

Communication

Organocatalytic Diboration Involving "Reductive Addition" of a Boron–Boron #-Bond to 4,4'-Bipyridine

Toshimichi Ohmura, Yohei Morimasa, and Michinori Suginome

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.5b00546 • Publication Date (Web): 10 Feb 2015

Downloaded from http://pubs.acs.org on February 18, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Organocatalytic Diboration Involving "Reductive Addition" of a Boron–Boron σ -Bond to 4,4'-Bipyridine

Toshimichi Ohmura,* Yohei Morimasa, Michinori Suginome*

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Supporting Information Placeholder

ABSTRACT: A 4,4'-bipyridine-based catalyst system for diboration of pyrazine derivatives was established. The catalyst cycle consists of the following two steps: (1) reductive addition of the boron-boron bond of bis(pinacolato)diboron to 4,4'-bipyridine to form N,N'-diboryl-4,4'-bipyridinylidene, and (2) oxidative boryl transfer from the intermediate to pyrazine to give N,N'-diboryl-1,4-dihydropyrazine with regeneration of 4,4'-bipyridine.

Transition metal catalysts have played privileged roles in the development of catalytic additions of nonpolar σ -bonds E^1-E^2 such as H–H, B–B, Si–Si, and B–Si bonds across carboncarbon and carbon–heteroatom multiple bonds. ^{1,2} A key feature of transition metal catalysts is their high ability to activate nonpolar σ -bonds, mainly through oxidative addition to form E^1 –[cat]– E^2 (Scheme 1, [cat] = transition metal).³

Scheme 1. Catalytic Addition Reaction of E^1 – E^2 to X=Y via Formation of E^1 –[cat]– E^2

$$E^{1}-E^{2} \xrightarrow{\text{[cat]}} E^{1} \xrightarrow{\text{E}^{1}} E^{2} \xrightarrow{\text{[cat]}} X=Y \xrightarrow{\text{E}^{1}} E^{1} \xrightarrow{\text{E}^{2}} X=Y$$

[cat] = transition metal (common)

[cat] = organic molecule (uncommon, This Work)

On the other hand, rapid progress in organocatalysis has also enabled activation of nonpolar *σ*-bonds. It has been shown that H–H bond is successfully activated by a frustrated Lewis pair (FLP) catalyst, allowing organocatalytic hydrogenation of carbon–nitrogen and carbon–carbon double bonds. And Moreover, diboration of alkenes in the presence of a catalytic amount of Lewis bases such as *t*-BuONa or Cs₂CO₃ has been demonstrated. These new reactions clearly suggest further development of useful transformations through organocatalytic activation of nonpolar *σ*-bonds.

Is it then possible to generate an intermediate E^1 –[cat]– E^2 in organocatalytic addition reactions (Scheme 1, [cat] = organic molecule)? Because the organocatalyst is formally reduced, the elementary step to form the E^1 –[cat]– E^2 species is now regarded as formal "reductive addition." Transfer of E^1 and E^2 from E^1 –[cat]– E^2 species to unsaturated organic molecules results in the formation of an addition product. In the current paper, we discuss the organocatalytic addition proceeding through formation of isolable E^1 –[cat]– E^2 intermediates, taking 4,4'-bipyridine-catalyzed diboration of pyrazines as an example.

compounds undergo addition of boron reagents to give the dearomatized products. 11 , 12 , 13 Silaboration 11a and hydroboration 11b of pyridines take place at 50 °C in the presence of palladium and rhodium catalysts. Further, we established an addition of bis(pinacolato)diboron (1) 14 to sterically unhindered pyrazines, which proceeds efficiently at room temperature even in the absence of transition metal catalysts. 12 A possible driving force of the reactions is formation of a stable boron—nitrogen bond. We then turned our attention to diboration of bipyridines, in which aromaticity at the two aromatic rings is lost simultaneously.

