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Stable Boron Peroxides with a Subporphyrinato Ligand
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Abstract: Subporphyrin B-peroxides have been synthesized in
good yields by acid-catalyzed exchange reactions of subpor-
phyrin B-methoxide with the corresponding hydroperoxides.
Thermal dimerization of the subporphyrin B-hydroperoxide
provided the peroxo-bridged bis(subporphyrin) quantitatively.
These subporphyrin B-peroxides are fairly stable under
ambient conditions, which allowed their isolation and full
characterization as the first examples of structurally authenti-
cated boron hydroperoxides, acyclic boron organylperoxides,
and neutral peroxo-bridged diboron species. The subporphyrin
B-peroxides thus prepared were investigated through their
crystal structures, IR spectra, and cyclic voltammograms as
well as by DFT calculations. The subporphyrin B-hydroper-
oxide oxidizes triphenylphosphine quantitatively to triphenyl-
phosphine oxide.

Boron peroxides are important boronic species that have
been proposed to be intermediates during the oxidation of
alkylboranes to alkylborates,[1] radical chain reactions initi-
ated by the combined use of BEt3 and O2,

[2] and transition-
metal-catalyzed oxidative homocoupling of arylboronic
acids.[3] In addition, sodium perborate is widely used as
a mild oxidant[4] and an industrial bleaching agent.[5] There-
fore, the chemical behaviors of boron peroxides in oxidation
processes have been extensively studied by NMR, ESR, and
IR spectroscopy, mass spectrometry, as well as calorimetry.[6]

Despite these efforts, full characterization of boron peroxides
has been hampered, mainly because of their tendency to
undergo explosive decomposition. To the best of our knowl-
edge, there are only five examples of structurally character-
ized boron peroxides (Scheme 1),[7] which, with the exception
of sodium perborate, were prepared by trapping highly
reactive boron compounds with molecular oxygen.[5] These
boron peroxides are not suitable for systematic investigations
on the nature of the B-O-O bonding, and thus a new and
reliable synthetic procedure is highly desired for the synthesis
of a series of stable boron peroxides.

In recent years, subporphyrinatoboron(III) (hereafter
referred to as subporphyrin) complexes have emerged as
a new class of functional molecules,[8–11] most of which are

chemically stable, because the boron atom is tightly embed-
ded in a small cavity of a divalent and tridentate subporphyr-
inato ligand. Subporphyrins have been shown to undergo
facile axial exchange reactions.[11] We attempted to take
advantage of these reactivities to synthesize subporphyrin B-
peroxides.

Recently, we synthesized meso-triphenylsubporphyrin B-
hydride 1 as a stable boron hydride.[11f] In the course of this
study, we observed slow formation of subporphyrin B-hydro-
peroxide 2 from 1 under aerobic conditions.[12] Exposure of
1 in the solid state to air for one week caused its conversion
into 2 in about 10 % yield (Scheme 2). To our surprise, 2 is
fairly stable under ambient conditions and can be manipu-
lated like usual organic molecules. It then occurred to us that

Scheme 1. Structurally characterized boron peroxides. Mes =mesityl.

Scheme 2. Synthesis of subporphyrinatoboron(III) peroxides and struc-
tures of related subporphyrinatoboron(III) complexes. [a] Yields were
determined by 1H NMR spectroscopy, using 1,1,2,2-tetrachloroethane
as an internal standard.
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2 might be prepared by an axial exchange reaction of
subporphyrins with hydrogen peroxide. After extensive
screening of the reaction conditions, we found that 2 could
actually be synthesized in 73 % yield by the reaction of
subporphyrin B-methoxide 3 with a mixture of hydrogen
peroxide and HCl. In addition, we found that simply heating 2
at 70 88C for 4 h gave peroxo-bridged subporphyrin dimer 4 in
97% yield. It is noteworthy that the reactivity of 2 contrasts
that of subporphyrin B-hydroxide 5, since heating 5 under the
same conditions did not produce the m-oxo-bridged subpor-
phyrin dimer 6.[11c] The unique reactivity of 2 may be ascribed
to the high nucleophilic character of the B-hydroperoxide
moiety. It is also noteworthy that dimer 4 is stable, but 6 is
promptly hydrolyzed in the presence of water or on silica gel.
Subporphyrin B-peroxides 7 and 8 were prepared in 83 and
79% yield by the reaction of 3 with tert-butylhydroperoxide
and m-chloroperbenzoic acid, respectively. B-Peroxides 7 and
8 are also fairly stable under aerobic conditions, but do not
undergo thermal dimerization to 4. These results suggest that
the formation of 4 from 2 did not proceed through a radical
mechanism involving homolytic cleavage followed by recom-
bination of the O¢O bond, but through an ionic mechanism,
that is, nucleophilic trapping of a borenium cation interme-
diate.[11d]

High-resolution atmospheric pressure chemical ionization
time-of-flight mass spectrometry (HR-APCI-TOF-MS) oper-
ating in a negative ion mode revealed the parent anion signal
of 2 to be at m/z = 502.1746 (calculated for
[C33H21

