

Construction of 2,3-Dihydrofuran Cores through the [3+2] Cycloaddition of Gold α-Carbonylcarbenoids with Alkenes

Chia-Wen Li, Guan-You Lin, and Rai-Shung Liu*^[a]

Abstract: Treatment of 2-epoxy-1-alkynylbenzenes with electron-rich alkenes and a [AuCl(PR₃)]/AgX catalyst in CH₂Cl₂ led to the formation of 2-alkenyl-1-(2,3-dihydrofuran-4-yl)benzenes. This transformation comprises of a gold-catalyzed redox reaction to form a gold α -carbonylcarbenoid initially, which then reacts in situ with an alkene in a [3+2] cycloaddition. A range of alkenes are amenable to this tandem reaction, amongst them α -substituted styrenes, enol ethers, and 2,3dimethylbutadienes. Deuterium-labeling experiments suggest a stepwise mechanism for the α -carbonylcarbenoid/alkene [3+2] cycloaddition. The resulting 2,3-dihydrofuran products allow access to diverse oxacyclic compounds through a stereoselective ene-

Keywords: cycloaddition • dihydrofurans • carbenoids • epoxides • gold oxonium reaction initiated by treatment with HOTf (1 mol %; Tf = tri-fluoromethanesulfonyl). A stepwise pathway is proposed for this reaction. The feasibility for direct transformation of 2-alkenyl-1-alkynylbenzenes into the desired 2,3-dihydrofuran products through initial *m*-chloroperbenzoic acid oxidation, followed by the addition of gold catalyst and alkene, has also been demonstrated.

Introduction

One important advent in modern synthetic chemistry is the generation of a metal carbenoid from an alkyne using Au^I catalysts.^[1-5] Among the reported gold carbenoids, the α -carbonylcarbenoid is the most easily accessible because of the availability of various redox reactions for carbenoid generation.^[2-4] However, the use of gold α -carbonylcarbenoid **A** is less widespread than that of gold alkenylcarbenoid **B**,^[6-8] indicated by its lack of cycloaddition reactions. Alkenylcarbenoid **B** is also represented by the gold-stabilized allyl cation **B'** to rationalize its highly electrophilic nature^[6,7] and versatile [3+*n*] (*n*=2, 3, or 4) cycloaddition reactions.^[8] In contrast, gold α -carbonylcarbenoid **A** truly reflects a carbenoid character because the resonance structure **A'** is less important (Scheme 1).

Cycloaddition of gold α -carbonylcarbenoids with dipolarophiles remains a formidable obstacle to overcome. Although the [3+2] cycloaddition of α -carbonylcarbenoids

 [a] C.-W. Li, Dr. G.-Y. Lin, Prof. Dr. R.-S. Liu Department of Chemistry, National Tsing-Hua University Hsinchu, Taiwan (ROC)
 Fax: (+86)3-5711082
 E-mail: rsliu@mx.nthu.edu.tw

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201000009.

Scheme 1. Representations for α -carbonylcarbenoid **A** and alkenylcarbenoid **B**.

with alkenes was documented for copper and rhodium systems from α -diazocarbonyl precursors, reported examples are limited strictly to reactions with enol ethers.^[9] For gold alkenylcarbenoids **B**, reactions with alkenes or enol ethers gave only cyclopropane products.^[10,11]

Recently, Hashmi et al.^[4b] and ourselves^[4a] independently studied the cycloisomerization of 2-epoxy-1-alkynylbenzenes **II** (Scheme 2) using different gold catalysts. Notably, the use of $[AuCl(PPh_3)]/AgSbF_6$ (each at 5 mol% loading) led to the epoxide/ketone rearrangement of starting substrate **II**. With $[AuCl(PPh_3)]/AgSbF_6$ (5 and 2 mol%, respectively) we found that the resulting carbenoids **III** were stable and efficiently trapped with an external styrene or Ph₂SO, as depicted in Scheme 2.^[5a] The tethered alkene in **III** does not affect the carbenoid electrophilicity and the species retains activity

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- 5803

CHEMISTRY

Scheme 2. Reaction pathways in this gold catalysis.

toward external nucleophiles. This pathway is distinct from that reported by Hashmi and co-workers for carbonyldienyl gold carbenoids.^[5g] The gold carbenoids generated from sulfur- and nitrogen-based redox reactions inevitably suffer loss of electrophilicity through heteroatom coordination. The use of these carbenoids is strictly limited to cyclization with their tethered functionalities.^[2-4] Herein, we report the [3+2] cycloaddition reactions of gold α -carbonylcarbenoids **III** with a range of alkenes. We also report that the resultant 2.3-dihydrofurans IV undergo a subsequent HOTf-catalyzed (Tf=trifluoromethanesulfonyl) cyclization to give tricyclic tetrahydrofuran species V and other oxacyclic compounds with high stereocontrol. We also demonstrate examples for a one-pot transformation of 2-alkenyl-1-alkynylbenzenes I and alkenes into 2,3-dihydrofurans IV through gold-catalyzed oxidation with *m*-chloroperbenzoic acid (*m*-CPBA). This direct synthesis uses *m*-CPBA as a source of oxygen to generate α -carbonylcarbenoid III (Scheme 2).

