

Scheme 7

(10) rather than the analog 11, in line with the reported results [33] (Scheme 6). The IR spectrum of compound 10 shows the presence of signals for two NH_2 groups around

3405–3313 cm⁻¹ and two cyano groups at 2205 and 2199 cm⁻¹. The ¹H NMR spectrum of compound **10** shows a singlet at δ 4.73 assignable to C₅-H, two singlets (D₂O exchangeable) at 6.52 and 8.25 ppm assignable to two NH₂ groups and no signal in the region of 3–4 ppm for a methylene group. Also, ¹³C NMR spectrum reveals only one signal in the region of 20–60 ppm because of C_5 , which is consistent with the given structure **10**.

By contrast, the treatment of **7** with ethyl cyanoacetate in boiling DMF containing a catalytic amount of TEA afforded the dicarbonitrile **15** rather than its analog **13** (Scheme 7).

The structure of **15** was confirmed on the basis of IR, ¹H NMR, ¹³C NMR, and MS data. The mass spectrum shows the molecular ion peak at m/z 396 (M⁺, 100%), which is consistent with the proposed structure, whereas the absence of a triplet-quartet pattern in the ¹H NMR spectrum confirms elimination of the ethoxy group during the reaction.

Conclusions

A convenient and efficient one-pot synthesis of substituted pyrido[2,1-*b*][1,3]benzothiazoles based on reaction of benzothiazoleacetonitrile with different aromatic aldehydes has been developed. Pyrido[2,1-*b*]benzothiazole derivative **7** was used as a key precursor for synthesis of novel pyrimidopyrido[2,1-*b*][1,3]benzothiazole and [1,3] benzothiazolo [3,2-*a*][1,8]naphthyridine derivatives.

Experimental

Melting points were measured with a Gallenkamp apparatus and are uncorrected. IR spectra were recorded in KBr discs on a Mattson 5000 FTIR spectrophotometer at Microanalytical Unit, Faculty of Science, Mansoura University. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were measured on Bruker WP AC 300 instrument in DMSO- $d_{\rm c}$. Electron-impact mass spectra were determined on Finnigan Incos 500 at 70 eV. Elemental analyses were carried out at the Microanalytical Centre, Faculty of Science, Cairo University.

General procedure for the synthesis of 1-amino-3-aryl-2-(2-benzothiazolyl)-3*H*-pyrido[2,1-*b*][1,3]benzothiazole-4-carbonitriles 2a–e

A mixture of 2-cyanomethylbenzothiazole (1, 1.74 g, 0.01 mol), an aromatic aldehyde (0.005 mol) in THF (15 mL) and Et_3N (a few drops), was heated under reflux for 6–8 h (TLC monitored). After cooling, the resultant precipitate was isolated by suction, washed with EtOH (5 mL), and then crystallized from THF/EtOH (1:1) to afford compound 2a–e.

1-Amino-2-(2-benzothiazolyl)-3-phenyl-3*H***-pyrido[2,1-***b***][1,3] benzothiazole-4-carbonitrile (2a)** Yellow crystals; yield 85%; mp 221–223°C; IR: ν 3354, 3321 (NH₂), 2195 cm⁻¹ (CN); ¹H NMR: δ 4.82 (s, 1H, CH), 7.20–8.10 (m, 13H, Ar-H), 8.40 (s, 2H, NH₂); ¹³C NMR: δ 32.1, 60.5, 86.4, 1175, 120.1, 121.5 (2C), 122.3 (2C), 124.4 (2C), 126.6 (3C), 127.5 (2C), 128.6 (2C), 136.4, 145.3 (2C), 150.5, 153.3, 160.2, 162.3; MS: m/z 436 (M⁺, 23%). Anal. Calcd for C $_{\rm 25}{\rm H}_{\rm 16}{\rm N}_{\rm 4}{\rm S}_{\rm 2}$ (436.55): C, 68.78; H, 3.69; N, 12.83. Found: C, 68.72; H, 3.71; N, 12.80.

