Paper

One-Pot Access to 4-Aryl-2-arylacetoxynaphthalenes via Benzannulation of Oxygenated Arylacetic Acids and Alkyl Aryl Ketones

Α

Meng-Yang Chang *^{a,b} Shin-Mei Chen^a Yu-Ting Hsiao^a

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan mychang@kmu.edu.tw

^b Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

Received: 25.11.2019 Accepted after revision: 23.12.2019 Published online: 27.01.2020 DOI: 10.1055/s-0039-1690799; Art ID: ss-2019-f0650-op

Abstract Trifluoroacetic anhydride mediated one-pot intermolecular formal (4+2) benzannulation of oxygenated arylacetic acids with alkyl aryl ketones provides 4-aryl-2-arylacetoxynaphthalenes in moderate to good yields in the presence of H_3PO_4 in an open-vessel in a straightforward procedure. A plausible mechanism is proposed and discussed. This protocol provides a highly effective ring-closure via two carbon–carbon (C–C) and one carbon–oxygen (C–O) bond-formation events.

Key words trifluoroacetic anhydride, benzannulation, arylacetic acids, 4-aryl-2-arylacetoxynaphthalenes, easy operation

Substituted naphthalenes¹ can be utilized as potential bioactive precursors,² unique natural products,³ versatile synthetic blocks or ligands⁴ and functionalized materials.⁵ Among these, the synthetic development of β -naphthols has been attracting considerable attention. Traditionally, the construction of functionalized β -naphthols involves three major routes: (1) transition-metal-catalyzed tandem benzannulation,⁶(2) electrophilic or nucleophilic cyclocondensation⁷ and (3) photo-promoted annulation.⁸ Other routes for the formation of substituted β -naphthols have recently been investigated extensively.⁹ For the preparation of 4-aryl-substituted β -naphthol derivatives, the diverse range of routes can be divided into three general pathways. These include an intermolecular formal (4+2) benzannulation of o-boronate arylacetate or arylacetyl chloride with alkyne,^{6a,9a,9e} an intermolecular formal (4+2) benzannulation of benzyne with aroylacetone,^{9f} an intramolecular ringclosure of α -aryl alkynone^{7a} or o-acetyl arylpropiolate^{7c} and a direct intermolecular *meta*-arylation of O-β-naphthyl carbamate with arylboronic acid,^{9d} as shown in Scheme 1. In spite of these advances, some problems remain, such as multi-step routes, complex catalytic conditions, lack of broad substrate generality and the requirement for prefunctionalized fragments. Therefore, the development of a one-pot, efficient and straightforward synthetic method to access substituted β -naphthol derivatives is still highly desired.

 $\label{eq:scheme1} Scheme 1 \ \ \ Routes to 4-aryl-substituted β-naphthol derivatives$

We recently explored the synthetic application of oxygenated arylacetic acids to establish a polyoxygenated pentacyclic benzo[g]chrysene (BgC) framework using metal triflate promoted domino Friedel–Crafts acylation followed by photoinduced Scholl annulation strategies (Scheme 2, eq. 1).¹⁰ In another approach, TFAA-mediated synthesis of 1aryl isochroman-3-ones was developed by using an intermolecular (4+2) annulation of oxygenated arylacetic acids with arylaldehydes (Scheme 2, eq. 2).¹¹ Continuing our research on oxygenated arylacetic acids,^{10,11} herein, we present a TFAA-mediated preparation of an oxygenated *O*- β naphthyl ester skeleton by a one-pot reaction of oxygenated arylacetic acids with alkyl aryl ketones in the presence of

Syn<mark>thesis</mark>

M.-Y. Chang et al.

 H_3PO_4 via two carbon-carbon (C-C) and one carbonoxygen (C-O) bond formation events (green marks), as shown in Scheme 2, eq. 3.

The initial study commenced with treatment of homoveratric acid (1a, Ar = $3,4-(MeO)_2C_6H_3$, 0.5 mmol) and acetophenone (2a, Ar' = Ph, R = H, 1.0 mmol) in MeCN (20 mL) at room temperature (25 °C) for 10 hours using a combination of TFAA and H_3PO_4 (1.1 equiv) (Table 1). However, no desired 3a was detected, and the benzo-fused δ -lactone 3a'was obtained in 87% yield (entry 1).¹¹ When the reaction time was extended to 20 hours, the yield of **3a** increased to 17% along with a 68% yield of **3a'** (entry 2). By elevating the reaction temperature from 25 to 80 °C (r.t. to reflux) and reducing the reaction time (10 to 5 h), the yield of 3a increased to 35% (entry 3). By extending the reaction time (5 to 10, 20 and 30 h), the yields increased to 61, 80, and 73%, respectively (entries 4-6). From the results, we established that the application of reflux temperature (80 °C) and extended reaction time (20 h) could increase the yield of **3a**. Subsequently, the number of equivalents of the combination of TFAA and H₃PO₄ was examined. After changing the number of equivalents of TFAA and H₃PO₄ from 1.1 to 0.5, 1.5 and 2.0, however, no better yields of **3a** were observed. This showed that when insufficient amounts of TFAA and H₃PO₄ were present, the reaction was not triggered completely (entry 7). Furthermore, the use of excess amounts of TFAA and H₃PO₄ provided slightly lower yields (79% and 75%, entries 8 and 9). Solvent screening was then performed. It was found that the reaction gave poorer yields (42% and 25%) in CHCl₃ and MeNO₂, respectively (entries 10 and 11), and no desired product was detected in DMF (entry 12). When TFAA was changed to Ac₂O or Tf₂O, different results were observed: No reaction was detected due to the poorer reactivity of Ac₂O (entry 13), and only 32% yield of **3a** was produced with the more reactive Tf_2O (entry 14). By replacing H_3PO_4 with HOAc, **3a** was isolated in a 62% yield (entry 15). For H_2SO_4 , only unknown products were detected (40%, entry 16).

Anhydride/acid (equiv)	Temp (°C)	Solvent	Time (h)	3a (%) ^b
TFAA/H ₃ PO ₄ (1.1:1.1)	25	MeCN	10	_c
TFAA/H ₃ PO ₄ (1.1:1.1)	25	MeCN	20	17 ^c
TFAA/H ₃ PO ₄ (1.1:1.1)	80	MeCN	5	35°
TFAA/H ₃ PO ₄ (1.1:1.1)	80	MeCN	10	61 ^c
TFAA/H ₃ PO ₄ (1.1:1.1)	80	MeCN	20	80
TFAA/H ₃ PO ₄ (1.1:1.1)	80	MeCN	30	73
TFAA/H ₃ PO ₄ (0.5:0.5)	80	MeCN	20	38°
TFAA/H ₃ PO ₄ (1.5:1.5)	80	MeCN	20	79
TFAA/H ₃ PO ₄ (2.0:2.0)	80	MeCN	20	75
TFAA/H ₃ PO ₄ (1.1:1.1)	61	$CHCl_3$	20	42 ^c
TFAA/H ₃ PO ₄ (1.1:1.1)	80	MeNO ₂	20	25°
TFAA/H ₃ PO ₄ (1.1:1.1)	80	DMF	20	_d
Ac ₂ O/H ₃ PO ₄ (1.1:1.1)	80	MeCN	20	_ ^e
Tf ₂ O/H ₃ PO ₄ (1.1:1.1)	80	MeCN	20	32 ^d
TFAA/AcOH (1.1:1.1)	80	MeCN	20	62
TFAA/H ₂ SO ₄ (1.1:1.1)	80	MeCN	20	_d
	Anhydride/acid (equiv) TFAA/H ₃ PO ₄ (1.1:1.1) TFAA/H ₃ PO ₄ (1.5:1.5) TFAA/H ₃ PO ₄ (1.5:1.5) TFAA/H ₃ PO ₄ (1.5:1.5) TFAA/H ₃ PO ₄ (1.1:1.1) TFAA/H ₃ PO ₄ (1.1:1.1) TFAA/A ₂ O/H ₃ PO ₄ (1.1:1.1) TFAA/A ₂ OH (1.1:1.1)	Anhydride/acid (equiv)Temp (°C)TFAA/H_3PO4 (1.1:1.1)25TFAA/H_3PO4 (1.1:1.1)25TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.5:1.5)80TFAA/H_3PO4 (2.0:2.0)80TFAA/H_3PO4 (1.1:1.1)61TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TFAA/H_3PO4 (1.1:1.1)80TF2O/H_3PO4 (1.1:1.1)80TFAA/ACOH (1.1:1.1)80TFAA/H_2SO4 (1.1:1.1)80	Anhydride/acid (equiv) Temp (°C) Solvent TFAA/H ₃ PO ₄ (1.1:1.1) 25 MeCN TFAA/H ₃ PO ₄ (1.1:1.1) 25 MeCN TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN TFAA/H ₃ PO ₄ (1.5:1.5) 80 MeCN TFAA/H ₃ PO ₄ (1.5:1.5) 80 MeCN TFAA/H ₃ PO ₄ (1.1:1.1) 61 CHCl ₃ TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeNO ₂ TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN TF ₄ A/H ₃ PO ₄ (1.1:1.1) 80 MeCN TF ₂ O/H ₃ PO ₄ (1.1:1.1) 80 MeCN TF ₄ A/AcOH (1.1:1.1) 80 MeCN	Anhydride/acid (equiv) Temp (°C) Solvent Time (h) TFAA/H ₃ PO ₄ (1.1:1.1) 25 MeCN 10 TFAA/H ₃ PO ₄ (1.1:1.1) 25 MeCN 20 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 5 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 10 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.5:1.5) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.5:1.5) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.1:1.1) 61 CHCl ₃ 20 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeNO ₂ 20 TFAA/H ₃ PO ₄ (1.1:1.1) 80 MeCN 20 TFAA/H ₃ PO ₄ (1.1:1.1)

^a The reactions were performed on a 1.0 mmol scale with **1a**, **2a** (0.5 equiv), temp (°C), solvent (20 mL), time (h).