Reaction of 4,4'-bipyridine (2a) with 1 (1.05 equiv) was carried out in benzene (entry 1, Table 1). Because two adjacent pyridine rings would lose aromaticity, the addition reaction of 1 into 2a was expected to be rather unfavorable. However, we found that the reaction took place efficiently at 110 °C (bath temperature) to give *N,N'*-diboryl-4,4'-bipyridinylidene 3a as a yellow solid in 94% yield after 16 h. 15 Although dearomatized 3a was air and moisture sensitive both in a solid state and in a solution, it was thermally stable and

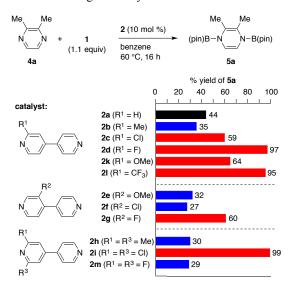
Table 1. Addition of 1 to 4,4'-Bipyridines 2^a

entry	R^1	R^2	R^3	R^4		temp (°C)	% yield ^b
1	Н	Н	Н	Н	2a	110	94 (3a)
2	Me	Н	Н	Н	2b	110	50 (3b)
3^c	Cl	Н	Н	Н	2 c	60	65 (3c)
4^d	F	Н	Н	Н	2d	60	60 (3d)
5	Н	OMe	Н	Н	2e	110	62 (3e)
6^e	Н	Cl	Н	Н	2f	60	56 (3f)
7	Н	F	Н	Н	2g	60	$93^f(\mathbf{3g})$
8	Me	Н	Me	Н	2h	110	61 (3h)
9	Cl	Н	Cl	Н	2i	60	$0^g (3i)$
10	Me	Me	Me	Me	2j	110	$0^h \left(\mathbf{3j} \right)$

 $[^]a$ 1 (0.21 mmol) and 2 (0.20 mmol) in benzene (0.4 mL) was stirred at 110 °C for 16 h. b Isolated yield based on 2. c For 4 h with 1 (1.5 equiv). d For 10 h. e For 24 h. f Including O[B(pin)] $_2$ (4%) that could not be removed. g No desired product was obtained. h No reaction took place.

could be stored under inert atmosphere at room temperature for at least 3 months.

Substituted 4,4'-bipyridines 2b-2j were subjected to reaction with 1 in benzene (entries 2-10, Table 1). 2-Methyl-4,4'bipyridine (2b) underwent addition of 1 at 110 °C to afford 3b (entry 2). The isolated yield was moderate, because of its relatively high solubility in benzene. 2-Chloro- (2c) and 2fluoro-4,4'-bipyridine (2d) were more reactive than 2a and 2b: the reaction with 1 proceeded smoothly at 60 °C to give 3c and **3d** in moderate yields (entries 3 and 4). Addition of 1 to 3methoxy-, 3-chloro-, and 3-fluoro-4,4'-bipyridines 2e-2g also took place at 60-110 °C to give 3e-3g (entries 5-7). 2,6-Dimethyl-4,4'-bipyridine (2h) afforded the corresponding product in moderate yield (entry 8), whereas no reaction took place for 2,2',6,6'-tetramethyl-4,4'-bipyridine (2j, entry 10). These results indicate that steric hindrance around both nitrogen atoms retards the reaction, as observed in the reaction of pyrazine. ¹² 2,6-Dichloro-4,4'-bipyridine (2i) may undergo the addition of 1 at 60 °C, but no desired adduct 3i was obtained probably because 3i was unstable under these conditions (entry 9).


In the course of examination of the synthesis and reactivity of **3**, we found that boryl groups on **3c** migrated to 2,3-dimethylpyrazine (**4a**) within 1 h even at room temperature, giving *N*,*N*'-diboryl-1,4-dihydropyrazine **5a** in high yield (Scheme 2, top).¹⁷ It is interesting to note that no borylation of **4a** took place in the attempted direct diboration with diboron **1** at room temperature or even under reflux in benzene (Scheme 2, bottom).¹² The formation of **5a** was accompanied by quantitative formation of bipyridine **2c** (Scheme 2, top). These results suggest that the diboration of sterically demanding pyrazine is enabled by using a diboration product of bipyridine **2** as an intermediate, instead of using diboron **1** directly.

Scheme 2. Boryl Transfer from 3i to 4a

A new organocatalytic diboration of sterically hindered 4 was designed as shown in Scheme 3. The catalytic cycle consists of the following two steps: (1) reductive addition of the B-B bond of diboron 1 to bipyridine 2 to form a dearomatized intermediate 3, and (2) oxidative boryl transfer from 3 to pyrazine 4 to give 5 with regeneration of 2. This catalytic reaction indeed worked well as expected. A reaction of 4a with 1 (1.1 equiv) in benzene at 60 °C in the presence of 2a (R¹ = H, 10 mol %) afforded 5a in 44% yield (Scheme 4). As mentioned above, no reaction took place in the absence of 2, even at 110 °C (Scheme 2, bottom), indicating significant

Scheme 3. Possible Catalytic Cycle

Scheme 4. Screening of Catalysts for Addition of 1 to 4a^a

 a 1 (0.44 mmol), 2 (0.040 mmol), and 4a (0.40 mmol) were stirred in benzene (0.2 mL) at 60 °C for 16 h. Yields were determined by 1 H NMR based on 4a.

rate acceleration was accomplished by the catalytic amount of **2a**.