1-Amino-2-(2-benzothiazolyl)-3-(2-furyl)-3H-pyrido[2,1-b][1,3] benzothiazole-4-carbonitrile (2b) Yellow crystals; yield 79%; mp 183–185°C; IR: ν 3356, 3330 (NH₂), 2198 cm⁻¹ (CN); ¹H NMR: δ 4.64 (s, 1H, CH), 6.19 (m, 1H, C₄-H of furan), 6.38 (d, 1H, C₃-H of furan), 7.20–8.10 (m, 10H, Ar-H), 8.40 (s, 2H, NH₂); ¹³C NMR: δ 27.6, 62.4, 86.5, 108.8, 110.7, 117.5, 120.2, 121.3 (2C), 122.4 (3C), 124.2, 126.5 (2C), 136.4, 140.2, 145.4, 150.5, 152.5, 153.4, 160.2, 162.4; MS: *m/z* 426 (M⁺, 56%). Anal. Calcd for C₂₃H₁₄N₄OS₂ (426.51): C, 64.77; H, 3.31; N, 13.14. Found: C, 67.73; H, 3.33; N, 13.18.

1-Amino-2-(2-benzothiazolyl)-3-(5-bromo-1H-3-indolyl)--3H-pyrido[2,1-b][1,3]benzothiazole-4-carbonitrile (2c) Yellow crystals; yield 64%; mp>300°C; IR: ν 3387, 3334 (NH₂), 3188 (NH), 2200 cm⁻⁴ (CN); ¹H NMR: δ 4.76 (s, 1H, CH), 7.20–8.10 (m, 12H, Ar-H), 8.90 (s, 2H, NH₂), 10.95 (s, 1H, NH); ¹³C NMR: δ 31.8, 61.5, 86.6, 106.4, 114.4, 116.3, 117.4, 120.2, 121.1 (3C), 122.3 (2C), 124.6 (4C), 126.4 (2C), 130.2, 136.6 (2C), 145.4, 150.2, 153.5, 160.3, 162.2; MS: m/z 554 (M⁺, 33%). Anal. Calcd for C₂₇H₁₆ BrN₅S₂ (554.48): C, 58.49; H, 2.91; N, 12.63. Found: C, 58.44; H, 2.89; N, 12.66.

1-Amino-2-(2-benzothiazolyl)-3-(benzo[*d***][1,3]dioxol-5-yl)-3***H***-pyrido**[2,1-b][1,3] **benzothiazole-4-carbonitrile (2d)** Yellow crystals; yield 71%; mp 215–217°C; IR: ν 3410, 3385 (NH₂), 2208 cm⁴ (CN); ¹H NMR: δ 4.60 (s, 1H, CH), 6.10 (s, 2H, CH₂), 7.20–8.10 (m, 11H, Ar-H) 8.44 (s, 2H, NH₂); ¹³C NMR: δ 33.3, 61.4, 86.5, 101.4, 110.5, 113.5, 117.6, 120.2, 121.3 (2C), 122.4 (2C), 124.5 (3C), 126.7 (2C), 136.4 (2C), 145.8 (3C), 150.3, 153.8, 160.2, 162.3; MS: *m/z* 480 (M⁺, 27%). Anal. Calcd for C₂₆H₁₆ N₄O₂S₂ (480.56): C, 64.98; H, 3.36; N, 11.66. Found: C, 65.01; H, 3.39; N, 11.69.

1-Amino-2-(2-benzothiazolyl)-3-(4-hydroxy-2-methoxyphenyl)-3H-pyrido[2,1-b][1,3] benzothiazole-4-carbonitrile (2e) Yellow crystals; yield 62%; mp 180–182°C; IR: ν br 3400–3300 (NH₂ and OH), 2220 cm⁴ (CN); ¹H NMR: δ 3.80 (s, 3H, OCH₃), 4.60 (s, 1H, CH), 7.20–8.10 (m, 11H, Ar-H), 8.10 (s, 2H, NH₂), 10.10 (br s, 1H, OH); ¹³C NMR: δ 31.5, 56.4, 61.2, 86.4, 102.4, 110.2, 113.6, 117.5, 120.3, 121.3 (2C), 122.5, 124.6 (3C), 126.7 (2C), 131.5, 136.2, 145.6, 150.3, 153.7, 155.8, 159.5, 160.5, 162.3; MS: m/z 482 (M⁺, 36%). Anal. Calcd for C₂₆H₁₈ N₄O₂S₂ (482.58): C, 64.71; H, 3.76; N, 11.61. Found: C, 64.70; H, 3.79; N, 11.64.