Results and Discussion

Generation of α -carbonylcarbenoid III from epoxide II was previously performed with a mixture of [AuCl(PPh₃)] (5 mol%)/AgSbF₆ (2 mol%),^[12a] which completely inhibited the competitive epoxy-ketone rearrangement.^[5a] As depicted in Table 1, this catalyst mixture implemented the cyclization of epoxide species 1a with 4-vinyl-1-methoxybenzene (5 equiv) in CH₂Cl₂ (40 °C, 6 h) to give the desired 2,3-dihydrofuran 2a in 64% yield. Modification of the catalyst with $[AuCl{P(o-biphenyl)(tBu)_2}]$ or AgNTf₂ failed to result in any improvement (Table 1, entries 2 and 3). The selection of a suitable catalyst is sensitive to the alkene substrate. The combination of [AuCl{P(o-biphenyl)(tBu)₂}]/AgNTf₂^[12b] was superior to [AuCl(PPh₃)]/AgSbF₆ when an enol ether was used (see below).^[13] Subsequent treatment of compound 2a with HOTf (1 mol%) in CH₂Cl₂ (23°C, 3 h) led to an intramolecular cyclization and gave tricyclic ether 3a in 54% yield. At 40% conversion in CH₂Cl₂ (23°C, 1 h), we observed that the isomeric product 3a' (15%) was formed Table 1. Screening of catalyst activity.

[a] [1a] = 0.1 M, alkene (5 equiv), CH₂Cl₂. [b] Yields are reported after silica chromatography. [c] [AuClL] = [AuCl{P(tBu)₂(o-biphenyl)}].

along with species 3a (21%). Species 3a' quickly isomerized to the more stable isomer 3a after a short reaction catalyzed by Brønsted acid. Isolation of isomer 3a' in a pure form was hampered by its instability during elution on a silica column, but it was identified by ¹H NMR spectroscopy.

The generality of this 2,3-dihydrofuran synthesis using various alkenes and epoxides was assessed (Table 2). We used three different catalysts to optimize the yields: [AuCl-

Table 2. Gold-catalyzed [3+2] cycloadditions.

Entry	Epoxide		Alkene	Conditions ^[a]	Products ^[b]
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	(t [h])	(yield [%])
1	<i>n</i> Bu (1a)	Me	4-MeOC ₆ H ₄	B (6)	2b (95)
2	<i>n</i> Bu (1a)	Me	Ph	A (6)	2 c (82)
3	<i>n</i> Bu (1a)	<i>n</i> Bu	Ph	A (6)	2d (52)
4	<i>n</i> Bu (1a)	Me	2-naphthyl	A (6)	2e (50)
5	<i>n</i> Bu (1a)	Ph	Ph	A (6)	2 f (78)
6	<i>n</i> Bu (1a)	Н	OEt	B (3)	2g (88)
7	<i>n</i> Bu (1a)	Me	OMe	B (6)	2h (78)
8	<i>n</i> Bu (1a)	Me	-CMe(C=CH ₂)	C (12)	2i (51)
9	Ph (1b)	Н	OEt	B (12)	2j (81)
10	Ph (1b)	Н	4-MeOC ₆ H ₄	A (12)	2k (68) ^[c]
11	Ph (1b)	Me	Ph	A (12)	21 (61)
12	Me (1 c)	Me	Ph	A (6)	2m (56)
13	Me (1c)	Н	OEt	B (3)	2n (65)

[a] A: $[AuCl(PPh_3)]$ (5%), $AgSbF_6$ (2%), CH_2Cl_2 , 40°C; B: $[AuCl(P-(tBu)_2(o-biphenyl)]]$ (5%), $AgNTf_2$ (2%), CH_2Cl_2 , 40°C; C: [AuCl(IPr)] (5%), $AgSbF_6$ (2%), [epoxide] = 0.1 M, CH_2Cl_2 , 40°C. [b] Yields are reported after separation on a silica column. [c] Cyclopropanation product was obtained in 14% yield.^[19]

5804

$(PPh_3)]/AgSbF_6$ (A), $[AuCl{P(o-biphenyl)(tBu)_2}]/AgNTf_2$ (B), and $[AuCl(IPr)]/AgSbF_6^{[12c]}$ (C, IPr=1,3-bis(diisopropylphenyl)imidazol-2-ylidene), all with an Au^I/Ag^I ration of 5:2 mol%. These systems were applied to derivatives of styrenes, enol ethers, and 2,3-dimethylbutadiene, respectively.

Table 2, entries 1–5, shows the effect of α -substitution on the styrene. Alkenes with R^2 = methyl or phenyl (Table 2, entries 2 and 5) gave better yields than the $R^2 = n$ -butyl analogue (Table 2, entry 3). The alkene in which $R^3 = 2$ -naphthyl is an inferior reaction partner to the analogues in which R^3 =4-methoxyphenyl or phenyl (50% 2e versus 95 and 82% 2b and 2c, respectively). Steric effects clearly affect the cycloaddition. The suitability of mono- and disubstituted enol ethers as nucleophiles was within our expectations (Table 2, entries 6 and 7) and furnished 2,3-dihydrofurans 2g and 2h in 88 and 78% yield, respectively. The cycloaddition is also successful with 2,3-dimethylbutadiene and gives 2i in 51% yield (Table 2, entry 8). Table 2, entries 9–13, shows varied alkynyl substitution (R^1 =Ph, Me) of the epoxide substrates. Compounds 1b and 1c reacted with suitable styrene derivatives and enol ethers to give the desired [3+2]cycloadducts 2j-2n in 56-81% yield. Alongside adduct 2k, we obtained the cyclopropanation product in 14% yield (Table 2, entry 10).

