

3-Amino-1-methyl-1*H*-pyridin-2-one-Directed Pd^{II} Catalysis: C(sp³)–H Activated Diverse Arylation Reaction

Tanmay K. Pati,^{†,‡} Sudipto Debnath,[†] Mrinalkanti Kundu,^{*,‡} Uttam Khamrai,^{*,‡} and Dilip K. Maiti^{*,†}

[†]Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India

[‡]TCG Lifesciences Private Limited, Sector V, Salt Lake City, Kolkata 700091, India

Supporting Information

ABSTRACT: A new bidentate directing group, 3-amino-1-methyl-1*H*-pyridin-2-one, is introduced to achieve a powerful Pd^{II} metallacycle for selective γ -C(sp³)-H activation and arylation of aromatic and aliphatic carboxylic acid derivatives. The versatility of the directing group is validated for remote arylation of β -C(sp³)-H, β -C(sp²)-H, and γ -C(sp²)-H to achieve therapeutically important 2-pyridone analogues and arylated acid synthons. The traceless removal of the directing group to retrieve the directing element and carboxylic acids makes this method more interesting.

Letter

pubs.acs.org/OrgLett

• he immense potential of C–H bond activation for organic transformations using organometallic catalysts has been realized in robust and efficient methods for carbon-carbon (C-C) and carbon-heteroatom (C-X) bond formation over the decades.¹ Several monodentate directing groups are reported for palladium-catalyzed direct C-C and C-X coupling.^{1c,2} However, catalysis by bidentate directing groups in combination with metal catalysts^{1c,2c} is now emerging as a more powerful tool to achieve valuable transformations, which might not be possible with conventional monodentate systems.³ Arylation reactions are carried out under palladium-, rhodium-, iridium-, copper-, and nickel-mediated catalysis on electron-rich heterocycles.^{4,5} In this context, selective $C(sp^2)$ -H- and C(sp³)-H-activated functionalization using 8-aminoquinoline as a bidentate ligand by Daugulis et al. is very interesting and significant because it is effective for site-selective arylation of aliphatic, alicyclic, and aromatic carboxamide derivatives.⁶ The $C(sp^2)$ -H activation is favored by precoordination of the arene- π -cloud to the transition metal as well as subsequent formation of an aryl-metal bond that is typically more stable than the corresponding alkyl-metal bond. However, from both kinetic and thermodynamic viewpoints, metal-catalyzed functionalization of nonactivated $C(sp^3)-H$ bonds is relatively trickier than that of slightly more acidic $C(sp^2)$ -H bonds. Moreover, γ - $C(sp^3)$ -H activation suffers difficulties because of formation of a less favored six-membered cyclopalladation transition state involving alkyl C-H bonds. Corey et al. established that the presence of a phthalimido group at the α -position was beneficial for the arylation of γ - $C(sp^3)$ -H bonds in valine using a bidentate directing group. Progress on γ -C(sp³)–H functionalization was desired,⁸ and it is noteworthy that Carratero et al. performed a remote $C(sp^3)$ -

H arylation on dipeptides employing a metal-chelated *N*-(2-pyridyl) sulfonamide.⁹ Recently, Maiti et al. reported the pioneering work for distal γ -C(sp³)–H arylation of aliphatic carboxylic acid derivatives¹⁰ using 8-aminoquinoline^{10f} as the directing group (i, Scheme 1).

2-Pyridone is a core structure of a wide range of compounds, which displayed important biological activities such as jasmonate signaling inhibitor (Jarin-1),^{11a} ICE inhibitor (interleukin-1B),^{11b} CB2 antagonist,^{11c} human leukocyte elastase inhibitor^{11d} (Figure 1). It has also been used as a ligand for olefination of arenes.^{11e} Recently, we were engaged in the synthesis of 2-pyridone derivatives for their potential application in medicinal chemistry, as synthons for industrial manufacturing, and as organocatalysts for enantioselective synthesis of nitrostyrenes (ee $\geq 95\%$).¹² Further, we envisaged

Received: May 22, 2018

Figure 1. Bioactive 3-amino-2-pyridone derivatives.