Synthesis of 2-(benzo[d]thiazol-2-yl)-3-(1,5-diphenyl-1H-pyrazol-3-yl)acrylonitrile (4) A mixture of 2-cyanomethylbenzothiazole (1, 1.74 g, 0.01 mol), 1,5-diphenyl-1*H*-pyrazole-3-carbaldehyde (**3**, 2.48 g, 0.01 mol), and Et₃N (a few drops) in THF (15 mL) was heated under reflux for 8 h. After cooling, the resultant precipitate was isolated by suction, washed with EtOH (5 mL), and then crystallized from THF/ EtOH (1:1) to afford compound **4:** Yellow crystals; yield 68%; mp 220–222°C; IR: ν 2198 cm⁻¹ (CN); ¹H NMR: δ 7.10–8.20 (m, 14H, Ar-H), 7.19 (s, 1H, C₄-H of pyrazole), 8.17 (s, 1H, olefinic); ¹³C NMR: δ 110.5, 112.5, 117.5, 120.5, 121.4, 122.5, 124.5 (2C), 126.2 (2C), 128.3 (3C), 130.2 (4C), 133.4 (2C), 139.8, 141.2, 143.3, 145.5, 156.5, 162.6; MS: *m/z* 404 (M⁺, 35%). Anal. Calcd for C₂₅H₁₆ N₄S (404.49): C, 74.24; H, 3.99; N, 13.85. Found: C, 74.28; H, 3.99; N, 13.82.

Synthesis of (E)-2-(benzo[d]thiazol-2-yl)-3-(pyridin-4-yl)acrylonitrile (6) A solution of compound **1** (1.74 g, 0.01 mol) and isonicotinaldehyde (1.07 g, 0.01 mol) in THF (10 mL) containing three drops of Et₃N was heated under reflux for approximately 4 h, with progress monitored by TLC. The solid product **6** formed upon cooling was filtered off, dried, and crystallized from EtOH: Yellow crystals; yield 88%; mp 195–196°C; IR: *v* 2215 cm¹ (CN); ¹H NMR: δ 7.41 (d, 2H, *J* = 7.60 Hz, C₃-H, C₅-H of pyridine), 7.55 (m, 2H, C₅-H and C₆-H of benzothiazole), 7.95 (dd, 1H, *J* = 7.40 Hz and 1.50 Hz, C₇-H of benzothiazole), 8.20 (s, 1H, vinylic H), 8.23 (dd, 1H, *J* = 7.50 Hz and 1.50 Hz, C₄-H of benzothiazole), 8.66 (d, 2H, *J* = 7.80 Hz, C₂-H, C₆-H of pyridine); ¹³C NMR: δ 113.2, 117.8, 121.4, 122.0, 123.7 (3C), 126.1, 133.3, 144.9 (3C), 152.6, 153.8, 162.2; MS: *m*/*z* 263 (M⁺, 52%). Anal. Calcd for C₁₅H₉N₃S (263.32): C, 68.42; H, 3.45; N, 15.96. Found C, 68.40; H, 3.49; N, 16.01.

Synthesis of 1-amino-3-(pyridin-4-yl)-3*H*-pyrido[2,1-*b*][1,3]benzothiazole-2,4-dicarbonitrile (7) A mixture of compound 6 (2.62 g, 0.01 mol) and malononitrile (0.66 g, 0.01 mol) in absolute EtOH (10 mL) containing Et₃N (3 drops) was heated under reflux for 4 h and then allowed to cool. The precipitated product was filtered off, washed with EtOH, and crystallized from EtOH to afford compound 7: Yellow crystals; yield 95%; mp 263–264°C; IR: v 3363, 3243 (NH₂), 2208 and 2191 (two CN), 1618, 1490 cm⁴, aromatic; ¹H NMR: δ 4.71 (s, 1H, C₃-H), 6.52 (s, 2H, NH₂), 712 (dd, 1H, *J* = 7.70 Hz and 1.50 Hz, C₄-H of benzothiazole), 7.27 (d, 2H, *J* = 7.70 Hz, C₃-H, C₅-H of pyridine), 7.38 (m, 2H, C₅-H and C₆-H of benzothiazole), 7.70 (dd, 1H, *J* = 7.50 and 1.50 Hz, C₇-H of benzothiazole), 8.59 (d, 2H, *J* = 7.80 Hz, C₂-H, C₆-H of pyridine); ¹³C NMR: δ 30.9, 62.5, 67.8, 117.5 (2C), 120.3, 121.0, 122.8 (3C), 124.4, 126.6, 145.7, 148.5 (2C), 151.2, 162.5, 164.5; MS: *m/z* 329 (M⁺, 49%). Anal. Calcd for C₁₈H₁₁N₅S (329.38): C, 65.64; H, 3.37; N, 21.26. Found C, 65.69; H, 3.45; N, 21.35.