Table 3 shows the effect of substitution of epoxy and phenyl moieties on the gold-catalyzed cycloaddition. For epoxides **1d** and **1e** the reaction with α -phenylstyrene afford-

Table 3. Effect of epoxide and phenyl substituents on the cycloaddition.

[a] [substrate] = 0.1 M. [b] Yields are reported after separation on a silica column. [c] Z/E ratio = 1:1.2.

ed the desired 2,3-dihydrofurans **20** and **2p** in 41 and 62% yield, respectively(Table 3, entries 1 and 2). In the former case, we also obtained aldehyde **1d'** (45%), generated from epoxide–carbonyl rearrangement.^[5a] The catalysis is compatible with the presence of fluoro and chloro groups at the C4 and C5 carbon atoms of the phenyl group of the cyclization substrate (**1 f–i**) and **2q–t** were obtained in 49–76% yield (Table 3, entries 3–6). The chloride substituent resulted in the most productive yield. Epoxides with electron-donating

methoxy groups at the same carbon atoms failed to give the desired 2,3-dihydrofurans in tractable amounts.^[14]

Table 4 highlights the use of cycloalkenes to access complex oxacyclic molecules with effective control of the stereochemistry. Treatment of epoxides **1a** and **1c** with 2,3-dihy-

Table 4. Cycloadditions of epoxides 1 with cycloalkenes.

[a] A: [AuCl(PPh₃)] (5%), AgSbF₆ (2%), CH₂Cl₂, 40°C; B: [AuCl{P-(tBu)₂(o-biphenyl)}] (5%), AgNTf₂ (2%), CH₂Cl₂, 40°C. [b] Isolated yield.

drofuran or 3,4-dihydro-2*H*-pyran in the presence of $[AuCl{P(o-biphenyl)(tBu)_2}]$ (5 mol%)/AgNTf₂ (2 mol%) in hot dichloromethane (conditions B) produced furans **4a** and **4b** (Table 4, entries 1 and 2) and pyrans **4c** and **4d** (Table 4, entries 3 and 4), respectively. For all these products, we obtained a single diastereomer and structural characterization relied on NOE spectroscopy of **4a** and **4d**.^[15] Cycloaddition of epoxide **1a** with 1-methylene-tetrahydronaphthalene gave the desired spiroether **4e** in 82% yield (Table 4, entry 5).

We performed deuterium-labeling experiments to understand the mechanism of the [3+2] cycloaddition reaction. As depicted in Scheme 3, treatment of epoxide **1a** with *cis*-deuterated 4-vinyl-1-methoxybenzene^[16] (X=0.76 D) gave [D₁]**2a**, ¹H NMR spectroscopy of which revealed 65 and 14% deuterium content at the *cis*- and *trans*-C(3)-dihydrofuranyl hydrogen atoms, respectively. We conducted a similar experiment with the *trans*-deuterated alkene^[17] (Y= 0.95 D). The resultant adduct [D₁]**2a'** contained 15 and 81% deuterium content at the corresponding *cis*- and *trans*-C(3)hydrogen atoms, respectively. In both cases, a small portion of deuterium was scrambled at the other geminal hydrogen.

www.chemeurj.org

FULL PAPER

CHEMISTRY

Scheme 3. Deuterium-labeling experiment.

Lewis acid catalyzed cycloisomerization of cyclopropyl ketones to 2,3-dihydrofurans is only operable for certain substrates^[9a,18] and our control experiment opposes intermediacy of cyclopropyl ketones.^[19] For starting species **1a**, we also exclude a concerted [3+2] mechanism because $[D_1]2a$ contains deuterium at both geminal methylene positions, but in unequal proportions. This observation leads us to propose a cationic intermediate C that undergoes a rapid ring closure to give species $[D_1]2a$, with the deuterium *cis* to the neighboring aryl group. A small portion of species C undergoes a slow rotation of the C–C bond to give $[D_1]2a$ with the deuterium *trans* to the aryl group after ring closure (Scheme 4). This proposed mechanism provides a rationale for the transfused stereochemistry of products 4c and 4d (Table 4, entries 3 and 4). This stepwise pathway may indicate that the α -carbonyl carbene is not entirely represented by structure

Scheme 4. Proposed mechanism of the [3+2] cycloaddition.

5806 -

Chem. Eur. J. 2010, 16, 5803-5811

A and the contribution of the resonance structure **A'** is also significant (Scheme 1).

Table 5 highlights the use of the [3+2] cycloadducts to construct complex molecular frameworks through a HOTf-catalyzed cyclization. A small proportion of HOTf (0.1–

Table 5. HOTf-catalyzed cyclization.

[a] [substrate] = $0.1 \,\text{m}$ in CH₂Cl₂. [b] Yields are reported after purification on a silica column. [c] $0.1 \,\%$ HOTf was used for entry 7.