^b Isolated yield.

^c Compound **3a**' was isolated (entry 1, 87%; entry 2, 68%; entry 3, 35%; entry 4, 10%; entry 7, 30%; entry 10, 34%; entry 11, 50%).

^d Complex unknown products (entry 12, 75%; entry 14, 30%; entry 16, 40%).

^e No reaction.

To study the scope of this approach, the reaction of **1a** with a range of alkyl aryl ketones **2a–z** was examined with the combination of TFAA and H_3PO_4 to give 4-aryl-2-arylacetoxynaphthalenes **3a–x**. The products were obtained in a range of 51–94% under the optimal conditions established (Table 1, entry 5), as shown in Table 2. By fixing the methyl group (R = H, entries 1–17) for the reaction of **2a–q** with **1a**, stronger electron-withdrawing (Ar' = 4-F, 4-CF₃, 4-NO₂) aryl groups provided rather lower yields (62, 60, and 51%; entries 2, 5, and 6) than other electron-donating and electron-neutral groups. Changing the R group from H to Me, Et and Ph, entries 18–21 showed that **3r–u** produced 60–81%

В

С

Syn<mark>thesis</mark>

Table 2 Synthesis of 3a-z^a

M.-Y. Chang et al.

yields. Since Ar' has a heterocyclic ring (entries 22–25), 2furyl, 3-bromo-2-thienyl and 2-thienyl groups provided similar yields (74%, 76%, 80%), but no reaction was observed for Ar' = 2-pyridyl group because the nitrogen atom trapped the proton such that the one-pot reaction was inhibited (entry 25). Furthermore, when the Ar' group was changed to *n*-propyl (an aliphatic group), no desired product **3z** was isolated (entry 26); this result may stem from a cross selfaldol reaction of 2-pentanone (**2z**) replacing the desired one-pot reaction. From the results, we found that Ar' with oxygenated groups provided better yields than other substituents. A possible reason for this is that the oxygenated group on arene (Ar') played a key factor in promoting the tandem benzannulation process.

On the basis of our experimental results, a plausible mechanism for the formation of **3a** is illustrated in Scheme 3. Initially, **1a** reacts with protonated TFAA (generated in situ from protonation of TFAA with H_3PO_4) to form **A** and TFA. By the involvement of **2a**, the carbonyl group of **2a** attacks the anhydride motif on **A** to give **B**. Following this, the methoxy group on the 3-position of electron-rich arene promotes an intramolecular ring-closure to yield **C** with a δ -lactone ring. Then, **C** is converted into **3a'** via a dehydro-

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array}								
Entry	2	R	Arʻ	3	Yield (%) ^b			
1	2a	Н	Ph	3a	80			
2	2b	Н	4-FC ₆ H ₄	3b	62			
3	2c	Н	$4-MeC_6H_4$	3c	76			
4	2d	Н	4-MeOC ₆ H ₄	3d	92			
5	2e	Н	$4-F_3CC_6H_4$	Зе	60			
6	2f	Н	$4-O_2NC_6H_4$	3f	51			
7	2g	Н	4-PhC ₆ H ₄	3g	70			
8	2h	Н	2-naphthyl	3h	72			
9	2i	Н	3-MeOC ₆ H ₄	3i	86			
10	2j	Н	$2-BrC_6H_4$	Зј	80			
11	2k	Н	2,5-(MeO) ₂ C ₆ H ₃	3k	86			
12	21	Н	4-CIC ₆ H ₄	31	80			
13	2m	Н	3,4-Cl ₂ C ₆ H ₃	3m	68			
14	2n	Н	3,4-(MeO) ₂ C ₆ H ₃	3n	92			
15	2o	Н	3,4-CH ₂ O ₂ C ₆ H ₃	Зо	92			
16	2р	Н	2,4-(MeO) ₂ C ₆ H ₃	3р	90			
17	2q	Н	3,4,5-(MeO) ₃ C ₆ H ₂	3q	94			
18	2r	Me	Ph	3r	81			
19	2s	Et	Ph	3s	78			
20	2t	Ph	Ph	3t	63			
21	2u	Ph	$4-FC_6H_4$	3u	60			
22	2v	Н	2-furyl	3v	74			
23	2w	Н	3-Br-2-thienyl	3w	76			
24	2x	Н	2-thienyl	3x	80			
25	2у	Н	2-pyridyl	Зу	_c			
26	2z	Н	nPr	3z	_c			

^a The reactions were performed using a 1.0 mmol scale with **1a**, **2a-z** (0.5 equiv), reflux (80 °C), MeCN (20 mL), 20 h.

^b Isolated yield.

^c No reaction.

Syn thesis

M.-Y. Chang et al.

genative aromatization. After β -elimination of protonated **3a'** to give **D**, ring-opening of the benzo-fused δ -lactone occurs. Subsequently, by treatment of **D** with the repeated protonated TFAA, **E** is generated. Intramolecular cyclization of **E** affords **F** with a dibenzylic tertiary carbocation. Next, deprotonation of **F** and tautomerization of **G1** furnishes the construction of **G2** with a β -naphthol skeleton. Finally, **3a** is formed via intramolecular esterification of **G2** with a second equivalent of **1a**.

From the possible mechanism, we found that the combination of TFAA and H_3PO_4 could facilitate a continuous sequence of intermolecular Friedel–Crafts type reactions and intramolecular ring-closures efficiently. Comparing the reaction systems described in our previous report (TFAA, 25 °C, 10 h)¹¹ and the present work (TFAA, H₃PO₄, 80 °C, 20 h), we concluded that the addition of H₃PO₄, the extension of reaction time (10 to 20 h), and the elevation of the reaction temperature (25 to 80 °C) led to more complete formation of the arylacetoxynaphthalene skeleton than TFAA alone, based the plausible reaction pathways (see Scheme 5).

As an extension of TFAA/H₃PO₄-mediated intermolecular (4+2) annulations of homoveratric acid **1a** with alkyl aryl ketones **2a–z**, four cyclic benzoketones **2aa–ad** were studied (Scheme 4). Under the conditions described above, benzopyrone **2aa** produced **3aa** in 77% yield, and other benzocycles (n = 1-3, indanone **2ab**, tetralone **2ac** and benzo-suberone **2ad**) provided 72%, 73% and 70% yields, respectively. The results show that the ring-size did not affect the isolated yields. The molecular structures of **3t** and **3ab** were determined by single-crystal X-ray crystallography.¹²

With these results in hand, five arvlacetic acids **1b-f** were then screened (Scheme 5). By using 3,4-dimethoxyacetophenone (2n) as a two-carbon synthon, 3,4-methylenedioxyphenylacetic acid (1b) generated 3ae in excellent yield (93%) under similar conditions. Changing the 3,4-dioxygenated group to a di-*n*-propyloxy group (for **1c**), produced an isolated vield of **3af** of 90%. Compound **1d**, with a 3.4.5-trimethoxy group, also afforded a high yield (94%) for the formation of **3ag** with eight methoxy groups. One plausible reason to account for the high vields observed with these substrates is that the electron-donating methoxy group on arene (for Ar) could provide a driving force to facilitate the intramolecular ring-closure leading to the formation of the β -naphthol skeleton. However, when phenylacetic acid (1e) was treated under TFAA/H₃PO₄-mediated reaction conditions, no desired **3ah** with a naphthalene skeleton was observed due to the lack of an electron-rich substituent on the Ar ring to trigger the reaction process. For 1f, with an electron-withdrawing 4-fluorophenyl group, no desired product 3ai was obtained.

Scheme 5 Reaction of 1b-f with 2n

Syn thesis

M.-Y. Chang et al.