11BN3O2]
¢= 502.1738) with an isotropic distribution

consistent with the chemical composition. Similarly, HR-
APCI-TOF-MS showed the parent ion signals of boron
peroxides 4, 7, and 8 (see the Supporting Information). The
1H NMR spectrum of 2 is consistent with its C3v-symmetric
14p-electron aromatic structure, with a singlet at 8.16 ppm
corresponding to the pyrrolic b-protons and a singlet at
4.18 ppm corresponding to the peroxy proton. The 11B NMR
spectrum of 2 displays a sharp singlet at ¢14.1 ppm. On the
other hand, the 1H and 11B NMR spectra of 5 exhibit signals
for the b-protons and the central boron atom at 8.12 and
¢15.6 ppm, respectively. These spectral data indicate that the
hydroperoxo ligand is more electron withdrawing than the
hydroxo ligand. In the case of 4, signals corresponding to the
b-protons and the central boron atom are shifted upfield to
7.74 ppm and ¢15.8 ppm, respectively, as a result of the ring
current effect of aromatic subporphyrin moieties.

The structures of 2, 4, 7, and 8 have all been revealed by
single-crystal X-ray diffraction analysis. The structures of 2
and 4 are shown in Figure 1.[13] To the best of our knowledge,
these are the first crystal structures of acyclic and neutral
boron peroxides. The solid-state structures of 5 and 3-
chlorobenzoyloxyboron 9 were also determined for compar-
ison. Selected bond lengths and the sums of three N-B-N
angles of 2–9 are summarized in Table 1. The O-O bond
lengths of 2, 4, 7, and 8 are in the range of 1.466 to 1.484 è,
which are comparable to those of the previously reported
boron peroxides (1.456–1.497 è). Curiously, the O-O bond
lengths increase in the order 8< 2< 7< 4, namely, with an
increasing electron-donating ability of the peroxy substitu-
ents. This trend can be understood in terms of increasing

electronic repulsions between the lone pairs of electrons on
the oxygen atoms as a result of the electron-donating
substituents.[14]

The B-O bond length of 2 is longer than that of 5, while
the average B-N length of 2 is shorter than that of 5. In
addition, the sum of the three N-B-N angles of 2 is larger than
that of 5. These data suggest that 2 may have more ion pair
character and consist of a borenium cation and peroxyanion.
In other words, the s-orbital character of the boron center of 2
is larger than that of 5. Similarly, tert-butylperoxide 7 and
peroxo-bridged diboron 4 show larger s-orbital characters
than B-methoxide 3 and m-oxo-bridged diboron 6, respec-
tively. The s-orbital characters of 8 and 9 are larger than those
of 2 and 7, which comes from the higher stabilities of the
benzoate and perbenzoate groups. The s-orbital characters of
the central boron atoms increase in the order of 4< 7< 2< 8,
opposite to the trend of the O¢O bond lengths. Density

Figure 1. X-ray crystal structures of a) 2 and b) 4. Thermal ellipsoids
are scaled to 50% probability. Solvent molecules are omitted for
clarity. 2 revealed a face-to-face packing of dimers through two
intermolecular hydrogen-bonding interactions of the O-O-H units. See
Figure S8-7 for details.

Table 1: Bond lengths [ç] and the sums of N-B-N angles [88] .

Compound O-O B-O B-N[a] Sum of ]NBN

4[b] (B-OOB) 1.484 1.450 1.494 316.4
7[b,c] (B-OOtBu) 1.475 1.457 1.491 316.9
2 (B-OOH) 1.469 1.468 1.484 319.4
8 (B-OOCOAr) 1.466 1.493 1.479 320.4
6[b,d] (B-OB) – 1.415 1.515 310.1
3[b,c,e] (B-OMe) – 1.436 1.497 313.9
5[b,c] (B-OH) – 1.447 1.498 313.8
9[b,c] (B-OCOAr) – 1.500 1.483 318.6

[a] Mean bond lengths of three B¢N bonds. [b] Mean values of two
subporphyrinatoboron moieties are represented. [c] The asymmetric unit
contains two independent subporphyrinatoboron molecules.
[d] Ref. [9b]. [e] Ref. [11c]. B =meso-triphenylsubporphyrinatoboron,
Ar = 3-chlorophenyl.
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functional theory (DFT) calculations were performed on 2–9
by using the Gaussian09 package, and the optimized struc-
tures were obtained after geometry optimizations at the
B3LYP/6-31G(d) level (Figure S10-1).[15] The calculated
structures are in good agreement with the crystal structures,
thereby supporting the above arguments.

The electrochemical properties of the subporphyrin B-
peroxides were examined by cyclic voltammetry (Figure S9).
The first one-electron reductions of the B-peroxides are all
quasi-irreversible, thus suggesting that the one-electron
reduction induces O¢O bond cleavage. The first reduction
potentials are positively shifted in the order 4 (¢1.97 V)< 7
(¢1.94 V)< 2 (¢1.81 V)< 8 (¢1.70 V), again reflecting the
electron-donating abilities of the peroxy substituents. These
differences are also supported by calculations of the molec-
ular orbital energies (Figure S10-2).