1 mol%), which acts a Brønsted acid, induces the formation of a cyclopentane ring in a stereoselective ene-oxonium reaction. For substrates 2c-f and 2l, the resulting cyclization products 3c-f and 3l, which contain a cyclopentylidene ring, are produced stereoselectively in most cases. Unexpectedly, we obtained cyclization products 3b' and 3i', which bore a methylvinyl group, from HOTf treatment of 2b and 2i. The stereochemistry of cyclized products 3c, 3b', and 3i' was determined by NOE spectroscopy. Notably, we found that the stereochemistry at the CR^2R^3 carbon atom of 3b' and 3i'are opposite to those of cyclopentylidene compounds 3a, 3c, and 3l. The X-ray structure of compound 3l was also determined (see Figure 1).

We also performed HOTf-catalyzed carbocyclization of 2,3-dihydrofurans 2o-t, which bore distinct alkenyl (R¹ and R²) and phenyl (R³ and R⁴) substituents, and obtained the desired cyclized products 3o-t in good yields (79–84%, Table 6). These yields are similar to that obtained for 3f (87%) and thus, the reaction does not appear to be sensitive to these particular substituents.

Scheme 5 depicts a plausible mechanism to rationalize the generation of 3b' and 3c from cyclization of 2b and 2c, respectively. The differing stereochemistry at the CH_3Ar carbon for the two resulting products is clearly a crucial factor. Most likely, protonation proceeds initially on the face opposite the aryl fragment. We envisage that the oxonium cation **D** derived from 2b is prone to epimerization to give species **D**" because the hypothetical cation **D**' is stabilized by the 4-methoxyphenyl group. Intermediate **D** is responsible for generation of cyclopentylidene 3c, and its isomer 3c', through the loss of a proton from tertiary cation **D**" is at-

Figure 1. X-ray structure of 31.

tainable because the concerted ene-oxonium reaction^[20] occurs on the same side as the smaller methyl group.^[20] This concerted pathway is unlikely for substrate 2c because the *endo*-phenyl orientation impedes this concerted process.

The use of this gold catalysis is enhanced by the diversity of the oxacyclic products for which only one diastereomeric compound was obtained, as illustrated in Table 7. Treatment of 2,3-dihydrofuranyl acetals 2g, 2j, and 2n with HOTf (1 mol%) in CH₂Cl₂ (23 °C, 3 h) delivered tricyclic oxacyclic compounds 5a-5c (Table 7, entries 1–3) in fair to good

yields (52-90%). We elucidated their structures based on comparison to the ¹H NMR spectra of oxacyclic products 3b' and 3i', given from a concerted ene-oxonium reaction.[17] A diagnostic ¹H NMR signal for such a structural assignment is the observed coupling constant of J = 4.0 Hz between the olefin and its vicinal protons. This proposed structure was confirmed with the NOE spectra of 5c and its sequential proton decoupling. In contrast, reaction of furan species 4a and 4b stereoselectively delivered oxacyclic compounds 6a and 6b (Table 7, entries 4 and 5). The stereochemistry of 6b was elucidated with the aid of NOE spectroscopy. For tetrahydro-3aH-furo[2,3-b]pyrans 4c and 4d we obtained oxacyclic compounds 7a and 7b as single diastereomers after HOTf treat-FULL PAPER

[[]a] [epoxide] = 0.1 M. [b] Yields are reported after separation on a silica column.

ment. The NOE spectra of **7b** revealed a fully *cis*-fused configuration for its tetracyclic framework. The large bicyclic framework of species 4c and 4d greatly favors the conformation of oxonium species **D** to give the observed cyclopentylidene products **7a** and **7b**.

Scheme 6 depicts a plausible mechanism to rationalize the formation of the complex oxacyclic species 5c from 2n. The mechanism involves a concerted ene-oxonium reaction via a species of type **D**" to give intermediate 3n', which contains a methylvinyl group. The stereochemistry of species 3n' is suitable for a second carbocyclization via formation of oxonium intermediate **F** to induce a second ene-oxonium reaction to give observed compound **5**c.

Scheme 5. Proposed mechanism of HOTf-catalyzed cyclization.

Chem. Eur. J. 2010, 16, 5803-5811

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

Fable 7.	Diverse	oxacyclic products	from HOTf-catalyzed cyclization.	
----------	---------	--------------------	----------------------------------	--

[a] [substrate] = 0.1 м. [b] Yields are reported after silica-gel column chromatography.

Scheme 6. Proposed mechanism for the formation of oxacyclic compound **5c**.

Scheme 7 illustrates the mechanism of formation of **6b** from **4b**. Protonation at the 2,3-dihydrofuranyl C(3)-carbon of **4b** preferentially proceeds on the face opposite the neighboring oxacyclic ring, which produces oxonium species **D** with a $3R^*,4R^*$ configuration. We envisage that the *cis*-2-oxabicyclo[3.3.0]octane ring of oxonium species **D** is highly strained and that this strain is sufficient to cause ring cleavage to produce a ketone–oxonium species **H**. Ultimately, species **H** gives compound **6b** through an stepwise ene–oxonium reaction. For starting substrates **4a–d**, their corresponding intermediates **D** have sterically congested and

Scheme 7. Proposed mechanism for the formation of compound 6b.

rigid structures, which are not favorable for an initial concerted ene-oxonium reaction. These substrates will not produce complicated cage structures as seen with **5a-c**.