After examining the one-pot synthetic route, a study using equimolar amounts of model substrates 1a and 2h, 2k, 20, 2v or 2w was also explored (Scheme 6). Similarly, treatment of 1a (1 equiv) with 2h, 2k, 2o, 2v or 2w (1 equiv) afforded β-naphthols **3h-1**, **3k-1**, **3o-1**, **3v-1** or **3w-1** in 94, 89, 90, 85 and 86% yields, respectively, in the presence of TFAA and H₃PO₄. The results also demonstrated the formation of intermediate G2 as a plausible reaction mechanism. Therefore, using equimolar amounts of the two starting materials could lead to high yields of products. On the basis of the reaction conditions, the replacement of the side chain was examined, and acetvlation was studied (Scheme 7, eq. 4). After the one-pot reaction of **1a** with **2g** provided a β -naphthol skeleton, further esterification of β -naphthol formed in situ with the addition of excess amounts Ac₂O afforded **3g-1**, with an acetate arm, in 82% yield. The results showed that the 2-acyloxy group was installed into the β naphthol skeleton efficiently by a stepwise addition of an anhydride reagent. Furthermore, under similar conditions, **3aj** was obtained in 71% yield in a one-pot intermolecular formal (4+2) benzannulation of **1a** and **2k**, and sequential esterification of the resulting β -naphthol with **1b** (eq. 5). Compared with the formation of **3a**, the results showed that the sequence of addition of arylacetic acids 1a and 1b could determine the regioselectivity of the generation of 3aj. On the other hand, by the involvement of TFAA and H₃PO₄, two equivalents of 1a were combined to provide 4, with the benzylidene benzolactone skeleton, under neat conditions via the cyclodimerization procedure (eq. 6).¹³ The molecular structures of 3g-1 and 4 were confirmed by singlecrystal X-ray analysis.12

In summary, we have herein explored the use of a combination of TFAA and H_3PO_4 to promote a facile and efficient one-pot synthesis of 4-aryl-2-arylacetoxynaphthalenes via intermolecular formal (4+2) benzannulation of oxygenated arylacetic acids with alkyl aryl ketones. The reaction is operationally straightforward and proceeds in MeCN at reflux in moderate to good yields under openvessel conditions. To our knowledge, there have been no reports on the use of alkyl aryl ketones as a two-carbon synthon in the formation of substituted naphthalenes. The process provides a cascade pathway of carbon–carbon followed by carbon–oxygen bond formation events. We have also

Scheme 7 Synthesis of 3q-1, 3aj, and 4

discussed related plausible reaction mechanisms. Further investigations regarding the synthetic application of arylacetic acids are under way in our laboratory.

All reagents and solvents were obtained from commercial sources and used without further purification. The starting substrates **1** and **2** were purchased commercially and were used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. A heating mantle was used to provide a stable heat source. Products in organic solvents were dried with anhydrous magnesium sulfate (MgSO₄) before concentration in vacuo. Melting points were determined with an SMP3 melting point apparatus. ¹H and ¹³C NMR spectra were recorded with a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in hertz. High-resolution mass spectra (HRMS) were measured with a Finnigan/Thermo Quest MAT 95XL mass spectrometer. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

Synthesis of 3a', 3a-x and 3aa-ag; General Procedure

Trifluoroacetic anhydride (TFAA, 230 mg, 1.1 mmol) and phosphoric acid (H_3PO_4 , 110 mg, 1.1 mmol) were added to a solution of oxygenated arylacetic acids **1a–d** (1.0 mmol) in MeCN (15 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 30 min. Ketone **2a–x** or **2aa–ad** (0.5 mmol) in MeCN (5 mL) was added to the reaction mixture at 25 °C, and the reaction mixture was stirred at reflux (80 °C) for 20 h. The solvent of reaction mixture was concentrated, the residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10:1 to 1:1) afforded compounds **3a'**, **3a–x** and **3aa–ag**.

6,7-Dimethoxy-1-methyl-1-phenylisochroman-3-one (3a')¹¹ For Table 1, entry 1.

M.-Y. Chang et al.

Yield: 87% (130 mg); colorless solid; mp 159-161 °C (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.26–7.19 (m, 3 H), 7.15–7.13 (m, 2 H), 6.98 (s, 1 H), 6.65 (s, 1 H), 3.92 (s, 3 H), 3.86 (s, 3 H), 3.44 (d, J = 18.4 Hz, 1 H), 3.07 (dd, J = 0.8, 18.4 Hz, 1 H), 2.00 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 171.0, 149.2, 147.9, 143.3, 130.1, 128.3 (2C), 127.8, 125.2 (2C), 123.0, 110.4, 108.5, 85.9, 56.2, 55.9, 36.2. 29.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₈H₁₉O₄: 299.1283; found: 299.1288.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-dimethoxy-4-phenylnaphthalen-2-yl Ester (3a)

Yield: 80% (183 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₂): δ = 7.50–7.39 (m, 5 H), 7.40 (d, *I* = 2.4 Hz, 1 H), 7.17 (s, 1 H), 7.11 (s, 1 H), 7.00 (d, J = 2.4 Hz, 1 H), 6.97-6.94 (m, 2 H), 6.87 (d, J = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 2 H), 3.79 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 149.9, 149.3, 149.0, 148.3, 146.8, 140.4, 140.2, 130.2, 129.7 (2×), 128.4 (2×), 127.5, 125.9, 125.3, 121.5, 119.9, 116.7, 112.4, 111.3, 106.5, 104.8, 55.91 (2×), 55.87, 55.7, 41.1.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₈H₂₇O₆: 459.1808; found: 459,1806.

(3,4-Dimethoxyphenyl)acetic Acid 4-(4-Fluorophenyl)-6,7-dimethoxynaphthalen-2-yl Ester (3b)

Yield: 62% (148 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.46–7.43 (m, 2 H), 7.40 (d, *J* = 2.4 Hz, 1 H), 7.20-7.14 (m, 2 H), 7.11 (s, 1 H), 7.08 (s, 1 H), 6.98 (d, J = 2.4 Hz, 1 H), 6.97–6.94 (m, 2 H), 6.87 (d, J = 9.2 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 2 H), 3.80 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 162.3 (d, *J* = 245.6 Hz), 150.0, 149.4, 149.0, 148.4, 146.8, 139.2, 136.1 (d, J = 3.8 Hz), 131.2 (d, J = 7.5 Hz, 2×), 130.1, 125.9, 125.4, 121.5, 119.9, 116.9, 115.4 (d, J = 21.3 Hz, 2×), 112.4, 111.3, 106.5, 104.5, 55.89 (2×), 55.86, 55.7, 41.0.

HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₂₈H₂₆FO₆: 477.1714; found: 477.1715.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-p-tolylnaphthalen-2-yl Ester (3c)

Yield: 76% (179 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.37 (m, 3 H), 7.28 (d, J = 7.6 Hz, 2 H), 7.21 (s, 1 H), 7.10 (s, 1 H), 6.99 (d, J = 2.4 Hz, 1 H), 6.97-6.94 (m, 2 H), 6.87 (d, J = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 2 H), 3.80 (s, 3 H), 2.44 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 149.9, 149.2, 149.0, 148.3, 146.9, 140.4, 137.23, 137.21, 130.2, 129.5 (2×), 129.1 (2×), 126.0, 125.4, 121.5, 119.8, 116.5, 112.4, 111.3, 106.4, 104.9, 55.90 (2×), 55.85, 55.7, 41.1, 21.2.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₉O₆: 473.1964; found: 473.1963.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-(4-methoxyphenyl)naphthalen-2-yl Ester (3d)

Yield: 92% (225 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (d, *J* = 8.8 Hz, 2 H), 7.37 (d, *J* = 2.4 Hz, 1 H), 7.19 (s, 1 H), 7.10 (s, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.98-6.94 (m, 3 H), 6.87 (d, J = 8.4 Hz, 1 H), 3.98 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.84 (s, 2 H), 3.81 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 159.0, 149.9, 149.2, 149.0, 148.3, 146.8, 140.1, 152.5, 130.7 (2×), 130.1, 125.9, 125.5, 121.5, 119.8, 116.4, 113.8 (2×), 112.4, 111.3, 106.4, 104.9, 55.9 (2×), 55.8, 55.7, 55.3, 41.0.

HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₂₉H₂₉O₇: 489.1913; found: 489.1920.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-(4-trifluoromethylphenyl)naphthalen-2-yl Ester (3e)

Yield: 60% (158 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, J = 8.4 Hz, 2 H), 7.61 (d, J = 8.0 Hz, 2 H), 7.44 (d, J = 2.0 Hz, 1 H), 7.12 (s, 1 H), 7.06 (s, 1 H), 6.99 (d, *I* = 2.4 Hz, 1 H), 6.96 (dd, *I* = 2.0, 8.0 Hz, 1 H), 6.94 (s, 1 H), 6.87 (d, *I* = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.85 (s, 2 H), 3.80 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 150.1, 149.7, 148.4, 146.7, 143.9, 138.7, 130.2, 130.12 (q, J = 37.9 Hz), 130.05 (2×), 130.0, 125.8, 125.4 (q, J = 3.8 Hz, 2×), 125.0, 123.7 (q, J = 270.6 Hz), 121.5, 120.0, 117.5, 112.4, 111.3, 106.6, 104.2, 55.9 (2×), 55.82, 55.76, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₆F₃O₆: 527.1682; found: 527.1683.

(3.4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-(4-nitrophenyl)naphthalen-2-yl Ester (3f)

Yield: 51% (128 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 8.36 (d, J = 8.8 Hz, 2 H), 7.67 (d, J = 8.8 Hz, 2 H), 7.46 (d, J = 2.4 Hz, 1 H), 7.13 (s, 1 H), 7.011 (d, J = 2.4 Hz, 1 H), 7.006 (s, 1 H), 6.96 (dd, J = 2.0, 8.0 Hz, 1 H), 6.94 (s, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 4.00 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.85 (s, 2 H), 3.80 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 150.3, 149.9, 149.1, 148.4, 147.3, 147.1, 146.7, 137.7, 130.6 (2×), 130.3, 125.7, 124.7, 123.8 (2×), 121.6, 120.0, 118.1, 112.4, 111.3, 106.7, 103.8, 55.9, 55.8, 41.0, 22.7, 14.1.

HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd for C₂₈H₂₆NO₈: 504.1659; found: 504.1658.