that 3-amino-1-methyl-1*H*-pyridin-2-one (AMP, 1) might be employed as a powerful directing group for activation of several types of C–H bonds through significant improvement of reactivity and selectivity of a suitable chelated metal, which will be able to furnish an array of therapeutically important 2pyridone-bearing new compounds through late-stage C–H activation. According to our hypothesis, *N*,*O*-bidentate amides will be transformed into the required 5- and 6-membered metallacycles (**2–5**, Scheme 2) through activation of close

vicinity γ -C(sp³)-H (2) and γ -C(sp²)-H (3) as well as β -C(sp³)-H (4) and β -C(sp²)-H (5), which will eventually perform C-C coupled arylation. Herein, we report an unprecedented selective arylation strategy of a remote γ -C(sp³)-H bond for both aliphatic and aromatic carboxylic acid derivatives using a new 2-pyridinone-based *N*,*O*-bidentate directing group (ii, iv, Scheme 1). To validate the γ -C(sp³)-H arylation catalysis as a general strategy, we also established AMP as a versatile directing group for β -C(sp³)-H, β -C(sp²)-H, and γ -C(sp²)-H arylation.

We synthesized 3-amino-2-pyridone 1^{13} according to our hypothesis and transformed it into the corresponding amide 6 (Supporting Information). Compound 6 was subjected to arylation with 4-iodoanisole as an arylating agent in the presence of Cu(OAc)₂ (10 mol %) catalyst, AgOAc, and CF₃CO₂Na under heating at 150 °C (oil bath temperature) in *tert*-butyl alcohol, and a trace of 7a was obtained (entry 1, Table 1). Gratifyingly, upon use of Pd(OAc)₂ (1 mol %), the γ -sp³C– H bond arylation reaction successfully afforded the desired monoarylated product 7a with 24% yield (entry 2). The yield was improved to 40% and 57% upon an increase of catalyst loading (5 and10 mol %, entries 3 and 4). Our studies showed that the yield was drastically reduced (entries 5 and 6) when relatively low boiling protic polar solvents isopropyl alcohol (IPA) and *tert*-amyl alcohol were used. Interestingly, upon use

Table 1.]	Development a	nd Optimization	of γ -C(sp ³))–H
Arylation				

	e (0.2 mmol)	sole [0.2 mmol] Me gOAc, CF ₃ CO ₂ Na , 150 °C, 24 h			
entry	catalyst (mol %)	base	solvent	time (h)	yield ^a (%)
1	$Cu(OAc)_2$ (10)	CF ₃ CO ₂ Na	t-BuOH	24	<5 ^b
2	$Pd(OAc)_2(1)$	CF ₃ CO ₂ Na	t-BuOH	24	24
3	$Pd(OAc)_2(5)$	CF ₃ CO ₂ Na	t-BuOH	24	40
4	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	t-BuOH	24	57
5	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	IPA	24	<5 ^b
6	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	t-AmylOH	24	10 ^b
7	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	DCE	24	64
8	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	dioxane	24	71
9	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	toluene	24	47
10	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	dioxane	16	35
11	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	dioxane	32	69
12	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	dioxane	24	<5 ^{b,c}
13	$Pd(OAc)_2$ (10)	CF ₃ CO ₂ Na	dioxane	24	20^{d}
14	$Pd(PhCN)_2Cl_2(10)$	CF ₃ CO ₂ Na	dioxane	24	67
15	$PdCl_2(dppf)_2(10)$	CF ₃ CO ₂ Na	dioxane	24	57
16	$Pd(PPh_3)_4$ (10)	CF ₃ CO ₂ Na	dioxane	24	30
17	$Pd_2(dba)_3$ (10)	CF ₃ CO ₂ Na	dioxane	24	15
18	$Pd(OAc)_2$ (10)	CH ₃ CO ₂ Na	dioxane	24	60
19	$Pd(OAc)_2$ (10)	Ag ₂ CO ₃	dioxane	24	45
20	$Pd(OAc)_2$ (10)	K ₂ CO ₃	dioxane	24	<5 ^b
21	$Pd(OAc)_2$ (10)	Cs_2CO_3	dioxane	24	<5 ^b

^{*a*}Monoarylated product isolated exclusively by column chromatography with traces of diarylated product (<5%, LCMS chromatogram). ^{*b*}As per LCMS chromatogram (products not isolated). ^{*c*}Reaction performed at 25 °C. ^{*d*}100 °C.