Table 8 depicts examples for the direct conversion of enyne **I-1a** to various 2,3-dihydrofurans through initial treatment with a mixture of *m*-CPBA and NaHCO₃ in CH₂Cl₂ (4 h, 25 °C), followed by the subsequent addition of a suitable alkene (10 equiv) and Au¹/Ag¹ catalyst (5 and 2 mol%) before the temperature was brought to 40 °C. In this one-pot operation, we obtained side product **8**, from a 1,2-addition of 3-ClC₆H₄CO₂H to gold α -carbonylcarbenoid **III**. The yields of the desired 2,3-dihydrofurans **2** are highly dependent on the nucleophilicity of the alkene partner, although were satisfactory in most instances. This synthesis used external promoter, *m*-CPBA as a source of oxygen, to generate α -carbonylcarbenoid **III**.

Conclusion

Previously, reactions of gold a-carbonylcarbenoids generated from redox reactions were restricted to intramolecular cyclizations.^[2-4] We have reported the feasibility for catalytic [3+2] cycloadditions of gold α -carbonylcarbenoids with alkenes, to give 2,3-dihydrofuran products efficiently. The generation of such carbenoids relies on an intramolecular redox reaction of alkyne-epoxide functionalities, which avoids the use of diazocarbonyl precursors. Unlike reported rhodium and copper catalysis, this cycloaddition is compatible with a diverse assortment of alkenes, which include α -substituted styrenes, enol ethers, and 2,3-dimethylbutadienes. Deuterium-labeling experiments indicate a stepwise ionic mechanism for the [3+2] cycloaddition pathway. This pathway suggests that [3+2] cycloaddition is difficult to achieve with high enantioselectivity. The value of this gold catalysis is demonstrated by the stereocontrolled formation of various oxacyclic products through the HOTf treatment of 2,3-dihydrofurans. In the ene-oxonium cyclization, we obtained distinct products 3 and 3', presumably produced from a stepwise and concerted mechanisms respectively. Further appli-

[a] [I-1a] = 0.08 M, alkene (10 equiv). [b] Yields are reported after separation on a silica column.

cation of this new catalysis to bioactive molecules is under current investigation.

Experimental Section

General: Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using a standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over CaH_2 and distilled before use. NMR spectra were run at 400 (¹H) or 100 MHz (¹³C) in CDCl₃.

Typical procedure for the synthesis of 1a: nBuLi (2.4 mL, 2.5 M, 5.9 mmol) was added to a solution of isopropyltriphenylphosphonium iodide (2.76 g, 6.4 mmol) in THF (25 mL) at 0°C and the mixture was stirred at 0°C for 1 h. 2-(Hex-1-ynyl)benzaldehyde (0.99 g, 4.9 mmol) was added and the mixture was stirred at 23°C for 4 h. The solution was quenched with water and concentrated in vacuo. The organic layer was extracted with diethyl ether, dried over MgSO4, and concentrated in vacuo. The residue was eluted through a silica column (hexane) to give the olefination product as a colorless oil (0.91 g, 4.3 mmol, 88%). m-CPBA (1.12 g, 6.5 mmol) was added to the envne compound (0.91 g, 4.3 mmol) in dichloromethane (30 mL) and the mixture was stirred for 8 h at 0°C. The resulting solution was quenched with an aqueous solution of NaHCO₃, extracted with diethyl ether, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mass was filtered through a small basic Al₂O₃ bed, then concentrated in vacuo, and eluted through a Et₃N-pretreated silica column (EtOAc/hexane 1:9) to afford 1a as a colorless oil (0.77 g, 3.4 mmol, 79%).

Compound 2a: A solution of PPh₃AuSbF₆ (2 mol%) was prepared by mixing [AuCl(PPh₃)] (10.0 mg, 0.02 mmol) and AgSbF₆ (3.1 mg, 0.009 mmol) in dichloromethane (1.0 mL) for 10 min. Compound **1a**

FULL PAPER

(100 mg, 0.44 mmol) and 4-vinyl-1-methoxybenzene (295 mg, 2.2 mmol) in dichloromethane (3.4 mL) were added dropwise to the resulting mixture at 23 °C and the solution was stirred for 6 h at 40 °C. The solution was filtered through a Celite bed, then concentrated in vacuo, and eluted through a silica-gel column (EtOAc/hexane 1:9) to give compound **2a** as a colorless oil (102 mg, 0.28 mmol, 64 %).

Compound 3a: A 1% solution of trifluoromethanesulfonic acid in dichloromethane (1.0 mL) was added to a solution of compound 2a (102 mg, 0.28 mmol) in dichloromethane (38 mL) and the mixture was stirred at 23°C for 3 h. The solution was quenched with water, the organic layer was extracted with dichloromethane, dried over MgSO4, and concentrated in vacuo. The residue was eluted through a silica column (EtOAc/ hexane 1:10) to give 3a as a colorless oil (54.0 mg, 0.15 mmol, 54%).