The catalyst efficiency of 4,4'-bipyridines was highly dependent on the substituent at the C2 position (Scheme 4). The yields of **5a** were improved by **2c** ($R^1 = Cl$), **2d** ($R^1 = F$), **2k** ($R^1 = OMe$), and **2l** ($R^1 = CF_3$), whereas **2b** ($R^1 = Me$) resulted in lower yields. These results indicate that the catalyst efficiency correlates closely with inductive effect of the substituents, and that the bipyridines bearing stronger electronwithdrawing groups achieve higher catalyst efficiency (2d, 2l > 2c, 2k > 2a > 2b). The substituents at the C3 positions also affected the catalyst efficiency. The product 5a was formed in moderate yield with $2g (R^2 = F)$, whereas $2e (R^2 = OMe)$ and **2f** ($R^2 = Cl$) gave **5a** in low yields. These results indicate the effect of the dihedral angle made by the two pyridine rings. We finally found that $2i (R^1 = R^3 = Cl)$ showed the highest catalyst efficiency. Unexpectedly low catalyst efficiency of **2m** $(R^1 = R^3 = F)$ could be attributed to excessive electron deficiency on the pyridine ring because of the double substitution of the fluorine atoms.

Table 2. Reaction Conditions for **2i**-Catalyzed Addition of **1** to $4a^a$

entry	catalyst loading (mol %)	solvent	% yield ^b
1	10	benzene	99
2	5	benzene	66
3	5	THF	91
4	5	cyclohexane	99 (84) ^c
5 ^d	2.5	cyclohexane	71

 $[^]a$ 1 (0.44 mmol), 2i (0.010-0.040 mmol), and 4a (0.40 mmol) were stirred in a solvent (0.2 mL) at 60 °C for 16 h unless otherwise noted. b ¹H NMR yield based on 4a. c Isolated yield based on 4a. d At 80 °C.

The catalyst efficiency was improved further by changing the solvent from benzene to THF or cyclohexane (Table 2). The 2i-catalyzed reaction in cyclohexane resulted in high yield formation of 5a with lower catalyst loading (5 mol %, entry 4). ¹⁸ Dearomatized 5a was thermally stable and could be purified by distillation. The catalyst loading could be reduced to 2.5 mol %, although elevated reaction temperature (80 °C) was required (entry 5).

To examine the scope of the catalytic B–B bond cleavage by

Table 3. Organocatalytic Diboration of Pyrazine Derivatives 4^a

entry	substrate	product	% yield ^b
	EtO Me	EtO Me	
1	N N	(pin)B-N N-B(pin)	78 (0)
•		<u>_</u> /	70 (0)
	4b	5b	
	CI CI	CI CI	
2^c	NN	(pin)B-N N-B(pin)	57 (0)
	40	<u> </u>	()
	4c	5c	
	Me —	Me	
3	N N	(pin)B-N N-B(pin)	88 (23)
	Me	Me	00 (=0)
	4d	5d	
	ClMe	ClMe	
4	N N	(pin)B-N N-B(pin)	82 (0)
4	Me	Me	
	4e	5e	
	Me Me	Me Me	58 (0)
$5^{d,e}$	N, N	(pin)B-N N-B(pin)	
5,-	Me Me	Me Me	
	4f	5f	
		\\\\	
6^f	N N	(pin)B-N N-B(pin)	83 (<1)
	Me Me	Me Me	
	4g	5g	
_	>=< N N	$para = \langle para para = \langle para = \langle para para = \langle para =$	2.5 (0)
7	· •	>= <	96 (0)
	Ph Ph 4h	Ph	
		5	
	<u>_</u> >	<u>_</u> >	
0	N N	(pin)B-N N-B(pin)	00 (0)
8			99 (0)
	•	<u> </u>	
	4i	5i	

^a 1 (0.44 mmol), 2i (0.020 mmol, 5 mol %), and 4 (0.40 mmol) were stirred in cyclohexane (0.2 mL) at 60 °C for 16 h unless otherwise noted. ^b Isolated yield based on 4. In parenthesis, ¹H NMR yield of the reaction at 110 °C for 16 h in the absence of the bipyridine catalyst. ^c 2c (9 mol %) was used instead of 2i. ^d 2i (10 mol %). ^e At 110 °C. ^f A gram scale reaction of 4g (3 mmol) in THF using 2i (8 mol %), giving 5g (1.0 g).