(3,4-Dimethoxyphenyl)acetic acid 4-biphenyl-4-yl-6,7-dimethoxynaphthalen-2-yl ester (3g)

Yield: 70% (187 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.74–7.69 (m, 4 H), 7.58 (d, J = 8.4 Hz, 2 H), 7.52–7.47 (m, 2 H), 7.42 (d, J = 2.0 Hz, 1 H), 7.41–7.37 (m, 1 H), 7.26 (s, 1 H), 7.13 (s, 1 H), 7.06 (d, J = 2.4 Hz, 1 H), 6.98–6.95 (m, 2 H), 6.88 (d, J = 8.8 Hz, 1 H), 4.00 (s, 3 H), 3.91 (s, 3 H), 3.89 (s, 3 H), 3.85 (s, 2 H), 3.83 (s, 3 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.5, 150.0, 149.4, 149.0, 148.3, 146.9, 140.6, 140.3, 140.0, 139.2, 130.2, 130.1 (2×), 128.9 (2×), 127.5, 127.1 (2×), 127.0 (2×), 125.9, 125.3, 121.5, 119.9, 116.8, 112.4, 111.3, 106.5, 104.8, 55.89 (2×), 55.86, 55.8, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₄H₃₁O₆: 535.2121; found: 535.2123.

Svnthesis

Paper

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy[1,2']binaphthalenyl-3-yl Ester (3h)

Yield: 72% (183 mg); colorless liquid.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.96 (d, *J* = 0.8 Hz, 1 H), 7.94–7.88 (m, 3 H), 7.63 (dd, *J* = 2.0, 8.4 Hz, 1 H), 7.57–7.53 (m, 2 H), 7.44 (d, *J* = 2.4 Hz, 1 H), 7.20 (s, 1 H), 7.14 (s, 1 H), 7.11 (d, *J* = 2.4 Hz, 1 H), 6.98–6.95 (m, 2 H), 6.87 (d, *J* = 8.4 Hz, 1 H), 4.00 (s, 3 H), 3.90 (s, 3 H), 3.88 (s, 3 H), 3.86 (s, 2 H), 3.74 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.6, 150.0, 149.4, 149.0, 148.3, 146.9, 140.3, 137.8, 133.5, 132.7, 130.2, 128.5, 128.1, 127.9, 127.8, 127.7, 126.4, 126.2, 125.9, 125.5, 121.5, 120.2, 116.9, 112.4, 111.3, 106.5, 104.8, 55.9 (3×), 55.7, 41.1.

HRMS (ESI-TOF): $m/z \ [M + H]^+$ calcd for $C_{32}H_{29}O_6$: 509.1964; found: 509.1963.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-(3-methoxyphenyl)naphthalen-2-yl Ester (3i)

Yield: 86% (210 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.40–7.37 (m, 2 H), 7.20 (s, 1 H), 7.10 (s, 1 H), 7.08–6.95 (m, 6 H), 6.87 (d, *J* = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 6 H), 3.80 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.5, 159.6, 150.0, 149.3, 149.1, 148.4, 146.8, 140.3, 130.2, 129.4, 125.9, 125.3, 124.4, 122.1, 121.5, 119.7, 116.8, 115.1, 113.3, 112.4, 111.3, 106.4, 104.9, 55.91 (2×), 55.87, 55.7, 55.3, 41.1.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₉O₇: 489.1913; found: 489.1919.

(3,4-Dimethoxyphenyl)acetic acid 4-(2-bromophenyl)-6,7-dimethoxynaphthalen-2-yl ester (3j)

Yield: 80% (214 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (dd, *J* = 0.8, 8.0 Hz, 1 H), 7.46 (d, *J* = 2.4 Hz, 1 H), 7.42 (dt, *J* = 1.2, 7.6 Hz, 1 H), 7.38 (dt, *J* = 2.0, 8.8 Hz, 1 H), 7.30 (dt, *J* = 2.4, 8.0 Hz, 1 H), 7.11 (s, 1 H), 6.97 (d, *J* = 2.4 Hz, 1 H), 6.96–6.93 (m, 2 H), 6.86 (d, *J* = 8.8 Hz, 1 H), 6.68 (s, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.88 (s, 3 H), 3.84 (s, 2 H), 3.75 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.4, 150.0, 149.4, 149.0, 148.3, 146.6, 140.6, 139.0, 132.8, 131.8, 129.7, 129.3, 127.3, 125.9, 125.3, 123.9, 121.5, 120.0, 117.3, 112.4, 111.3, 106.4, 104.6, 55.9 (2×), 55.8, 55.7, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₈H₂₆BrO₆: 537.0913; found: 537.0919.

(3,4-Dimethoxyphenyl)acetic Acid 4-(2,5-Dimethoxyphenyl)-6,7dimethoxynaphthalen-2-yl Ester (3k)

Yield: 86% (223 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, J = 2.4 Hz, 1 H), 7.09 (s, 1 H), 7.01 (d, J = 2.4 Hz, 1 H), 6.95–6.84 (m, 7 H), 3.97 (s, 3 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 3.83 (s, 2 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.63 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.3, 153.5, 151.0, 149.8, 149.0, 148.9, 148.2, 146.7, 136.9, 129.6 (2×), 125.9, 125.7, 121.4, 120.1, 117.1, 116.8, 114.0, 112.33, 112.27, 111.2, 106.2, 105.1, 56.1, 55.8 (2×), 55.7, 55.6, 55.5, 40.9.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₀H₃₁O₈: 519.2019; found: 519.2023.

(3,4-Dimethoxyphenyl)acetic Acid 4-(4-Chlorophenyl)-6,7-dimethoxynaphthalen-2-yl Ester (3l)

Yield: 80% (197 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.40 (m, 5 H), 7.09 (d, *J* = 8.8 Hz, 2 H), 6.97–6.94 (m, 3 H), 6.87 (d, *J* = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 2 H), 3.80 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.5, 150.0, 149.5, 149.0, 148.4, 146.8, 139.0, 138.6, 133.6, 131.0 (2×), 130.2, 128.7 (2×), 125.9, 125.2, 121.5, 119.9, 117.1, 112.4, 111.3, 106.5, 104.4, 55.90 (2×), 55.88, 55.7, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₈H₂₆ClO₆: 493.1418; found: 493.1420.

(3,4-Dimethoxyphenyl)acetic Acid 4-(3,4-Dichlorophenyl)-6,7-dimethoxynaphthalen-2-yl Ester (3m)

Yield: 68% (179 mg); colorless liquid.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.59 (d, J = 2.0 Hz, 1 H), 7.55 (d, J = 8.4 Hz, 1 H), 7.42 (d, J = 2.4 Hz, 1 H), 7.33 (dd, J = 2.0, 8.0 Hz, 1 H), 7.11 (s, 1 H), 7.05 (s, 1 H), 6.97 (d, J = 2.4 Hz, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.94 (s, 1 H), 6.87 (d, J = 8.4 Hz, 1 H), 3.99 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.84 (s, 2 H), 3.82 (s, 3 H).

 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ = 170.5, 150.1, 149.7, 149.1, 148.4, 146.7, 140.2, 137.6, 132.7, 131.8, 131.5, 130.4, 130.2, 129.0, 125.8, 124.9, 121.5, 119.9, 117.6, 112.4, 111.3, 106.6, 104.0, 55.9 (3×), 55.8, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₈H₂₅Cl₂O₆: 527.1028; found: 527.1030.

(3,4-Dimethoxyphenyl)acetic Acid 4-(3,4-Dimethoxyphenyl)-6,7dimethoxynaphthalen-2-yl Ester (3n)

Yield: 92% (238 mg); colorless solid; mp 157–159 $^\circ C$ (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, J = 2.4 Hz, 1 H), 7.21 (s, 1 H), 7.10 (s, 1 H), 7.05–6.93 (m, 6 H), 6.86 (d, J = 8.8 Hz, 1 H), 3.98 (s, 3 H), 3.95 (s, 3 H), 3.89 (s, 3 H), 3.882 (s, 3 H), 3.875 (s, 3 H), 3.84 (s, 2 H), 3.80 (s, 3 H).

 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ = 170.5, 149.8, 149.2, 149.0, 148.6, 148.4, 148.3, 146.7, 140.2, 132.8, 130.1, 125.9, 125.4, 121.9, 121.5, 119.7, 116.5, 112.9, 112.4, 111.2, 111.1, 106.4, 104.8, 55.90, 55.86, 55.82 (2×), 55.79, 55.6, 40.9.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₀H₃₁O₈: 519.2019; found: 519.2025.

(3,4-Dimethoxyphenyl)acetic Acid 4-Benzo[1,3]dioxol-5-yl-6,7-dimethoxynaphthalen-2-yl Ester (30)

Yield: 92% (231 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, *J* = 2.4 Hz, 1 H), 7.20 (s, 1 H), 7.09 (s, 1 H), 6.97–6.90 (m, 6 H), 6.86 (d, *J* = 8.4 Hz, 1 H), 6.03 (s, 2 H), 3.98 (s, 3 H), 3.90 (s, 3 H), 3.88 (s, 3 H), 3.832 (s, 3 H), 3.826 (s, 2 H).

 ${}^{13}C{}^{1}H}$ NMR (100 MHz, CDCl₃): δ = 170.5, 149.9, 149.2, 149.0, 148.3, 147.6, 147.0, 146.7, 139.9, 134.0, 130.1, 125.9, 125.4, 123.1, 121.5, 119.8, 116.6, 112.4, 111.2, 110.1, 108.2, 106.4, 104.7, 101.1, 55.83 (2×), 55.79, 55.7, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₇O₈: 503.1706; found: 503.1708.