Synthesis of 4-amino-5-(pyridin-4-yl)-5H-pyrimido[5',4':5,6] **pyrido**[2,1-*b*][1,3]**benzothiazole-6-carbonitrile (8)** A solution of compound 7 (3.29 g, 0.01 mol) in (5 mL) of formamide (0.45 g, 0.01 mol) was refluxed for 12 h, and then allowed to cool. The precipitate that formed was filtered off and crystallized from DMF to give compound **8**: Black crystals; yield 29%; mp>350°C; IR: *v* 3398, 3312 (NH₂) and 2198 cm1 (CN); ¹H NMR: δ 4.76 (s, 1H, C₅-H), 6.56 (s, 2H, NH₂), 7.15 (dd, 1H, *J* = 7.40 Hz and 1.50 Hz, C₁₁-H), 7.21 (d, 2H, *J* = 7.60 Hz, C₃-H, C₅-H of pyridine), 7.30–7.40 (m, 2H, C₉-H and C₁₀-H), 7.81 (dd, 1H, *J* = 7.50 Hz and 1.50 Hz, C₈-H), 7.92 (s, 1H, C₂-H), 8.56 (d, 2H, *J* = 7.80 Hz, C₂-H, C₆-H of pyridine); ¹³C NMR: δ 27.2, 61.4, 106.0, 117.8, 120.3, 121.7, 122.8, 124.4 (3C), 126.5, 145.6 (2C), 148.6 (2C), 155.4, 156.5, 162.2, 163.6; MS: *m/z* 356 (M⁺, 25%). Anal. Calcd for C₁₉H₂N₆S (356.41): C, 64.03; H, 3.39; N, 23.58. Found C, 64.12; H, 3.47; N, 23.50.

Synthesis of 4-oxo-5-(pyridin-4-yl)-3,5-dihydro-pyrimido[5',4': **5,6]pyrido**[**2,1-b**][**1,3]benzothiazole-6-carbonitrile (9)** A mixture of compound **7** (3.29 g, 0.01 mol) and formic acid (15 mL, 88%) was heated under reflux for 16 h and then allowed to cool. The precipitate that formed was filtered off and crystallized from DMF to give compound **9**: Pink crystals; yield 35%; mp 320–322°C; IR: ν 3284 (NH), 2195 (CN), and 1645 cm1 (C=O);'H NMR: δ 4.71 (s, 1H, C₅-H), 7.15 (dd, 1H, *J* = 7.40 Hz and 1.50 Hz, C₁₁-H), 7.21 (d, 2H, *J* = 7.70 Hz, C₃-H, C₅-H of pyridine), 7.30–7.40 (m, 2H, C₉-H and C₁₀-H), 7.78 (dd, 1H, *J* = 7.60 Hz and 1.40 Hz, C₈-H), 8.56 (d, 2H, *J* = 7.80 Hz, C₂-H, C₆-H of pyridine), 8.68 (s, 1H, C₂-H), 11.23 (s, 1H, NH); ¹³C NMR: δ 29.5, 61.7, 102.7, 117.4, 120.2, 121.3, 122.6, 123.6 (3C), 126.5, 145.6, 146.7, 148.5 (2C), 150.4, 153.8, 162.3, 165.3; MS: *m/z* 357 (M⁺, 25%). Anal. Calcd for C₁₉H₁₁N₅OS (357.39): C, 63.85; H, 3.10; N, 19.60. Found C, 63.80; H, 3.18; N, 19.68.