The infrared and Raman spectra of subporphyrin B-
peroxides were measured. DFT frequency calculations were
conducted to simulate the infrared spectra, thereby allowing
the B-O stretching vibrations of 2, 4, 7, and 8 at 966, 972, 992,
and 970 cm¢1, respectively, to be assigned (Figures S7-1 and
S7-2). These B-O bands are at lower frequencies than that of 5
(1105 cm¢1), but at higher frequencies than those of 3
(954 cm¢1) and 9 (909 cm¢1). These results indicate that the
B-O stretching vibrational frequencies increase in the order
B-O-R<B-O-O-R<B-O-H, as the size of the substituents
on the oxygen atom decreases. The O-H stretching band of 2
was observed at 3373 cm¢1, which is lower than that of 5
(3634 cm¢1), which suggests that the O¢H bond of 2 is weaker
than that in 5. The Raman spectra of the subporphyrin B-
peroxides were measured to directly observe the O-O
stretching vibration. As a consequence of the relatively
intense fluorescence and facile decomposition of 2, 4, and 8
under the measurement conditions, their Raman spectra were
difficult to observe. However, a rather clear Raman spectrum
was obtained for the tert-butylperoxide 7. The frequencies of
the experimentally observed Raman feature of 7 is linearly
correlated with the calculated Raman-active vibration modes
(Figure S7-3). The s-bond character of O¢O bond leads to
a small polarizability of the O-O stretching modes and hence
the almost suppressed Raman peaks near 900–1000 cm¢1,
where O-O stretching is predicted to be observed. However,
as a result of coupling with the backbone vibration of the
subporphyrin macrocycle, slightly allowed Raman peaks of 7
have been observed as broad signals around 900 nm.

The UV/Vis absorption and fluorescence spectra of 2, 7,
and 8 in CH2Cl2 are quite similar to those of 3 and 5, with their
Soret-like bands at 372–374 nm, Q-like bands at 460–461 and
484–485 nm, and fluorescence maxima at 519–521 nm
(Figure 2, see also Figures S5-1 and S5-2). On the other
hand, peroxo-bridged dimer 4 and m-oxo-bridged diboron 6
revealed blue-shifted Soret-like bands at 364 and 363 nm,
respectively. Since the two subporphyrin subunits of 4 and 6
are in proximity, the energy shifts of the Soret bands were
attributed to excitonic coupling between the subporphyrin
moieties. We performed time-correlated single-photon count-
ing (Figure S5-4) to obtain the lifetimes of the excited singlet
state. The fluorescence decay profile of 2 fitted well with
a single exponential function with a time constant of tf =

2.8 ns, which was quite similar to that of 3 (tf = 2.95 ns),
while a slightly shorter lifetime constant of tf = 2.3 ns was
obtained for 4. These observations are consistent with the
results obtained by femtosecond transient absorption meas-
urements, where the excited species of 2 and 4 were found to
decay with time constants of 2.8 and 2.3 ns, respectively.

The reactivity of the subporphyrin B-peroxides was
briefly examined (Scheme 3). Subporphyrin B-hydroperoxide

2 smoothly oxidized triphenylphosphine to triphenylphos-
phine oxide in good yields with concurrent formation of 5.
However, 2 could not oxidize phenyldodesylsulfide or do-
desylmethylsulfide, thus indicating its weak oxidation ability
compared to tert-butylhydroperoxide and 3-chloroperoxy-
benzoic acid. The other B-peroxides 4, 7, and 8 could not
oxidize triphenylphosphine. Finally, it was found that the
reaction of 7 with Ph3C[B(C6F5)4] produced triphenylmethyl-
tert-butylperoxide and the borenium cation in good yields.[11d]

In summary, the subporphyrin B-peroxides 2, 7, and 8
were synthesized effectively in good yields by nucleophilic
substitution of the boron methoxide 3 with the corresponding
hydroperoxides. Thermal dimerization of 2 provided peroxo-
bridged subporphyrin dimer 4 quantitatively. Single-crystal
X-ray diffraction analysis revealed the first solid-state struc-
tures of a boron hydroperoxide, an acyclic boron organylper-
oxide, and a neutral peroxo-bridged diboron. As the electron-
donating ability of the peroxy substituents increases, the O¢O
bond length increases while the s-orbital character of the
central boron atoms decreases. The electrochemical proper-
ties of the peroxides can be modulated by exchanging the

Figure 2. UV/Vis absorption and fluorescence spectra recorded in
CH2Cl2.

Scheme 3. Reactions of subporphyrinatoboron(III) peroxides. [a] Yields
were determined by 1H NMR spectroscopy, using 1,1,2,2-tetrachloro-
ethane as an internal standard.
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substituent on the peroxy moiety, with the photophysical
properties remaining almost unchanged. These B-peroxides
show only poor oxidizing abilities, but study of the novel
reactivity of subporphyrin B-peroxides is worthy of further
investigation.
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