.

(3,4-Dimethoxyphenyl)acetic Acid 4-(2,4-Dimethoxyphenyl)-6,7dimethoxynaphthalen-2-yl Ester (3p)

Yield: 90% (233 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, *J* = 2.4 Hz, 1 H), 7.21 (d, *J* = 9.2 Hz, 1 H), 7.08 (s, 1 H), 6.98 (d, *J* = 2.4 Hz, 1 H), 6.95–6.93 (m, 2 H), 6.86–6.84 (m, 2 H), 6.61–6.58 (m, 2 H), 3.97 (s, 3 H), 3.90 (s, 3 H), 3.881 (s, 3 H), 3.878 (s, 3 H), 3.83 (s, 2 H), 3.77 (s, 3 H), 3.68 (s, 3 H).

 $^{13}C{^1H}$ NMR (100 MHz, CDCl₃): δ = 170.4, 160.7, 157.8, 149.7, 148.93, 148.90, 148.2, 146.8, 136.9, 132.1, 129.6, 126.2, 126.0, 121.5, 121.4, 120.4, 116.5, 112.4, 111.2, 106.2, 105.3, 104.3, 98.7, 55.81 (2×), 55.75, 55.6, 55.4, 55.3, 41.0.

HRMS (ESI-TOF): m/z: [M + H]⁺ calcd for C₃₀H₃₁O₈: 519.2019; found: 519.2016.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-(3,4,5-trimethoxyphenyl)naphthalen-2-yl Ester (3q)

Yield: 94% (258 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, J = 2.4 Hz, 1 H), 7.23 (s, 1 H), 7.11 (s, 1 H), 7.01 (d, J = 2.4 Hz, 1 H), 6.96–6.95 (m, 2 H), 6.87 (d, J = 8.8 Hz, 1 H), 6.70 (s, 2 H), 3.99 (s, 3 H), 3.93 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.86 (s, 6 H), 3.85 (s, 2 H), 3.82 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.6, 153.1 (2×), 150.0, 149.3, 149.0, 148.3, 146.7, 140.3, 137.4, 135.7, 130.2, 125.9, 125.3, 121.5, 119.6, 116.8, 112.4, 111.3, 106.8 (2×), 106.5, 104.8, 61.0, 56.2 (2×), 55.89 (2×), 55.87, 55.8, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₁H₃₃O₉: 549.2125; found: 549.2126.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-3-methyl-4phenylnaphthalen-2-yl Ester (3r)

Yield: 81% (191 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.50–7.46 (m, 2 H), 7.44–7.40 (m, 1 H), 7.36 (s, 1 H), 7.26–7.23 (m, 2 H), 7.05 (s, 1 H), 6.99–6.96 (m, 2 H), 6.86 (d, *J* = 8.8 Hz, 1 H), 6.61 (s, 1 H), 3.96 (s, 3 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.87 (s, 2 H), 3.66 (s, 3 H), 1.86 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.4, 149.3, 149.0, 148.3, 146.6, 139.4, 139.1, 129.9 (2×), 129.5 (2×), 127.8, 127.2, 126.9, 126.0, 125.3, 121.6 (2×), 117.1, 112.4, 111.2, 105.9, 105.3, 55.87, 55.85, 55.8, 55.4, 41.1, 14.2.

HRMS (ESI): m/z [M+1]⁺ calcd for C₂₉H₂₉O₆: 473.1964; found: 473.1968.

(3,4-Dimethoxyphenyl)acetic Acid 3-Ethyl-6,7-dimethoxy-4phenylnaphthalen-2-yl Ester (3s)

Yield: 78% (190 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.49–7.42 (m, 3 H), 7.38 (s, 1 H), 7.26–7.24 (m, 2 H), 7.05 (s, 1 H), 6.99–6.96 (m, 2 H), 6.86 (d, J = 8.8 Hz, 1 H), 6.52 (s, 1 H), 3.96 (s, 3 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.87 (s, 2 H), 3.64 (s, 3 H), 2.25 (q, J = 7.6 Hz, 2 H), 0.82 (t, J = 7.6 Hz, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.6, 149.3, 149.0, 148.9, 148.3, 146.2, 139.1, 138.8, 131.3, 129.9 (2×), 128.3 (2×), 127.8, 127.3, 127.1, 126.0, 121.7, 117.8, 112.5, 111.3, 105.9, 105.6, 55.91, 55.88, 55.8, 55.4, 41.4, 21.7, 14.9.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₀H₃₁O₆: 487.2121; found: 487.2124.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-3,4-diphenylnaphthalen-2-yl Ester (3t)

Yield: 63% (168 mg); colorless solid; mp 119–120 $^\circ C$ (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.45 (s, 1 H), 7.25–7.18 (m, 3 H), 7.13 (s, 1 H), 7.12–7.10 (m, 2 H), 7.13–7.10 (m, 3 H), 7.02–6.98 (m, 2 H), 6.83 (s, 1 H), 6.74 (d, *J* = 8.4 Hz, 1 H), 6.61–6.58 (m, 2 H), 4.00 (s, 3 H), 3.87 (s, 3 H), 3.81 (s, 3 H), 3.70 (s, 3 H), 3.44 (s, 2 H).

 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ = 170.6, 149.9, 149.3, 148.7, 148.1, 145.3, 139.2, 138.6, 136.5, 131.6, 130.8 (2×), 130.6 (2×), 129.1, 127.7 (2×), 127.1 (2×), 126.73, 126.71, 126.3, 125.6, 121.5, 117.7, 112.3, 111.0, 105.9, 105.7, 55.9, 55.8, 55.7, 55.5, 40.5.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₄H₃₁O₆: 535.2121; found: 535.2122.

Single-crystal X-ray diagram: a crystal of compound **3t** was grown by slow diffusion of EtOAc into a solution of compound **3t** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 9.9310(3) Å, b = 6.8766(2) Å, c = 40.3543(11) Å, V = 2751.16(14) Å³, Z = 4, $d_{calcd} = 1.291$ g/cm³, F(000) = 1128, 2θ range 2.022–26.378°, R indices (all data) R1 = 0.0892, wR2 = 0.2254; CCDC 1910997.¹²

(3,4-Dimethoxyphenyl)acetic Acid 4-(4-Fluorophenyl)-6,7-dimethoxy-3-phenylnaphthalen-2-yl Ester (3u)

Yield: 60% (166 mg); colorless solid; mp 180–181 $^\circ C$ (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.45 (s, 1 H), 7.13 (s, 1 H), 7.10–7.05 (m, 5 H), 6.99–6.90 (m, 4 H), 6.78 (s, 1 H), 6.74 (d, *J* = 8.0 Hz, 1 H), 6.60–6.57 (m, 2 H), 4.00 (s, 3 H), 3.87 (s, 3 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.44 (s, 2 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.6, 161.6 (d, J = 244.1 Hz), 150.0, 149.4, 148.7, 148.1, 145.3, 138.1, 136.3, 134.5 (d, J = 3.8 Hz), 132.4 (d, J = 8.4 Hz, 2×), 131.9, 130.5 (2×), 129.1, 127.3 (2×), 126.7, 126.4, 125.5, 121.5, 118.0, 114.8 (d, J = 21.2 Hz, 2×), 112.3, 111.1, 106.0, 105.4, 55.9, 55.8, 55.7, 55.6, 40.4.

HRMS (ESI-TOF): $m/z \ [M + H]^+$ calcd for $C_{34}H_{30}FO_6$: 553.2027; found: 553.2022.

(3,4-Dimethoxyphenyl)acetic Acid 4-Furan-2-yl-6,7-dimethoxynaphthalen-2-yl Ester (3v)

Yield: 74% (166 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (s, 1 H), 7.60 (dd, *J* = 1.2, 2.0 Hz, 1 H), 7.38 (d, *J* = 2.4 Hz, 1 H), 7.31 (d, *J* = 2.4 Hz, 1 H), 7.08 (s, 1 H), 6.97–6.95 (m, 2 H), 6.88 (d, *J* = 8.8 Hz, 1 H), 6.72 (d, *J* = 3.2 Hz, 1 H), 6.58 (dd, *J* = 2.0, 3.2 Hz, 1 H), 3.99 (s, 3 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.90 (s, 3 H), 3.85 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.5, 152.9, 149.9, 149.8, 149.1, 148.4, 146.8, 142.4, 130.5, 128.6, 125.9, 124.1, 121.6, 118.7, 117.7, 112.4, 111.5, 111.3, 109.2, 106.6, 104.5, 55.9 (2×), 55.83, 55.78, 41.0.

HRMS (ESI-TOF): $m/z \ [M + H]^+$ calcd for $C_{26}H_{25}O_7$: 449.1600; found: 449.1602.

(3,4-Dimethoxyphenyl)acetic Acid 4-(3-Bromothiophen-2-yl)-6,7dimethoxynaphthalen-2-yl Ester (3w)

Yield: 76% (206 mg); colorless liquid.