Synthesis of 2,4-diamino-5-(pyridin-4-yl)-5H-[1,3]benzothiazolo [3,2-a][1,8]naphthyridine-3,6-dicarbonitrile (10) A mixture of compound 7 (3.29 g, 0.01 mol) and malononitrile (0.66 g, 0.01 mL) in DMF (10 mL) containing a few drops of Et,N was heated under reflux for 8 h and then allowed to cool. The precipitate that formed was filtered off and crystallized from DMF to give compound 10: Black crystals; yield 29%; mp>350°C; IR v cm1: 3405–3313 (2 NH.) and 2205, 2199 cm1 (2 CN); ¹H NMR: δ 4.73 (s, 1H, C, H), 6.52 (s, 2H, NH₂), 7.18 (dd, 1H, J = 7.50 Hz and 1.50 Hz, C₁₁-H), 7.23 (d, 2H, J = 7.70 Hz, C₃-H, C₅-H of pyridine), 7.35–7.48 (m, 2H, C₉-H and C₁₀-H), 7.89 $(dd, 1H, J = 7.50 Hz and 1.50 Hz, C_{s}-H), 8.25 (s, 2H, NH_{2}), 8.59 (d, 2H, 2H)$ J = 7.70 Hz, C₂-H, C₂-H of pyridine); ¹³C NMR: δ 27.0, 58.4, 61.6, 101.4, 115.3, 117.5, 120.3, 121.7, 122.5, 124.4 (3C), 126.5, 145.2, 146.1, 148.4 (2C), 153.9, 162.2 (2C), 163.5; MS: m/z 395 (M⁺, 100%). Anal. Calcd for C₁,H₁,N₂S (395.44): C, 63.78; H, 3.31; N, 24.79. Found C, 63.85; H, 3.40; N, 24.70.

Synthesis of 4-amino-2-oxo-5-(pyridin-4-yl)-1,5-dihydro-2H-[1,3] benzothiazolo[3,2-a][1,8]naphthyridine-3,6-dicarbonitrile (15) A solution of compound 7 (3.29 g, 0.01 mol) in DMF (10 mL) containing ethyl cyanoacetate (1.13 g, 0.01 mL) and Et₂N (4 drops) was heated under reflux for 8 h and then allowed to cool. The precipitate that formed was filtered off and crystallized from DMF to give compound 15: Black crystals; yield 29%; mp 195-197°C; IR: v 3430, 3329 (NH₂), 3298 (NH), 2202, 2193 (2CN), and 1644 cm⁻¹ (C=O); ¹H NMR: δ 4.73 (s, 1H, CH), 6.42 (s, 2H, NH₂), 7.09 (dd, 1H, J = 7.50 Hz and 1.5 Hz, C_{11} -H), 7.25 (d, 2H, J = 7.7 Hz, C_3 -H, C_5 -H of pyridine), 7.30–7.40 (m, 2H, C_{q} -H and C_{10} -H), 7.80 (dd, 1H, J = 7.50 Hz and 1.50 Hz, C_{8} -H), 8.55 (d, 2H, J = 7.7 Hz, C₂-H, C₂-H of pyridine), 11.45 (s, 1H, NH); ¹³C NMR: δ 28.3, 58.9, 61.2, 102.1, 115.5, 117.6, 120.1, 121.4, 122.6, 123.5 (3C), 126.4, 136.8, 145.5, 146.7, 148.3 (2C), 162.3, 163.4, 165.4; MS: m/z 396 (M⁺, 100%). Anal. Calcd for C₂₁H₂₂N₂OS (396.43): C, 63.63; H, 3.05; N, 21.20. Found: C, 63.55; H, 3.13; N, 21.28.

Acknowledgments: The authors are very grateful to Dr. A.A. Fadda, professor of Organic Chemistry, Chemistry Department, Faculty of Science, Mansoura University, for guidance, precious advice, and support.