4,4'-bipyridine, pyrazine derivatives 4b-4i were subjected to diboration with 1 using 2i as a catalyst (Table 3). 19,20 In the presence of 2i (5 mol %), 2-ethoxy-3-methylpyrazine (4b) underwent addition of 1 in cyclohexane at 60 °C to give 5b in good yield (entry 1). In diboration of 2,3-dichloropyrazine (4c), 2c gave better catalyst efficiency than 2i (entry 2). Although 2,5-dimethylpyrazine (4d) reacted with 1 slowly in the absence of the catalyst to afford 5d (23% yield at 110 °C), the reaction was accelerated in the presence of 2i, resulting in the formation of 5d in 88% yield at 60 °C (entry 3). Diboration of trisubstituted 3-chloro-2,5-dimethylpyrazine (4e) also took place efficiently to give 5e in high yield (entry 4). 2,3,5,6-Tetramethylpyrazine (4f) did not undergo diboration at all under these conditions, probably because of its steric hindrance. However, we found that 4f underwent diboration by increasing the catalyst loading (10 mol %) at an elevated reaction temperature (110 °C) (entry 5). Also diborylated efficiently were sterically demanding 2,3-disubstituted quinoxalines 4g and 4h and phenazine (4i), in which the loss of aromaticity is reduced because of the polycyclic aromatic structure (entries 6-8).21 It should again be noted that, without catalyst 2i, no or only inefficient reactions took place (Table 3, yields in parentheses).

In conclusion, we have established a conceptually new organocatalytic addition reaction of nonpolar E^1-E^2 bond to unsaturated substrates with formation of $E^1-[cat]-E^2$ as a key catalyst intermediate via reductive addition of E^1-E^2 bond to 4,4'-bipyridines used as an organocatalyst. Remarkable catalyst efficiency of 4,4'-bipyridines has been demonstrated in diboration of sterically hindered pyrazines. The mechanism involving organocatalytic σ -bond activation would be a new tool for organic transformations as an alternative to transition-metal-catalyzed reactions. The development of catalytic reactions based on this concept to enable C–B bond formation is being undertaken in this laboratory.

ASSOCIATED CONTENT

Supporting Information. Experimental details and characterization data of the products. This material is available free of charge via Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

ohmura@sbchem.kyoto-u.ac.jp suginome@sbchem.kyoto-u.ac.jp

ACKNOWLEDGMENT

We thank Dr. Keiko Kuwata and Ms. Karin Nishimura at Technical Support Office, Kyoto Univ., for helping with HRMS measurements of **3**. This work is supported by Grant-in-Aid for Challenging Exploratory Research (No. 25620082) from JSPS.

REFERENCES

⁽¹⁾ The Handbook of Homogeneous Hydrogenation, de Vries, J. G.; Elsevier, C. J. eds., Wiley-VCH, 2006.

⁽²⁾ Reviews on transition-metal-catalyzed addition of B–B, Si–Si, and B–Si bonds: (a) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (b) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717. (c) Ohmura, T.; Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29. (d) Suginome, M.; Ohmura, T. In Boronic Acids second edition, ed. D. Hall, Wiley-VCH, 2011, vol. 1, pp 171. (e) Takaya, J.; Iwasawa, N.