Paper

¹H NMR (400 MHz, CDCl₃): δ = 7.49 (d, *J* = 2.4 Hz, 1 H), 7.41 (d, *J* = 5.2 Hz, 1 H), 7.13 (s, 1 H), 7.12 (d, *J* = 5.2 Hz, 1 H), 7.10 (s, 1 H), 7.01 (s, 1 H), 6.96–6.93 (m, 2 H), 6.86 (d, *J* = 8.8 Hz, 1 H), 3.98 (s, 3 H), 3.90 (s, 3 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.84 (s, 2 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.3, 150.1, 149.7, 148.9, 148.3, 146.2, 135.9, 130.6, 129.9, 129.8, 126.4, 125.74, 125.69, 122.0, 121.5, 118.5, 112.3, 111.2, 110.7, 106.3, 104.9, 55.8 (3×), 57.7, 40.9.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for $C_{26}H_{24}BrO_6S$: 543.0477; found: 543.0481.

(3,4-Dimethoxyphenyl)acetic Acid 6,7-Dimethoxy-4-thiophen-2ylnaphthalen-2-yl Ester (3x)

Yield: 80% (186 mg); colorless liquid.

¹H NMR (400 MHz, $CDCl_3$): δ = 7.55 (s, 1 H), 7.42 (dd, *J* = 1.2, 5.2 Hz, 1 H), 7.40 (d, *J* = 2.4 Hz, 1 H), 7.25 (dd, *J* = 1.2, 3.6 Hz, 1 H), 7.16 (dd, *J* = 3.2, 5.2 Hz, 1 H), 7.15 (d, *J* = 2.4 Hz, 1 H), 7.01 (s, 1 H), 6.97–6.94 (m, 2 H), 6.87 (d, *J* = 8.4 Hz, 1 H), 3.99 (s, 3 H), 3.91 (s, 3 H), 3.889 (s, 3 H), 3.885 (s, 3 H), 3.84 (s, 2 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.4, 150.0, 149.6, 149.0, 148.3, 146.5, 141.3, 132.5, 130.2, 127.3, 127.2, 125.9, 125.8, 125.6, 121.5, 120.8, 117.5, 112.4, 111.3, 106.5, 104.7, 55.9 (2×), 55.84, 55.75, 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₆H₂₅O₆S: 465.1372; found: 465.1378.

(3,4-Dimethoxyphenyl)acetic Acid 10,11-Dimethoxy-6H-5-oxabenzo[c]phenanthren-7-yl Ester (3aa)

Yield: 70% (170 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 8.03 (dd, *J* = 1.6, 8.0 Hz, 1 H), 7.88 (s, 1 H), 7.37 (s, 1 H), 7.30 (dt, *J* = 1.6, 7.6 Hz, 1 H), 7.18–7.13 (m, 2 H), 7.08 (s, 1 H), 6.99–6.92 (m, 2 H), 6.90 (d, *J* = 8.0 Hz, 1 H), 4.81 (s, 2 H), 4.00 (s, 3 H), 3.98 (s, 3 H), 3.92 (s, 3 H), 3.91 (s, 3 H), 3.86 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.1, 156.5, 149.9, 149.6, 149.2, 148.5, 142.6, 130.3, 128.9, 127.6, 127.1, 125.6, 124.9, 124.2, 123.0, 121.8, 121.6, 117.9, 117.5, 112.3, 111.4, 106.9, 104.5, 64.4, 55.94, 55.93, 55.8 (2×), 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₇O₇: 487.1757; found: 487.1762.

(3,4-Dimethoxyphenyl)acetic Acid 2,3-Dimethoxy-7*H*-benzo[*c*]fluoren-6-yl Ester (3ab)

Yield: 72% (169 mg); colorless solid; mp 164–166 °C (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J* = 8.4 Hz, 1 H), 7.94 (s, 1 H), 7.54 (d, *J* = 7.6 Hz, 1 H), 7.47 (t, *J* = 7.6 Hz, 1 H), 7.40 (s, 1 H), 7.33 (t, *J* = 7.6 Hz, 1 H), 7.16 (s, 1 H), 7.04–7.02 (m, 2 H), 6.92 (d, *J* = 8.8 Hz, 1 H), 4.12 (s, 3 H), 4.00 (s, 3 H), 3.94 (s, 3 H), 3.93 (s, 3 H), 3.91 (s, 2 H), 3.69 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.1, 149.7, 149.12, 149.08, 148.5, 144.4, 143.8, 142.3, 137.4, 133.3, 130.1, 126.8, 126.1, 125.8, 125.0, 123.4, 122.3, 121.7, 116.9, 112.5, 111.4, 107.3, 102.9, 56.0 (2×), 55.9, 55.8, 41.2, 34.5.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₇O₆: 471.1808; found: 471.1813.

Single-crystal X-ray structure: Crystals of compound **3ab** were grown by slow diffusion of EtOAc into a solution of compound **3ab** in CH_2CI_2 to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group C 2/c, a = 23.7585(9) Å, b = 15.1466(6) Å, Paper

c = 14.5717(6) Å, V = 4676.2(3) Å³, Z = 8, d_{calcd} = 1.337 g/cm³, F(000) = 1984, 2 θ range 1.653–26.413°, R indices (all data) R1 = 0.0354, wR2 = 0.0894; CCDC 1910998.¹²

(3,4-Dimethoxyphenyl)acetic Acid 2,3-Dimethoxy-7,8-dihydrobenzo[c]phenanthren-6-yl Ester (3ac)

Yield: 73% (177 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.6 Hz, 1 H), 7.88 (s, 1 H), 7.35 (d, *J* = 7.6 Hz, 1 H), 7.32–7.25 (m, 3 H), 7.07 (s, 1 H), 7.00–6.97 (m, 2 H), 6.89 (d, *J* = 8.8 Hz, 1 H), 3.99 (s, 3 H), 3.95 (s, 3 H), 3.910 (s, 3 H), 3.907 (s, 3 H), 3.87 (s, 2 H), 2.73–2.69 (m, 2 H), 2.56–2.52 (m, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.3, 149.4, 149.2, 149.0, 148.4, 144.9, 139.5, 134.1, 132.7, 129.4, 128.9, 127.9 (2×), 127.1, 126.0, 124.0, 121.6 (2×), 117.3, 112.4, 111.3, 106.6, 105.1, 55.9 (2×), 55.78, 55.77, 41.0, 28.9, 23.1.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₀H₂₉O₆: 485.1964; found: 485.1963.

(3,4-Dimethoxyphenyl)acetic Acid 2,3-Dimethoxy-8,9-dihydro-7H-benzo[6,7]cyclohepta[1,2-*a*]naphthalen-6-yl Ester (3ad)

Yield: 70% (174 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.49–7.47 (m, 1 H), 7.37–7.29 (m, 5 H), 7.07 (s, 1 H), 7.00–6.98 (m, 2 H), 6.87 (d, *J* = 8.8 Hz, 1 H), 3.98 (s, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.87 (s, 2 H), 3.80 (s, 3 H), 2.53–2.48 (m, 2 H), 2.42–2.34 (m, 1 H), 1.94–1.89 (m, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.9, 149.3, 149.2, 149.0, 148.4, 145.2, 140.9, 137.8, 137.1, 129.9, 128.9, 128.6, 128.1, 127.8, 126.1, 125.6, 125.3, 121.6, 117.4, 112.3, 111.3, 106.2, 104.9, 55.91, 55.89, 55.8, 55.6, 41.2, 32.3, 30.9, 23.7.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₁H₃₁O₆: 499.2121; found: 499.2126.

Benzo[1,3]dioxol-5-yl-acetic Acid 8-(3,4-Dimethoxyphenyl)naphtho[2,3-*d*][1,3]dioxol-6-yl Ester (3ae)

Yield: 93% (226 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.36 (d, J = 2.0 Hz, 1 H), 7.17 (s, 1 H), 7.10 (s, 1 H), 6.70 (d, J = 2.4 Hz, 1 H), 6.97–6.95 (m, 3 H), 6.91 (d, J = 1.6 Hz, 1 H), 6.84 (d, J = 1.6, 7.6 Hz, 1 H), 6.80 (d, J = 7.6 Hz, 1 H), 6.00 (s, 2 H), 5.96 (s, 2 H), 3.95 (s, 3 H), 3.89 (s, 3 H), 3.80 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.3, 148.7, 148.5, 148.0, 147.9, 147.8, 146.9, 146.8, 140.7, 132.8, 131.4, 127.0, 126.9, 122.5, 122.0, 119.9, 117.3, 113.0, 111.0, 109.7, 108.4, 103.9, 102.5, 101.2, 101.1, 55.9 (2×), 41.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₈H₂₃O₈: 487.1393; found: 487.1396.

(3,4-Dipropoxyphenyl)acetic Acid 4-(3,4-Dimethoxyphenyl)-6,7dipropoxynaphthalen-2-yl Ester (3af)

Yield: 90% (284 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, J = 2.4 Hz, 1 H), 7.20 (s, 1 H), 7.09 (s, 1 H), 7.04–6.96 (m, 5 H), 6.92 (dd, J = 2.0, 8.0 Hz, 1 H), 6.87 (d, J = 8.4 Hz, 1 H), 4.07 (t, J = 6.4 Hz, 2 H), 3.99 (t, J = 6.4 Hz, 4 H), 3.96 (s, 3 H), 3.88 (s, 3 H), 3.85 (t, J = 6.4 Hz, 2 H), 3.81 (s, 2 H), 1.94–1.81 (m, 8 H), 1.10–0.99 (m, 12 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 170.6, 149.9, 149.20, 149.19, 148.6, 148.5, 148.4, 146.7, 140.0, 133.0, 130.2, 126.1, 125.5, 122.0, 121.7, 119.5, 116.4, 115.0, 114.0, 113.0, 111.1, 107.9, 106.6, 70.81, 70.77, 70.3, 70.2, 55.94, 55.93, 41.0, 22.6 (2×), 22.4, 22.3, 10.5 (4×).