References

- Gupta, S.; Ajmera, N.; Gautam, N.; Sharma, R.; Gauatam, D. Novel synthesis and biological activity study of pyrimido [2,1-b] benzothiazoles. *Indian J. Chem.* 2009, *48B*, 853–858.
- [2] Kumbhare, R. M.; Ingle, V. N. Synthesis of novel benzothiozole and benzisoxazole functionalized unsymmetrical alkanes and study of their antimicrobial activity. *Indian J. Chem.* 2009, 48B, 996–1000.
- [3] Murthi, Y.; Pathak, D. Synthesis and Antimicrobial screening of substituted 2-mercaptobenzothiazoles. J. Pharm. Res. 2008, 7, 153–155.
- [4] Rajeeva, B.; Srinivasulu, N.; Shantakumar, S. Synthesis and antimicrobial activity of some new 2-substituted benzothiazole derivatives. *E-J. Chem.* 2009, *6*, 775–779.
- [5] Maharan, M.; William, S.; Ramzy, F.; Sembel, A. Synthesis and in vitro evaluation of new benzothiazolederivaties as schistosomicidal agents. *Molecules* 2007, *12*, 622–633.

- [6] Kini, S.; Swain, S.; Gandhi, A. M. Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines. *Indian J. Pharm. Sci.* 2007, 69, 46–50.
- [7] Stanton, H. L. K.; Gambari, R.; Chung, H. C.; Johny, C. O. T.; Filly, C.; Albert, S. C. C. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. *Bioorg. Med. Chem.* 2008, *16*, 3626–3631.
- [8] Wang, M.; Gao, M.; Mock, B.; Miller, K.; Sledge, G.; Hutchins, G.; Zheng, Q. Synthesis of C-11 labelled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agent. *Bioorg. Med. Chem.* 2006, 14, 8599–8607.
- [9] Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs. J. Med. Chem. 2001, 44, 1446–1449.
- [10] Huang, S.-T.; Hsei, I.-J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. *Bioorg. Med. Chem.* 2006, 14, 6106–6119.
- [11] Lion, C. J.; Matthews, C. S.; Wells, G.; Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones (quinols). *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5005–5008.
- [12] Sreenivasa, M.; jaychand, E.; Shivakumar, B., Jayrajkumar, K.; Vijaykumar, J. Synthesis of bioactive molecule flurobenzothiazole comprising potent heterocylic moieties for anthelmintic activity. Arch. Pharm. Sci. and Res. 2009, 1, 150–157.
- [13] Siddiqui, N.; Pandeya, S. N.; Khau, S. A.; Stables, J.; Rana, A.; Alam, M.; MdArshad, F.; Bhat, M. A. Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 255–259.
- [14] Pattan, S.; Suresh, C.; Pujar, V.; Reddy, V.; Rasa, V.; Koti, B. Synthesis and antidiabetic activity of 2-amino[5'(4sulphonylbenzylidine)-2,4- thiazolidinenone]-7-chloro-6-flurobenzothiazole. *Indian J. Chem.* 2005, 44B, 2404–2408.
- [15] Razus, A. C.; Birzan, L.; Surugiu, N. M.; Corbu, A. C.; Chiraleu, F. Syntheses of azulen-1-yl-benzothiazol-2-yl diazenes. *Dyes Pigm*. 2007, 74, 26–33.
- [16] Bagley, M. C.; Hughes, D. D.; Lloyd, R.; Powers, V. E. C. A new and highly expedient synthesis of pyrido[2,3-d]pyrimidines. *Tetrahedron Lett.* 2001, 42, 6585–6588.
- [17] Thibault, S.; Frédéric, B.; Nuno, R.; Marie-Ludivine, T.; Lionel, C.; Stéphane, B.; Pascal, B.; Gérald, G.; Mohamed, A.; Anne, C.; et al. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors. *J. Med. Chem.* 2014, *57*, 613–631.
- [18] Buron, F.; Mérour, J. Y.; Akssira, M.; Guillaumet, G.; Routier, S. Recent advances in the chemistry and biology of pyridopyrimidines. *Eur. J. Med. Chem.* 2015, *95*, 76–95.
- [19] Litvinov, V. P. Chemistry and biological activities of 1,8-naphthyridines. *Russ. Chem. Rev.* 2004, 73, 637–669.
- [20] Clark, R. F.; Wang, S.; Ma, Z.; Weitzberg, M.; Motter, C.; Tufano, M.; Wagner, R.; Gu, Y.; Dandliker, P. J.; Lerner, C.