of aprotic 1,2-dichloroethane (DCE) and 1,4-dioxane, yields were greatly enhanced (64% and 71%, respectively, entries 7, 8). The yield was insignificant on use of nonpolar toluene (entry 9). The yield dropped to 35% with decreased reaction time (16 h), and remained comparable (69%) upon heating for 32 h (entries 10 and 11). The reaction was attempted at 25 and 100 °C, and formation of the desired product was significantly reduced (entries 12 and 13). Ligand-modified Pd(II) and Pd(0) catalysts were not effective (entries 14–17). Changing the base (CH₃CO₂Na and Ag₂CO₃) also decreased the yield to 60% and 45%, respectively (entries 18 and 19). Inferior reaction performance was observed with the use of other bases, such as K₂CO₃ and Cs₂CO₃ (entries 20 and 21).

The substrate scope of the γ -C(sp³)–H arylation was investigated using various aryl iodides (Scheme 3) under the optimized reaction conditions (entry 8, Table 1). A wide range of aryl iodides worked well as a coupling partner with amide substrate (6). Both electron-donating and electron-deficient aryl iodides were tolerated for the regioselective insertion to unactivated γ -C(sp³)–H bond. For instance, an electron-rich aryl iodide, *p*-methyliodobenzene, resulted a yield of 77% after isolation of 7c by CombiFlash chromatography, whereas *m*methyliodobenzene provided 64% yield (7d). A negligible quantity of the desired product (<5%, not shown) was detected from *o*-methyliodobenzene, which might be due to severe steric crowding in the transition state. Interestingly, the yield was relatively improved (7e, 45%) upon use of -nitroiodobenzene. These results indicate that γ -C(sp³)–H arylation of the

Scheme 3. Synthesized γ -C(sp³)-H Arylated Products

aliphatic amide is favored by electron deficient aryl iodides. Screening with aryl iodides possessing *p*-nitro, *p*-ester, *p*-fluoro, *p*-cyano, and *p*-chloro displayed formation of the corresponding arylated products (7f-j) in higher yield (60-84%). Corresponding *N*-benzyl-DG (**6b**) was also employed to obtain the desired product 7k with moderate yield (68%).

It is well established that fluorine-containing aryl moieties are highly important in pharmaceuticals and agrochemicals. In going forward and considering our main objective in this work as $C(sp^3)$ -H bond activation, we chose fluorine-containing substrate **8** (Scheme 4) as our next starting material for arylation. We are delighted to report that exclusive monoarylated products were obtained under the optimized reaction conditions. Activated aryl iodides such as 4-Me, 3-Me, and 4-OMe resulted higher yield (9b-d, 70-78%) with respect to unsubstituted PhI (9a, 65%). The yield was significantly reduced in the case of deactivated aryl iodides (9e-h, 53-66%). In contrast to the purely aliphatic γ -C(sp³)-H bond arylation (Scheme 3), herein electron-donating group bearing aryl iodides appeared to be more effective for benzylic γ -C(sp³)-H bond arylation of amide **8**.

After successful γ -C(sp³)–H arylation, we explored our protocol for β -C(sp³)–H arylation, and amide **10** was chosen to be the next substrate (Scheme 5). To our delight, β -C(sp³)– H-arylated compounds (**11a**–**h**) were obtained using both electron-deficient and electron-rich aryl as well as heterocyclic thiophene iodides in good yield (68–88%). In contrary to the previous two reactions (Schemes 3 and 4), herein both the γ -C(sp³)–H and β -C(sp³)–H bonds activated arylation reactions (Scheme 5) were favored at the benzylic position with activated aryl iodides. Reproducibility and scalability of this method were successfully tested by performing a gram-scale reaction (**11a**).

Scheme 4. γ -C(sp³)-H Bond Activated Arylation of Fluorine

General applicability of the catalytic C–C coupling strategy was visualized for even $C(sp^2)$ –H-activated arylation. The precursor 12 and 13 were tested successfully to achieve arylated desired products 14a and 14b through β - $C(sp^2)$ –H activation, as well as 15a and 15b involving γ - $C(sp^2)$ –H functionalization. Both of the $C(sp^2)$ –H bonds were efficiently arylated in 10–14 h at 100 °C (Scheme 6) to obtain the desired products in 70– 82% yield.