Syn thesis

M.-Y. Chang et al.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₈H₄₇O₈: 631.3271; found: 631.3278.

(3,4,5-Trimethoxyphenyl)acetic Acid 4-(3,4-Dimethoxyphenyl)-5,6,7-trimethoxynaphthalen-2-yl Ester (3ag)

Yield: 94% (272 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.40 (d, J = 2.4 Hz, 1 H), 6.95 (s, 1 H), 6.92–6.86 (m, 3 H), 6.91 (s, 1 H), 6.61 (s, 2 H), 3.95 (s, 3 H), 3.92 (s, 3 H), 3.87 (s, 3 H), 3.86 (s, 6 H), 3.85 (s, 3 H), 3.84 (s, 3 H), 3.81 (s, 3 H), 3.29 (s, 2 H).

 $^{13}C{^1H}$ NMR (100 MHz, CDCl₃): δ = 170.0, 153.3, 153.2 (3×), 149.7, 147.5, 147.2, 147.0, 142.1, 139.8, 137.2, 136.1, 132.3, 128.8, 121.9, 120.6, 117.0, 112.8, 109.7, 106.3 (2×), 102.9, 61.0, 60.73, 60.70, 56.0 (2×), 55.81, 55.77, 55.7, 41.5.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₃₂H₃₅O₁₀: 579.2230; found: 579.2236.

Synthesis of 3h-1, 3k-1, 3o-1, 3v-1 and 3w-1; General Procedure

Trifluoroacetic anhydride (TFAA, 230 mg, 1.1 mmol) and phosphoric acid (H_3PO_4 , 110 mg, 1.1 mmol) were added to a solution of homoveratric acid (**1a**, 98 mg, 0.5 mmol) in MeCN (15 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 30 min. Ketone **2h**, **2k**, **2o**, **2v** or **2w** (0.5 mmol) in MeCN (5 mL) was added to the reaction mixture at 25 °C and the reaction mixture was stirred at reflux (80 °C) for 20 h. The solvent of reaction mixture was concentrated, the residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10:1 to 1:1) afforded compounds **3h-1**, **3k-1**, **3o-1**, **3v-1** and **3w-1**.

6,7-Dimethoxy[1,2']binaphthalenyl-3-ol (3h-1)

Yield: 94% (155 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.94–7.90 (m, 3 H), 7.85–7.82 (m, 1 H), 7.60 (dd, J = 1.2, 8.4 Hz, 1 H), 7.56–7.51 (m, 2 H), 7.18 (s, 1 H), 7.12 (d, J = 2.4 Hz, 1 H), 7.03 (d, J = 2.4 Hz, 1 H), 7.03 (s, 1 H), 5.99 (br s, 1 H), 3.97 (s, 3 H), 3.73 (s, 3 H).

 $^{13}C{^1H}$ NMR (100 MHz, CDCl₃): δ = 152.0, 149.8, 147.7, 140.5, 138.1, 133.4, 132.5, 131.1, 128.3, 128.0, 127.9, 127.70, 127.66, 126.3, 126.1, 122.3, 117.0, 108.7, 105.6, 105.1, 55.7, 55.6.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₂H₁₉O₃: 331.1334; found: 331.1339.

4-(2,5-Dimethoxyphenyl)-6,7-dimethoxynaphthalen-2-ol (3k-1)

Yield: 89% (151 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 6.98 (d, *J* = 2.8 Hz, 1 H), 6.96–6.93 (m, 3 H), 6.90 (d, *J* = 2.8 Hz, 1 H), 6.88 (dd, *J* = 1.2, 2.8 Hz, 1 H), 6.82 (s, 1 H), 4.80 (br s, 1 H), 3.94 (s, 3 H), 3.79 (s, 3 H), 3.75 (s, 3 H), 3.65 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 153.5, 151.9, 151.1, 149.8, 147.5, 137.1, 130.6, 130.2, 122.6, 117.2, 117.0, 113.9, 112.4, 108.8, 105.43, 105.39, 56.2, 55.73, 55.69, 55.6.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₀H₂₁O₅: 341.1389; found: 341.1396.

4-Benzo[1,3]dioxol-5-yl-6,7-dimethoxynaphthalen-2-ol (3o-1)

Yield: 90% (146 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.15 (s, 1 H), 7.04 (d, *J* = 2.4 Hz, 1 H), 7.00 (s, 1 H), 6.96–6.95 (m, 1 H), 6.93–6.92 (m, 2 H), 6.88 (d, *J* = 2.4 Hz, 1 H), 6.04 (s, 2 H), 5.20 (br s, 1 H), 3.98 (s, 3 H), 3.81 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3): δ = 151.9, 149.9, 147.7, 147.6, 146.9, 140.3, 134.5, 131.1, 123.0, 122.4, 116.6, 110.1, 108.4, 108.3, 105.5, 105.1, 101.1, 55.8, 55.7.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₉H₁₇O₅: 325.1076; found: 325.1072.

4-Furan-2-yl-6,7-dimethoxynaphthalen-2-ol (3v-1)

Yield: 85% (115 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (s, 1 H), 7.60 (d, J = 1.2 Hz, 1 H), 7.22 (d, J = 2.4 Hz, 1 H), 7.06 (d, J = 2.4 Hz, 1 H), 7.00 (s, 1 H), 6.71 (d, J = 3.2 Hz, 1 H), 6.58 (dd, J = 1.6, 3.2 Hz, 1 H), 5.00 (br s, 1 H), 3.99 (s, 3 H), 3.96 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3): δ = 153.3, 151.8, 150.0, 148.2, 142.3, 131.4, 128.8, 121.2, 115.3, 111.4, 109.7, 108.9, 105.6, 104.8, 55.78, 55.75.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₅O₄: 271.0970; found: 271.0964.

4-(3-Bromothiophen-2-yl)-6,7-dimethoxynaphthalen-2-ol (3w-1) Yield: 86% (157 mg); colorless liquid.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.40 (d, *J* = 5.2 Hz, 1 H), 7.14 (d, *J* = 2.8 Hz, 1 H), 7.12 (d, *J* = 5.2 Hz, 1 H), 7.02 (d, *J* = 2.8 Hz, 1 H), 7.00 (s, 1 H), 6.96 (s, 1 H), 5.60 (br s, 1 H), 3.97 (s, 3 H), 3.84 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3): δ = 151.6, 150.1, 148.1, 136.5, 130.8, 130.6, 130.3, 126.2, 122.8, 118.8, 110.52, 110.49, 105.5, 105.3, 55.81, 55.75.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₄BrO₃S: 364.9847; found: 364.9853.

Acetic Acid 4-Biphenyl-4-yl-6,7-dimethoxynaphthalen-2-yl Ester (3g-1)

Trifluoroacetic anhydride (TFAA, 230 mg, 1.1 mmol) and phosphoric acid (H_3PO_4 , 110 mg, 1.1 mmol) were added to a solution of homoveratric acid **1a** (98 mg, 0.5 mmol) in MeCN (15 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 30 min, then ketone **2g** (98 mg, 0.5 mmol) in MeCN (5 mL) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at reflux (80 °C) for 20 h, then cooled to 25 °C. Ac₂O (150 mg, 1.5 mmol) was added and the reaction mixture was stirred at reflux (80 °C) for 2 h, then cooled to 25 °C. Ac₂O (150 mg, 1.5 mmol) was added and the reaction mixture was concentrated, the residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂(3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10:1 to 1:1) afforded compound **3g-1**.

Yield: 82% (163 mg); colorless solid; mp 166–168 $^\circ C$ (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.75–7.69 (m, 4 H), 7.60 (d, *J* = 8.0 Hz, 2 H), 7.51–7.47 (m, 2 H), 7.45 (d, *J* = 2.4 Hz, 1 H), 7.41–7.37 (m, 1 H), 7.28 (s, 1 H), 7.15 (s, 1 H), 7.09 (d, *J* = 2.4 Hz, 1 H), 4.02 (s, 3 H), 3.83 (s, 3 H), 2.36 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 169.8, 150.0, 149.4, 146.8, 140.6, 140.3, 140.0, 139.2, 130.3, 130.1 (2×), 128.9 (2×), 127.4, 127.1 (2×), 127.1 (2×), 125.3, 120.1, 116.9, 106.5, 104.8, 55.9, 55.8, 21.2.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₆H₂₃O₄: 399.1596; found: 399.1598.