One-pot synthesis of 2,3-dihydrofurans: 1-(Hex-1-ynyl)-2-(2-methylprop-1-enyl)benzene (120 mg, 0.57 mmol) in dichloromethane (2.0 mL) was added to a solution of m-CPBA (117 mg, 0.68 mmol) and NaHCO₃ (56 mg, 0.68 mmol) in dichloromethane (3.0 mL) to give solution A and the mixture was stirred at room temperature. The epoxide formation was moni-

tored by TLC. After completion of the epoxide, a solution of PPh₃AuSbF₆ (2 mol %) was prepared by mixing [AuCl(PPh₃)] (13.8 mg, 0.03 mmol) and AgSbF₆ (4.4 mg, 0.01 mmol) in dichloromethane (2.0 mL) for 10 min. The appropriate styrene (10 equiv) was then added to give solution B. Solution B was added to solution A and the mixtures were stirred for 3–12 h at 40 °C. The resulting solution was filtered through a Celite bed, concentrated in vacuo, and eluted through a silicagel column to give the product.

Spectral data of compounds **1a**, **I-1a**, **2a**, **3a**, and **3a'** are listed below. Other spectral data and copies of the ¹H and ¹³C NMR spectra of all compounds are given in the Supporting Information.

Compound 1a: ¹H NMR (400 MHz, CDCl₃): δ =7.35 (d, *J* =7.6 Hz, 1 H), 7.25–7.22 (m, 2 H), 7.20–7.16 (m, 1 H), 4.04 (s, 1 H), 2.44 (t, *J* =7.2 Hz, 2 H), 1.67–1.54 (m, 2 H), 1.52–1.43 (m, 5 H), 1.01 (s, 3 H), 0.93 ppm (t, *J* = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ =138.7, 131.4, 127.3, 126.9, 126.0, 122.3, 95.2, 78.1, 64.2, 61.1, 30.9, 24.6, 22.0, 19.2, 18.2, 13.6 ppm; IR (neat): $\tilde{\nu}$ = 3085 (m), 2958 (s), 2155 (w), 1605 (m), 1458 cm⁻¹ (s); HRMS: *m*/*z*: calcd for C₁₆H₂₀O: 228.1514; found: 228.1511.

Compound I-1a: ¹H NMR (400 MHz, CDCl₃): δ =7.41 (d, *J*=7.6 Hz, 1H), 7.27-7.21 (m, 2H), 7.15-7.11 (m, 1H), 6.51 (s, 1H), 2.47 (t, *J*=6.8 Hz, 2H), 1.96 (s, 3H), 1.84 (s, 3H), 1.65-1.51 (m, 4H), 0.98 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =140.3, 135.9, 132.0, 128.9, 126.9, 125.7, 124.2, 123.4, 94.5, 79.7, 30.9, 26.6, 21.9, 19.5, 19.2, 13.6 ppm; IR (neat): $\tilde{\nu}$ =3150 (s), 2958 (s), 2200 (w), 1657 (m), 1473 cm⁻¹ (s); HRMS: *m/z*: calcd for C₁₆H₂₀: 212.1565; found: 212.1564.

Compound 2a: ¹H NMR (400 MHz, CDCl₃): δ =7.33 (d, J=8.8 Hz, 2 H), 7.18–7.15 (m, 4H), 6.90 (d, J=8.4 Hz, 2 H), 6.13 (s, 1H), 5.47 (dd, J= 10.4, 8.0 Hz, 1 H), 3.8 (s, 3 H), 3.25 (dd, J=14.8, 10.4 Hz, 1 H), 2.89 (dd, J=14.4, 7.6 Hz, 1 H), 2.07 (t, J=7.2 Hz, 2 H), 1.82 (s, 3 H), 1.72 (s, 3 H), 1.52–1.45 (m, 2 H), 1.30–1.23 (m, 2 H), 0.82 ppm (t, J=7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ =159.1, 153.5, 137.6, 135.8, 135.3, 134.2, 129.8, 129.6, 127.1 (2×CH), 126.0 (2×CH), 125.1, 113.9 (2×CH), 107.5, 80.7, 55.3, 43.6, 29.0, 26.5, 26.2, 22.6, 19.2, 13.8 ppm; IR (neat): $\tilde{\nu}$ =3087

www.chemeurj.org

(m), 2945 (s), 1615 (s), 1604 (m), 1217 (m), 1118 cm⁻¹ (s); HRMS: m/z: calcd for C₂₅H₃₀O₂: 362.2246; found: 362.2245.

Compound 3a: ¹H NMR (400 MHz, CDCl₃): δ =7.52 (d, *J*=7.6 Hz, 1 H), 7.27-7.17 (m, 5 H), 6.84 (d, *J*=8.8 Hz, 2H), 4.62 (t, *J*=6.8 Hz, 1H), 3.77 (s, 3 H), 3.50-3.47 (m, 1 H), 2.16 (t, *J*=10.0 Hz, 2 H), 2.11 (s, 6H), 1.96 (t, *J*=8.0 Hz, 2 H), 1.34-1.24 (m, 4 H), 0.85 ppm (t, *J*=6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ =158.9, 146.2, 142.4, 137.6, 134.2, 131.9, 127.4 (2×CH), 126.8, 126.7, 125.0, 124.4, 113.7 (2×CH), 94.6, 78.3, 55.3, 52.2, 44.1, 38.0, 26.4, 23.5, 23.2, 22.9, 14.1 ppm; IR (neat): $\tilde{\nu}$ =3100 (m), 2951 (s), 1605 (s), 1150 cm⁻¹ (s); HRMS: *m*/*z*: calcd for C₂₅H₃₀O₂: 362.2246; found: 362.2243.