Finally, diversity of the Pd^{II}-DG-AMP-catalyzed C–H activation was employed for arylation of a chiral amino acid derivative (16, Scheme 7). Herein, phthalimide-protected L-valine amide (16) was selectively transformed into the desired γ -arylated product (17, dr 4:1) despite an available β -hydrogen and labile chiral center.

Further, a traceless removal of the directing group was established (Scheme 8) through treatment of arylated product

(11a) with LiOH at 100 °C to obtain the desired arylated acid (18) along with the recovered DG-AMP (1).

Scheme 8. Hydrolysis and Recovery of DG-AMP and Acid

In our studies, we observed that the reaction did not occur in the absence of AgOAc, procatalyst Pd^{II}, or DG-AMP. Thus, the combination of these compounds is crucial for sustaining the catalytic cycle. With the control experiments and literature reports,^{6b,14} we propose the following mechanism through a Pd^{II}/Pd^{IV} redox cycle with our new DG-AMP (Scheme 9). We presume that Pd(OAc)₂ first complexes with the bidentate DG to generate an active catalyst I with the expulsion of AcOH. The reactive Pd^{II}-DG activates a C(sp³)-Hin the close vicinity

Scheme 9. Possible Catalytic Cycle with the DG-AMP

leading to a generation of cyclometalated II. Oxidative addition of aryl iodide will form a putative intermediate III of Pd^{IV} , which may immediately undergo reductive elimination with C– C coupled arylation (IV). Finally, the product 7 will be released through regeneration of Pd^{II} procatalyst for the next palladacycle.

In conclusion, we report a new *N*,*O*-directing group AMP for Pd^{II}-catalyzed selective distal $C(sp^3)$ –H arylation. The generality of the strategy is validated through arylation of several types of $C(sp^3)$ –H as well as $C(sp^2)$ –H at the β - and γ -positions of the amide analogues.This C–H activation method opens up a new window to synthesize therapeutically important 2-pyridone compounds, acid synthons, and new amino acid derivatives through late-stage C–H activation, which will find considerable application in the chemical science and its allied branches.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b01618.

Detailed experimental procedures, spectroscopic data and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: mrinal.kundu@tcgls.com.

*E-mail: uttam.khamrai@tcgls.com.

*E-mail: dkmchem@caluniv.ac.in.

ORCID ®

Mrinalkanti Kundu: 0000-0002-0907-6699 Dilip K. Maiti: 0000-0001-8743-2620

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Research facility (T.K.P.) from TCGLS, financial support (CSIR Project No. 02(0250)/15/EMR-II), and a research fellowship (SRF to S.D.) from CSIR, India, are gratefully acknowledged.

REFERENCES

 (1) (a) Bergman, R. G. Nature 2007, 446, 391. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (c) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (d) McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129.
 (e) Xu, Y.; Yan, G.; Ren, Z.; Dong, G. Nat. Chem. 2015, 7, 829.
 (f) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.

(2) (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788. (c) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.

(3) Alsters, P. L.; Engel, P. F.; Hogerheide, M. P.; Copijn, M.; Spek, A. L.; Van Koten, G. Organometallics **1993**, *12*, 1831.

(4) (a) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (b) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737. (c) Liegault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826.

(5) (a) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744. (b) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem., Int. Ed. 2013, 52, 11124. (c) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843. (d) Yang, X.; Shan, G.; Wang,

L.; Rao, Y. *Tetrahedron Lett.* **2016**, *57*, 819. (e) Xu, J.-W.; Zhang, Z.-Z.; Rao, W.-H.; Shi, B.-F. *J. Am. Chem. Soc.* **2016**, *138*, 10750. (f) Zhu, R.-Y.; Li, Z.-Q.; Park, H. S.; Senanayake, C. H.; Yu, J.-Q. *J. Am. Chem. Soc.* **2018**, *140*, 3564.