G.; et al. Novel inhibitors of bacterial protein synthesis: structure-activity relationships for 1,8-naphthyridine derivatives incorporating position 3 and 4 variants. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 3299–3302.

- [21] Ponnurengam, M. S.; Geetha, I.; Mukesh, D. QSAR studies on substituted 3- or 4-phenyl-1,8-naphthyridine derivatives as antimicrobial agents. *Med. Chem. Res.* 2012, *21*, 788–795.
- [22] Zhang, S. X.; Bastow, K. F.; Tachibana, Y.; Kuo, S. C.; Hamel, E.; Mauger, A.; Narayanan, V. L.; Lee, K. H. Antitumor agents 196. Substituted 2-thienyl-1,8-naphthyridin-4-ones: their synthesis, cytotoxicity and inhibition of tubulin polymerization. *J. Med. Chem.* **1999**, *42*, 4081–4087.
- [23] Ferrarini, P. L.; Mori, C.; Badawneh, M.; Franconi, F.; Manera, C.; Miceli, M.; Saccomanni, G. Synthesis and antiplatelet activity of some 3-phenyl-1,8-naphthyridine derivatives. *Il Farmaco* 2000, 55, 603–610.
- [24] Ferrarini, P. L.; Badawneh, M.; Franconi, F.; Manera, C.; Miceli, M.; Mori, C.; Saccomanni, G. Synthesis and antiplatelet activity of some 2,7-di(*N*-cycloamino)-3-phenyl-1,8naphthyridine derivatives. *Il Farmaco* 2001, *56*, 311–318.
- [25] Reddy, P.; Lin, Y.; Chang, H. Synthesis of novel benzothiazole compounds with an extended conjugated system. *Arkivoc*. 2007, xvi, 113–122.
- [26] Heo, Y.; Song, Y.; Kim, B.; Heo, J. A highly regioselective synthesis of 2-aryl-6-chlorobenzothiazoles employing microwavepromoted Suzuki-Miyaura coupling reaction. *Tetrahedron Lett.* 2006, 47, 3091–3094.
- [27] Mohamed Khaled, S.; Abdulaziz Nayra, M.; Fadda Ahmed, A. Synthesis of some new pyridine and pyrimidine derivatives containing benzothiazole moiety J. Heterocycl. Chem. 2013, 50, 645–649.
- [28] Mohamed Khaled, S.; Abdulaziz Nayra, M.; Fadda Ahmed, A. Synthesis of new heterocyclic rings containing benzothiazole moiety. J. Heterocycl. Chem. 2013, 50, 650–653.
- [29] Fadda, A. A.; Abdelrazek, F. M.; Mohamed Khaled, S.; Ghieth, H.; Etman, H. A. Synthetic applications of benzothiazole containing cyanoacetyl group *Eur. J. Chem.* **2010**, *1*, 90–95.
- [30] Fadda, A. A.; Zaki, M. E. A.; Samir, KH.; Amer, F. A. Nitriles in organic synthesis: Synthesis of some new 2-heterocyclic benzothiazole derivatives. *Phosphorus Sulfur Silicon Relat. Elem.* 2007, 182, 1845–1856.
- [31] Trilleras Jorge, E.; Velasquez Kelly, J.; Pacheco Dency, J.; Quiroga, J.; Ortíz, A. Microwave-assisted synthesis under solvent-free conditions of (E)-2-(benzo[d]thiazol-2-yl)-3arylacrylonitriles. J. Braz. Chem. Soc. 2011, 22, 2396–2402.
- [32] Zaki, M. E. A.; Fadda, A. A.; Samir, K.; Amer, F. A. Nitriles in organic synthesis: synthesis of pyrido[2,1-b]benzothiazole derivatives and polyfunctionally-substituted pyridines. *Chem. Heterocycl. Compd.* 2003, *39*, 1242–1248.
- [33] Metwally, N. H.; Abdelrazek, F. M. Reaction of anthranilonitrile with some active methylene reagents: synthesis of some new quinoline and quinazoline derivatives. *Synth. Commun.* 2005, 35, 2481–2487.