Single-crystal X-ray structure: Crystals of compound **3g-1** were grown by slow diffusion of EtOAc into a solution of compound **3g-1** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, *a* = 14.6778(7) Å, *b* = 9.3020(5) Å, *c* = 14.7948(8) Å, *V* = 2015.60(18) Å³, *Z* = 4, *d*_{calcd} = 1.313 g/cm³, *F*(000) = 840, 2*θ* range 1.893–26.428°, R indices (all data) R1 = 0.0438, wR2 = 0.0921; CCDC 1910999.¹²

Benzo[1,3]dioxol-5-yl-acetic Acid 4-(2,5-Dimethoxyphenyl)-6,7dimethoxynaphthalen-2-yl Ester (3aj)

Trifluoroacetic anhydride (TFAA, 230 mg, 1.1 mmol) and phosphoric acid (H_3PO_4 , 110 mg, 1.1 mmol) were added to a solution of homoveratric acid **1a** (98 mg, 0.5 mmol) in MeCN (15 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 30 min, then ketone **2k** (90 mg, 0.5 mmol) in MeCN (5 mL) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at reflux (80 °C) for 20 h, then cooled to 25 °C. Compound **1b** (90 mg, 0.5 mmol) was added and the reaction mixture was stirred at reflux (80 °C) for 1 h. The solvent of reaction mixture was concentrated, the residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10:1 to 1:1) afforded compound **3aj**.

Yield: 71% (178 mg); colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 2.4 Hz, 1 H), 7.09 (s, 1 H), 7.00 (d, *J* = 2.4 Hz, 1 H), 6.96 (s, 1 H), 6.95 (d, *J* = 2.4 Hz, 1 H), 6.91 (d, *J* = 1.6 Hz, 1 H), 6.89 (dd, *J* = 1.2, 2.4 Hz, 1 H), 6.86 (s, 1 H), 6.84 (d, *J* = 1.6 Hz, 1 H), 6.80 (d, *J* = 8.0 Hz, 1 H), 5.96 (s, 2 H), 3.98 (s, 3 H), 3.78 (s, 2 H), 3.79 (s, 3 H), 3.77 (s, 3 H), 3.64 (s, 3 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 170.2, 153.6, 151.2, 149.8, 149.1, 147.8, 146.9, 146.7, 137.0, 129.7, 129.6, 127.1, 125.8, 122.5, 120.1, 117.2, 116.8, 114.2, 112.4, 109.7, 108.4, 106.3, 105.2, 101.0, 56.2, 55.81, 55.77, 55.6, 41.1.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₉H₂₇O₈: 503.1706; found: 507.1712.

1-(3,4-Dimethoxybenzylidene)-6,7-dimethoxyisochroman-3-one (4)

Trifluoroacetic anhydride (TFAA, 230 mg, 1.1 mmol) and phosphoric acid (H_3PO_4 , 110 mg, 1.1 mmol) were added to a solution of homoveratric acid (**1a**, 196 mg, 1.0 mmol) at 25 °C. The reaction mixture was stirred at 120 °C for 20 h, then cooled to 25 °C. The residue was diluted with water (10 mL) and the mixture was extracted with CH_2CI_2 (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10:1 to 1:1) afforded compound **4**.

Yield: 68% (121 mg); colorless solid; mp 159–160 °C (recrystallized from hexanes and EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.49 (d, *J* = 2.0 Hz, 1 H), 7.30 (dd, *J* = 2.0, 8.4 Hz, 1 H), 7.05 (s, 1 H), 6.88 (d, *J* = 8.4 Hz, 1 H), 6.61 (s, 1 H), 6.12 (s, 1 H), 3.96 (s, 3 H), 3.95 (s, 3 H), 3.911 (s, 3 H), 3.908 (s, 3 H), 3.81 (s, 2 H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃): δ = 165.6, 150.3, 148.8, 148.7, 148.5, 145.4, 127.0, 122.7, 121.0, 120.8, 112.3, 111.0, 109.5, 107.8, 106.4, 56.2, 56.1, 55.8 (2×), 34.5.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₂₀H₂₁O₆: 357.1338; found: 357.1345.

Single-crystal X-ray structure: Crystals of compound **4** were grown by slow diffusion of EtOAc into a solution of compound **4** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P21/c, a = 14.7513(11)Å, b = 15.0932(10)Å, c = 7.8241(5)Å, V = 1702.9(2)Å³, Z = 4, $d_{calcd} = 1.390$ g/cm³, F(000) = 752, 2θ range 1.412–26.445°, R indices (all data) R1 = 0.0608, wR2 = 0.1163; CCDC 1911000.¹²

Funding Information

The authors would like to thank the Ministry of Science and Technology of the Republic of China for its financial support (MOST 106-2628-M-037-001-MY3).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690799. Included are scanned copies of NMR spectral data for all compounds and X-ray analysis data of **3t**, **3ab**, **3g-1** and **4**.

References

- For reviews on the synthesis of naphthalenes, see: (a) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. *Tetrahedron* **2003**, 59, 7. (b) For reviews on the benzannulation of naphthalenes, see: Kotha, S.; Somnath-Halder, S. M. *Tetrahedron* **2008**, 64, 10775.
- (2) For bioactive molecules with the core naphthalene skeleton, see: (a) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamomoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. *J. Med. Chem.* **1999**, *42*, 1293. (b) Yeo, H.; Li, Y.; Fu, L.; Zhu, J.-L.; Gullen, E. A.; Dutschman, G. E.; Lee, Y.; Chung, R.; Huang, E.-S.; Austin, D. J.; Cheng, Y.-C. J. Med. Chem. **2005**, *48*, 534. (c) Shen, W.; Zou, X.; Chen, M.; Liu, P.; Shen, Y.; Huang, S.; Guo, H.; Zhang, L. Eur. J. Pharmacol. **2011**, 667, 330. (d) Aszno, J.; Chiba, K.; Tada, M.; Yoshii, T. *Phytochemistry* **1996**, *42*, 713.
- (3) For natural products with the core naphthalene skeleton, see:
 (a) Ward, R. S. *Nat. Prod. Rep.* **1999**, *16*, 75. (b) Apers, S.; Vlietinck, A.; Pieters, L. *Phytochem. Rev.* **2003**, *2*, 201. (c) Abdissa, N.; Pan, F.; Gruhonjic, A.; Grafenstein, J.; Fitzpatrick, P. A.; Landberg, G.; Rissanen, K.; Yenesew, A.; Erdelyi, M. J. Nat. Prod. **2016**, *79*, 2181.
- (4) For synthetic blocks or ligands with core naphthalene skeleton, see: (a) Ji, N.; Rosen, B. M.; Myers, A. G. Org. Lett. 2004, 6, 4551.
 (b) Mulrooney, C. A.; Li, X.; Divirgilio, E. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2003, 125, 6856.
- (5) For functionalized materials with the core naphthalene skeleton, see: (a) Lin, K.-T.; Kuo, H.-M.; Sheu, H.-S.; Lai, C.-K. *Tetrahedron* **2013**, 69, 9045. (b) Tanaka, M.; Elias, B.; Barton, J. K. *J. Org. Chem.* **2010**, 75, 2423. (c) Thalacker, C.; Röger, C.; Würthner, F. *J. Org. Chem.* **2006**, 71, 8098. (d) Rodriguez, J. G.; Tejedor, J. L. *J. Org. Chem.* **2002**, 67, 7631. (e) Chowdhury, S.; Georghiou, P. E. *J. Org. Chem.* **2002**, 67, 6808. (f) Röger, C.; Würthner, F. *J. Org. Chem.* **2007**, 72, 8070.
- (6) For transition-metal-catalyzed tandem benzannulation, see: (a) Tsukamoto, H.; Kondo, Y. Org. Lett. 2007, 9, 4227. (b) Dai, Y.; Feng, X.; Liu, H.; Jiang, H.; Bao, M. J. Org. Chem. 2011, 76, 10068.

(c) Aiken, S.; Armitage, B.; Gabbutt, C. D.; Heron, B. K. *Tetrahedron Lett.* **2015**, 4840. (d) Collomb, D.; Chantegrel, B.; Deshayes, C. *Tetrahedron* **1996**, *52*, 10455. (e) Jin, T.; Yamamoto, Y. *Org. Lett.* **2007**, *9*, 5259.

- (7) For electrophilic or nucleophilic cyclocondensation, see:
 (a) Zhang, X.; Sarkar, S.; Larock, R. C. J. Org. Chem. 2006, 71, 236.
 (b) Juteau, H.; Gareau, Y.; Lachance, H. Tetrahedron Lett. 2005, 46, 4547.
 (c) Martinez, A. D.; Deville, J. P.; Stevens, J. L.; Behar, V. J. Org. Chem. 2004, 69, 991.
- (8) For photo-promoted annulation, see: Padwa, A.; Chiacchio, U.; Fairfax, D. J.; Kassir, J. M.; Litrico, A.; Semones, M. A.; Xu, S. L. J. Org. Chem. **1993**, 58, 6429.
- (9) For selected recent examples on synthesis of β-naphthols, see: (a) Kim, H. Y.; Oh, K. Org. Lett. **2014**, *16*, 5934. (b) Chen, Z.; Duan, H. Q.; Jiang, X.; Zhu, Y. M.; Ji, S. J.; Yang, S. L. J. Org. Chem. **2015**, *80*, 8183. (c) Okuma, K.; Horigami, K.; Nagahora, N.; Shioj,

- (10) Chang, M.-Y.; Chen, Y.-C.; Chan, C.-K.; Huang, G. G. *Tetrahedron* **2015**, *71*, 2095.
- (11) Chang, M.-Y.; Chen, S.-M.; Hsiao, Y.-T. J. Org. Chem. 2019, 84, 11687.
- (12) CCDC 1910997 (3t), 1910998 (3ab), 1910999 (3g-1) and 1911000 (4) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- (13) Marchal, E.; Uriac, P.; Legouin, B.; Toupet, L.; van de Weghe, P. *Tetrahedron* **2007**, 63, 9979.