(6) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (b) Gutekunst, W. R.; Gianatassio, R.; Baran, P. S. Angew. Chem., Int. Ed. 2012, 51, 7507. (c) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78, 9689. (d) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030. (e) Maetani, M.; Zoller, J.; Melillo, B.; Verho, O.; Kato, N.; Pu, J.; Comer, E.; Schreiber, S. L. J. Am. Chem. Soc. 2017, 139, 11300. (f) Verho, O.; Maetani, M.; Melillo, B.; Zoller, J.; Schreiber, S. L. Org. Lett. 2017, 19, 4424. (g) Liu, Z.; Wang, Y.; Wang, Z.; Zeng, T.; Liu, P.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 11261. (7) (7) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.

(8) (a) Fan, M.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 12152.
(b) Pasunooti, K. K.; Banerjee, B.; Yap, T.; Jiang, Y.; Liu, C.-F. Org. Lett. 2015, 17, 6094. (c) Ling, P.-X.; Fang, S.-L.; Yin, X.-S.; Chen, K.; Sun, B.-Z.; Shi, B.-F. Chem. - Eur. J. 2015, 21, 17503. (d) Li, M.; Yang, Y.; Zhou, D.; Wan, D.; You, J. Org. Lett. 2015, 17, 2546. (e) Han, J.; Zheng, Y.; Wang, C.; Zhu, Y.; Shi, D.-Q.; Zeng, R.; Huang, Z.-B.; Zhao, Y. J. Org. Chem. 2015, 80, 9297. (f) Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.; Zhao, Y. Chem. Sci. 2015, 6, 4610. (g) Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055.

(9) Rodriguez, N.; Romero-Revilla, J. A.; Fernandez-Ibanez, M. A.; Carretero, J. C. *Chem. Sci.* **2013**, *4*, 175.

(10) (a) Ye, M.; Edmunds, A. J. F.; Morris, J. A.; Sale, D.; Zhang, Y.;
Yu, J.-Q. Chem. Sci. 2013, 4, 2374. (b) Yang, G.; Lindovska, P.; Zhu,
D.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am.
Chem. Soc. 2014, 136, 10807. (c) Chen, G.; Shigenari, T.; Jain, P.;
Zhang, Z.; Jin, Z.; He, J.; Li, S.; Mapelli, C.; Miller, M. M.; Poss, M. A.;
Scola, P. M.; Yeung, K.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 3338.
(d) Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. J. Am.
Chem. Soc. 2015, 137, 11574. (e) Li, S.; Zhu, R.-Y.; Xiao, K.-J.; Yu, J.-Q.
Q. Angew. Chem., Int. Ed. 2016, 55, 4317. (f) Dey, A.; Pimparkar, S.;
Deb, A.; Guin, S.; Maiti, D. Adv. Synth. Catal. 2017, 359, 1301.

(11) (a) Bernstein, P. R.; Andisik, D.; Bradley, P. K.; Bryant, C. B.; Ceccarelli, C.; Damewood, J. R., Jr.; Earley, R.; Edwards, P. D.; Feeney, S. J. Med. Chem. 1994, 37 (20), 3313–3326. (b) Nicola, T.; Brenner, M.; Donsbach, K.; Kreye, P. Bioorg. Med. Chem. Lett. 1997, 7, 1337.
(c) Kusakabe, K.; Tada, Y.; Iso, Y.; Sakagami, M.; Morioka, Y.; Chomei, N.; Shinonome, S.; Kawamoto, K.; Takenaka, H.; Yasui, K.; Hamana, H.; Hanasaki, K. Bioorg. Med. Chem. 2013, 21, 2045.
(d) Meesters, C.; Mönig, T.; Oeljeklaus, J.; Krahn, D.; Westfall, C. S.; Hause, B.; Jez, J. M.; Kaiser, M.; Kombrink, E. Nat. Chem. Biol. 2014, 10, 830. (e) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J. Q. Nature 2017, 551, 489.

(12) Mahato, K. C.; Kundu, M.; Pramanik, A. Tetrahedron: Asymmetry 2017, 28, 511.

(13) Loughlin, W. A.; Jenkins, I. D.; Karis, N. D.; Healy, P. C. Eur. J. Med. Chem. 2017, 127, 341.

(14) Wei, Y.; Tang, H.; Cong, X.; Rao, B.; Wu, C.; Zeng, X. Org. Lett. **2014**, *16*, 2248.