Compound 3a': ¹H NMR (400 MHz, CDCl₃): δ =7.27–7.19 (m, 5H), 7.11–7.09 (m, 1H), 6.82 (d, *J*=8.8 Hz, 2H), 5.02 (s, 1H), 4.83 (m, 1H), 4.46 (dd, *J*=11.2, 3.6 Hz, 1H), 3.87 (s, 1H), 3.77 (s, 3H), 3.73 (d, *J*=7.6 Hz, 1H), 2.17–2.09 (m, 1H), 2.04–1.97 (m, 1H), 1.87–1.84 (m, 4H), 1.61–1.57 (m, 1H), 1.44–1.37 (m, 4H), 0.96 ppm (t, *J*=6.4 Hz, 3H); IR (neat): $\tilde{\nu}$ =3106 (m), 2954 (s), 1607 (s), 1153 cm⁻¹ (s); HRMS: *m/z*: calcd for C₂₅H₃₀O₂: 362.2246; found: 362.2245.

Acknowledgements

The authors wish to thank the National Science Council, Taiwan for the support of this work.

- a) A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478-3519; Angew. Chem. Int. Ed. 2007, 46, 3410-3449; b) E. Jiménez-Núñez, A. M. Echavarren, Chem. Commun. 2007, 333-346; c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395-403; d) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; e) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064-8105; Angew. Chem. Int. Ed. 2006, 45, 7896-7936; f) A. Arcadi, Chem. Rev. 2008, 108, 3266-3325; g) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.
- [2] α-Carbonyl gold carbenoids from Ph₂SO-induced redox reactions, see: a) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160-4161; b) C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838-5839; c) G. Li, L. Zhang, Angew. Chem. 2007, 119, 5248-5251; Angew. Chem. Int. Ed. 2007, 46, 5156-5159; d) P. W. Davies, S. J.-C. Albrecht, Chem. Commun. 2008, 238-240; e) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledós, M. Medio-Simón, G. Ujaque, G. Asensio, Org. Lett. 2009, 11, 4906-4909.
- [3] a) L. Cui, G. Zhang, Y. Peng, L. Zhang, Org. Lett. 2009, 11, 1225–1228; b) L. Cui, Y. Peng, L. Zhang, J. Am. Chem. Soc. 2009, 131, 8394–8395; c) H.-S. Yeom, J.-E. Lee, S. Shin, Angew. Chem. 2008, 120, 7148–7151; Angew. Chem. Int. Ed. 2008, 47, 7040–7043.
- [4] Although AgSbF₆ alone enabled the cycloisomerization of epoxyalkynes to carbocyclic products, we were not able to trap the corresponding α-carbonylcarbenoids with Ph₂SO or styrene; see reference [5a]; a) G.-Y. Lin, C.-W. Li, S.-H. Hung, R.-S. Liu, *Org. Lett.* 2008, 10, 5059–5062; b) A. S. K. Hashmi, M. Bührle, R. Salathé, J. W. Bats, *Adv. Synth. Catal.* 2008, 350, 2059–2064.
- [5] Gold-catalyzed rearrangement of propargyl acetates provides reactive intermediates that are synthetic equivalents of gold α-carbonyl carbenoids; see selected examples: a) X. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802–5803; b) Y. Harrak, C. Blaszykowski, M. Bernard, K. Cariou, E. Mainetti, V. Mouries, A.-L. Dhimane, L. Fensterbank, M. Malacria, J. Am. Chem. Soc. 2004, 126, 8656–8657; c) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654–8655; d) A. Fürstner, P. Hannen, Chem. Sour. 2006, 12, 3006–3019; e) A. Fürstner, A. Schlecker, Chem. Eur. J. 2006, 12, 3006–3019; e) A. Fürstner, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio, A. M. Echavarren, Angew. Chem. 2009, 121, 6268–6271; Angew. Chem. Int. Ed. 2009,

48, 6152–6155; g) A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, *Chem. Eur. J.* **2008**, *14*, 3703–3708.