- ACS Catal. **2012**, *2*, 1993. (f) Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev. **2013**, *133*, 402.
- (3) (a) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 2nd ed., John Wiley and Sons: New York, 1994. (b) Hartwig, J. F. Organotransition Metal Chemistry, University Science Books, California, 2010. For oxidative addition of B–B to Rh(I) and Pt(0), see: (c) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. (d) Nguyen, P.; Lesley, G.; Taylor, N. J.; Marder, T. B.; Pickett, N. L.; Clegg, W.; Elsegood, M. R. J.; Norman, N. C. Inorg. Chem. 1994, 33, 4623. (e) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713.
- (4) (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 8050. (b) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem. Int. Ed. 2008, 47, 7543. For recent reviews, see: (c) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740. (d) Stephan, D. W.; Erker, G. Top. Curr. Chem. 2013, 332, 85. (e) Hounjet, L. J.; Stephan, D. W. Org. Process Res. Dev. 2014, 18, 385. (f) Paradies, J. Angew. Chem. Int. Ed. 2014, 53, 3552.
- (5) *t*-BuOK-catalyzed hydrogenation of ketones with H₂ has also been reported. (a) Walling, C.; Bollyky, L. *J. Am. Chem. Soc.* **1961**, 83, 2968. (b) Walling, C.; Bollyky, L. *J. Am. Chem. Soc.* **1964**, 86, 3750. (c) Berkessel, A.; Schubert, T. J. S.; Müller, T. N. *J. Am. Chem. Soc.* **2002**, 124, 8693.
- (6) (a) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. *Angew. Chem. Int. Ed.* **2011**, *50*, 7158. (b) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. *Org. Biomol. Chem.* **2012**, *10*, 6621. (c) Blaisdell, T. P.; Caya, T. C.; Zhang, L.; Sanz-Marco, A.; Morken, J. P. *J. Am. Chem. Soc.* **2014**, *136*, 9264. (d) Miralles, N.; Cid, J.; Cuenca, A. B.; Carbó, J. J.; Fernández, E. *Chem. Commun.* **2015**, *51*, 1693. For related diboration using stoichiometric amount of an alkoxide, see: (e) Nagashima, Y.; Hirano, K.; Takita, R.; Uchiyama, M. *J. Am. Chem. Soc.* **2014**, *136*, 8532. For *t*-BuOK-catalyzed silaboration of styrenes, see: (f) Ito, H.; Horita, Y.; Yamamoto, E. *Chem. Commun.* **2012**, *48*, 8006.
- (7) α,β-Unsaturated carbonyl compounds and imines also undergo addition of diboron under organocatalytic conditions, giving β-boryl carbonyl compounds and α-boryl alkylamine derivatives, respectively. (a) Lee, K.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253 and J. Am. Chem. Soc. 2010, 132, 12766 (additions & corrections); (b) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem. Int. Ed. 2010, 49, 5130. (c) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Chem. Eur. J. 2012, 18, 1121. (d) Wu, H.; Radomkit, S.; O' Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277. (e) Solé, C.; Gulyás, H.; Fernández, E. Chem. Commun. 2012, 48, 3769. (f) Wen, K.; Chen, J.; Gao, F.; Bhadury, P. S.; Fan, E.; Sun, Z. Org. Biomol. Chem. 2013, 11, 6350. (g) Cid, J.; Carbó, J. J.; Fernández, E. Chem. Eur. J. 2014, 20, 3616. (h) Cascia, E. L.; Sanz, X.; Bo, C.; Whiting, A.; Fernández, E. Org. Biomol. Chem. 2015, 13, 1328.
- (8) For reviews, see: (a) Cid, J.; Gulyás, H.; Carbó, J. J.; Fernández, E. *Chem. Soc. Rev.* **2012**, *41*, 3558. (b) Gulyás, H.; Bonet, A.; Pubill-Ulldemolins, C.; Solé, C.; Cid, J.; Fernández, E. *Pure Appl. Chem.* **2012**, *84*, 2219.
- (9) FLP-catalyzed hydrogenation involves formation of a highly polarized [H–LA]⁻[H–LB]⁺ species as a catalyst intermediate via heterolytic cleavage of H–H bond (LA: Lewis acid; LB: Lewis base). See ref. 4. Related organocatalytic activation of H–Si and H–B bonds: (a) Parks, D. J.; Piers, W. E. *J. Am. Chem. Soc.* **1996**, *118*, 9440. (b) Rendle, S.; Oestreich, M. *Angew. Chem. Int. Ed.* **2008**, *47*, 5997. (c) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. *J. Am. Chem. Soc.* **2012**, *134*, 17384. (d) Houghton, A. Y.; Hurmalainen, J.; Mansikkamäki, A.; Piers, W.; Tuononen, H. M. T. *Nat. Chem.* **2014**, *6*, 983.