- [6] For the debate of the role of gold-carbenoid or gold-stabilized allyl cation for gold alkenylcarbenoid species, see: a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, F. D. Toste, Nat. Chem. Biol. 2009, 1, 482-486; b) G. Seidel, R. Mynott, A. Fürstner, Angew. Chem. 2009, 121, 2548-2551; Angew. Chem. Int. Ed. 2009, 48, 2510-2513; c) A. Fürstner, L. Morency, Angew. Chem. 2008, 120, 5108-5111; Angew. Chem. Int. Ed. 2008, 47, 5030-5033; d) A. S. K. Hashmi, Angew. Chem. 2008, 120, 6856-6858; Angew. Chem. Int. Ed. 2008, 47, 6754-6756.
- [7] a) G. Lemière, V. Gandon, K. Cariou, A. Hours, T. Fukuyama, A.-L. Dhimane, L. Fensterbank, M. Malacria, J. Am. Chem. Soc. 2009, 131, 2993–3006; b) J. H. Lee, F. D. Toste, Angew. Chem. 2007, 119, 930–932; Angew. Chem. Int. Ed. 2007, 46, 912–914; c) S. Bhunia, R.-S. Liu, J. Am. Chem. Soc. 2008, 130, 16488–16489.
- [8] The [3+2] cycloaddition refers to aldehydes rather than alkenes, see: a) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244–9245; b) N. D. Shapiro, Y. Shi, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 11654–11655; c) G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 12598–12599.
- [9] a) M. E. Alonso, A. Morales, A. W. Chitty, J. Org. Chem. 1982, 47, 3747-3754; b) M. C. Pirrung, J. Zhang, K. Lackey, D. D. Sternbach, F. Brown, J. Org. Chem. 1995, 60, 2112-2124; c) E. Wenkert, M. E. Alonso, B. L. Buckwalter, K. J. Chou, J. Am. Chem. Soc. 1977, 99, 4778-4782; d) E. Wenkert, M. E. Alonso, B. L. Buckwalter, E. L. Sanchez, J. Am. Chem. Soc. 1983, 105, 2021-2029; e) M. E. Alonso, P. Jano, M. I. Hernandez, J. Org. Chem. 1983, 48, 3047-3050; f) E. J. Park, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2008, 130, 17268-17269.
- [10] a) M. J. Johansson, D. J. Gorin, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002–18003; b) S. López, E. Herrero-Gómez, P. Pérez-Galán, C. Nieto-Oberhuber, A. M. Echavarren, Angew. Chem. 2006, 118, 6175–6178; Angew. Chem. Int. Ed. 2006, 45, 6029–6032.
- [11] For rhodium-catalyzed [3+2] cycloaddition of alkenylcarbenoids with enol ethers; see a) H. M. L. Davies, B. Xiang, N. Kong, D. G. Stafford, J. Am. Chem. Soc. 2001, 123, 7461-7462; b) H. M. L. Davies, B. Hu, E. Saikali, P. R. Bruzinski, J. Org. Chem. 1994, 59, 4535-4541.
- [12] a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. 2004, 116, 2456–2460; Angew. Chem. Int. Ed. 2004, 43, 2402–2406; b) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178–6179; c) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612–3676; d) F. Gagosz, Org. Lett. 2005, 7, 4129–4132.
- [13] Results of catalyst screening of epoxides 1a with enol ether are provided in the Supporting Information.
- [14] We did not obtain the desired 2,3-dihydrofurans from epoxides 1j and 1k. Epoxide 1j favors ring-opening to induce epoxy-ketone rearrangement. For species 1k, the epoxide is expected to attack at the alkynyl-C(2) carbon to alter reaction pathway. We obtained a messy mixture of products with the two epoxides. Spectral data of epoxides 1j and 1k are provided in the Supporting Information.

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2010, 16, 5803-5811

FULL PAPER

- [15] NOE spectra of key compounds are provided in the Supporting Information; CCDC-759967 (31) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [16] Preparation of *cis*-deuterated styrene is described in the Supporting Information; see: G. Vassilikogiannakis, M. Hatzimarinaki, M. Orfanopoulos, *J. Org. Chem.* 2000, 65, 8180–8187.
- [17] Preparation of *trans*-deuterated styrene, see: a) H.-W. You, K.-J.
 Lee, *Synlett* 2001, 105–107; b) K. P. Gable, F. A. Zhuravlev, *J. Am. Chem. Soc.* 2002, *124*, 3970–3979.
- [18] Cyclopropyl ketones with a β-substituted silylmethyl or 1-siloxyvinyl group were required for the operation at mild temperatures, see a) V. K. Yadav, R. Balamurugan, *Org. Lett.* 2001, *3*, 2717–2719; b) H. M. L. Davies, G. Ahmed, R. L. Calvo, M. R. Churchill, D. G. Churchill, *J. Org. Chem.* 1998, *63*, 2641–2645.
- [19] We obtained 2k and cyclopropanation product VI-2k in 68 and 14% yields, respectively, in the gold catalysis (Table 2, entry 3). Treatment of this cyclopropyl ketone with the same [AuCl(PPh₃)]/ AgSbF₆ catalyst under the same conditions failed to give 2k in a tractable amount. Spectral data of the cyclopropylketone is provided in the Supporting Information.
- [20] A concerted pathway was established for an intramolecular eneoxonium reaction, see reference [20 a]. For reviews for ene reactions,

see: a) K. Mikami, M. Shimizu, *Chem. Rev.* **1992**, *92*, 1021; b) B. B. Snider, *Acc. Chem. Res.* **1980**, *13*, 426–432.

[21] For intramolecular ene-oxonium reactions, see: a) T. A. Blumenkopf, G. C. Look, L. E. Overman, J. Am. Chem. Soc. 1990, 112, 4399-4403; b) L. E. Overman, A. S. Thompson, J. Am. Chem. Soc. 1988, 110, 2248-2256; c) T. A. Blumenkopf, M. Bratz, A. Castañeda, G. C. Look, L. E. Overman, D. Rodriguez, A. S. Thompson, J. Am. Chem. Soc. 1990, 112, 4386-4399; d) H. Ohmura, G. D. Smyth, K. Mikami, J. Org. Chem. 1999, 64, 6056-6059.

Received: January 4, 2010 Revised: February 23, 2010 Published online: April 8, 2010