- (10) Lewis base-catalyzed diboration involves formation of sp²–sp³ hybridized diboron as a catalyst intermediate via nucleophilic attack of the Lewis base to the boron center. See ref. 6 and 7. See also following references that involve structurally characterized sp²–sp³ hybridized diboron: (a) Clegg, W.; Dai, C.; Lawlor, F. J.; Marder, T. B.; Nguyen, P.; Norman, N. C.; Pickett, N. L.; Power, W. P.; Scott, A. J. *J. Chem. Soc., Dalton Trans.* 1997, 839. (b) Gao, M.; Thorpe, S. B.; Kleeberg, C.; Slebodnick, C.; Marder, T. B.; Santos, W. L. *J. Org. Chem.* 2011, 76, 3997. (c) Kleeberg, C. K.; Crawford, A. G.; Batsanov, A.; Hodgkinson, P.; Apperley, D. C.; Cheung, M. S.; Lin, Z.; Marder, T. B. *J. Org. Chem.* 2012, 77, 785.
- (11) (a) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. **2011**, 133, 7324; (b) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. **2012**, 134, 3699.
- (12) Oshima, K.; Ohmura, T.; Suginome, M. Chem. Commun. 2012, 48, 8571.
- (13) Catalytic hydroboration of pyridines reported from other groups: (a) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G; Weetman, C. *Organometallics* **2011**, *30*, 5556. (b) Intemann, J.; Lutz, M.; Harder, S. *Organometallics* **2014**, *33*, 5722. (c) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. *Nat. Chem.* **2014**, *6*, 1100. Transition-metal-free addition of Ph₂P–B(pin) to pyridine and acridine: (d) Daley, E. N.; Vogels, C. M.; Geier, S. J.; Decken, A.; Doherty, S.; Westcott, S. A. *Angew. Chem. Int. Ed.* Early View (DOI: 10.1002/anie.201410033).
- (14) (a) Nöth, H. Z. Naturforsch. **1984**, *39b*, 1463. (b) Ishiyama, T.; Murata, M.; Ahiko, T.; Miyaura, N. Org. Synth. **2000**, *77*, 176.
- (15) A related compound, N,\bar{N} '-bis(dimesitylboryl)-4,4'-bipyridinylidene, has been reported. (a) Lichtblau, A.; Kaim, W.; Schulz, A.; Stahl, T. *J. Chem. Soc., Perkin Trans.* 2 **1992**, 1497. (b) Lichtblau, A.; Hausen, H.-D.; Schwarz, W.; Kaim, W. *Inorg. Chem.* **1993**, *32*, 73.
- (16) The adducts **3c** and **3d** were relatively unstable under the reaction conditions, thus the reaction at 110 °C resulted in significant degrease of the yields because of product decomposition.
- (17) For precedents of *N*,*N*'-diboryl-1,4-dihydropyrazines, see refs. 12 and 15.
- (18) We separately found that the stoichiometric reaction of 1 with 2a was faster in cyclohexane than in benzene. Indeed, at 110 °C after 6 h, the reaction in cyclohexane provided 78% yield of product 3a, while that in benzene gave 66% yield. This result may indicate that improvement of catalyst efficiency by using cyclohexane as a solvent can be attributed at least to the acceleration of the reductive addition step.
- (19) Although dearomatized **5** were air and moisture sensitive, they were thermally stable and could be purified by distillation.
- (20) There has been much interest in the chemistry of 1,4dihydropyrazines, including their synthetic utilities and structural features as exemplified below. Applications in inorganic synthesis: (a) Saito, T.; Nishiyama, H.; Tanahashi, H.; Kawakita, K.; Tsurugi, H.; Mashima, K. J. Am. Chem. Soc. 2014, 136, 5161. Studies focused on the antiaromatic character arising from their conjugated cyclic 8πelectron structure: (b) Kaim, W. Angew. Chem. Int. Ed. 1981, 20, 599. (c) Kaim, W. J. Am. Chem. Soc. 1983, 105, 707. (d) Lichtblau, A.; Ehlend, A.; Hausen, H.-D.; Kaim, W. Chem. Ber. 1995, 128, 745. See also ref. 15. Studies focused on their electron-rich ring systems: (e) Kaim, W. Angew. Chem. Int. Ed. 1981, 20, 600. (f) Brook, D. J. R.; Haltiwanger, R. C.; Koch, T. H. J. Am. Chem. Soc. 1991, 113, 5910. (g) Brook, D. J. R.; Haltiwanger, R. C.; Koch, T. H. J. Am. Chem. Soc. 1992, 114, 6017. Studies on their key role in the structure of redoxactive biological molecules: (h) Goto, T.; Kishi, Y. Angew. Chem. Int. Ed. 1968, 7, 407. (i) Walsh, C. Acc. Chem. Res. 1980, 13, 148.
- (21) The parent quinoxaline underwent addition of $\bf 1$ at 60 °C in the absence of the bipyridine catalyst (see Supporting Information).