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Abstract  

With use of a Pd(II)-sulfosalan complex as a water-soluble catalyst we have developed an 

efficient synthesis of biaryls via Suzuki-Miyaura cross-coupling in water under aerobic 

conditions. The water-insoluble target molecules were isolated by simple filtration in analytical 

purity after washing with 0.01 M aqueous HCl (20 examples). In most cases, palladium 

contamination was below 5 ppm considered acceptable for active pharmaceutical ingredients.  

The established method is scalable, reproducible, and provides biaryl products in isolated yields 

up to 91%. 

 

 

 

 

 

 

Page 2 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 
 

Water plays an increasingly important role in development of environment-friendly methods of 

chemical synthesis.1-4 In addition to its other advantageous features, water is relatively cheap, 

non-toxic and non-flammable so its use makes processes safer at reduced cost. Often the 

reactions are carried out in aqueous-organic biphasic mixtures or in mixed aqueous-organic 

homogeneous solutions. In other cases the chemical transformations can be performed in water, 

however, workup is based on extraction with organic solvents. In order to achieve most of the 

environmental benefits of an aqueous procedure, organic solvents should be avoided all along 

the synthesis pathway. For homogeneously catalyzed reactions in aqueous media water-soluble 

catalysts are required. Favorably, due to the exponential development of aqueous 

organometallic catalysis hydrosoluble catalysts are now available for most kind of reactions, 

including hydrogenation, hydroformylation, hydration, hydrocyanation, oxidation, C-C 

couplings, and many others.1-4  

 Transition-metal complex catalyzed C-C cross-coupling reactions have utmost 

importance in modern organic chemistry since they allow synthesis of complex molecules from 

relatively simple starting materials.5-8 An important class of such reactions is the Suzuki-

Miyaura cross-coupling of aryl halides and organoboronic acids. Numerous efforts have been 

made in order to apply water as solvent in this reaction, too, however, in most cases organic co-

solvents had to be used, furthermore, isolation and purification of products often required 

organic solvents for extraction and column chromatography.9-16 The use of a water-soluble 

Pd(II)-sulfonated triphenylphosphine complex to catalyze this process in aqueous reaction 

medium was first studied by Casalnuovo and Calabrese in 1990.17 Main efforts of later research 

were focused on application of various water-soluble Pd-tertiary phosphine,18-21 

palladacycle,22, 23 and Pd-N-heterocyclic carbene24, 25 (Pd-NHC) complex catalysts in aqueous 

solution, often with microwave irradiation.15 Procedures with ligandless Pd-catalysts 

(nanoparticles) with high catalytic activities were also developed.26 
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 Water-insolubility of several biaryls leads to precipitation/crystallization of the products 

from aqueous reaction mixtures allowing isolation of target molecules by simple filtration.27, 28 

This approach helped also in keeping Pd-contamination low, even down to ppb level.28 For 

example, with use of palladacycle catalysts, Eppinger and co-workers synthesized a large group 

of variously functionalized biaryls without the use of organic solvents.29, 30 Lipshutz et al. 

applied various designer surfactants to facilitate Suzuki-Miyaura cross-couplings inside the 

core of micelles that allowed to perform the synthesis in water.31-34 In several cases no organic 

solvent was added to the reaction mixture or applied during workup and the analytically pure 

products were isolated from the aqueous media by filtration. 

 Various metal complexes of Schiff-base ligands, including salens, 

bis(salicylaldiminato)-1,2-ethanediamines, are widely used in coordination chemistry and 

catalysis.35-41 However, it has been reported ion several cases that in aqueous solvents they are 

degraded under catalytic conditions due to the hydrolytic instability of the C=N bond.38,42-44  

Hydrogenation of salens gives rise to structurally more flexible and hydrolytically stable N,N’-

bis(2-hydroxybenzyl)alkylenediamines (salans) which, however, have been scarcely used as 

ligands in homogeneous catalysis.42 Recently we have synthesized a series of Pd(II)-complexes 

with various water-soluble salan ligands (obtained via sulfonation of the respective 

tetrahydrosalens).45, 46 Here we report a procedure capitalizing on the outstanding catalytic 

activity of a water-soluble Pd(II)-complex of N,N’-bis(2-hydroxy-5-sulfonatobenzyl)-1,4-

diaminobutane, Na2[Pd(BuHSS)] which allows performing Suzuki-Miyaura cross-couplings in 

water under aerobic conditions (Scheme 1). We have also synthesized similar catalysts with 

various bridges from 1,2-diamines derived from ethane, 1,2-diphenylethane, cyclohexane, and 

benzene. These Pd(II)-salan type complexes catalyzed the reaction of phenylboronic acid and 

bromobenzene with isolated yields between 13% and 93%; in the particular case of 
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Na2[Pd(BuHSS)] with 82%; this catalyst was chosen for extensive scrutiny for its easy synthesis 

and for affording high yields. 

Scheme 1. Suzuki-Miyaura cross-coupling of arylboronic acids and aryl halides with 

Na2[Pd(BuHSS)] catalyst  

 

Cross-coupling of phenylboronic acids and aryl halides proceeded smoothly in air in the 

presence of bases at 80 °C with 0.1 mol% catalyst. Cs2CO3 and Et3N promoted the reaction 

with the same efficiency, however, for environmental reasons and to avoid contamination of 

the products with any organics Cs2CO3 was used in the syntheses (Na2CO3 could be used, too, 

but see Table 3). Aryl halides showed the expected reactivity with conversions (GC) in 1 h: 

iodobenzene 100%, bromobenzene 71%, chlorobenzene 17%.  

There has been an enduring interest in the activation of aryl chlorides in aqueous systems 

under phosphine-free conditions. Shahnaz et al.36 recently reported a simple palladium Schiff-

base catalyst that produced good-to-excellent yields of Suzuki-Miyaura cross-cross-coupling 

products using aryl chlorides in aqueous conditions. Note that employing our Pd(II)-salan 

catalyst high conversion, 82%, was achieved with chlorobenzene, too, when the reaction time 

was increased to 6 h. This results in a turnover number (TON) of 820, which is an order of 

magnitude higher than that obtained by Shahnaz et al. (TON = 12-96) in the cross-coupling of 

various aryl chlorides at 100 °C, underscoring the remarkable activity of Pd(II)-salan 

complexes. 
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 Limited solubility of biaryls in water allowed to develop an efficient synthetic method 

including a simple workup. Suzuki-Miyaura cross-couplings were performed in water as 

solvent. After the desired time the reaction mixture was diluted with water, the solid product 

was isolated by filtration, washed thoroughly with 0.01 M HCl and dried to constant weight. 

The resulting compounds were characterized by their melting points, 1H and 13C NMR spectra.  

Previously unreported solid-state structures of five biaryls were determined by single crystal 

X-ray diffraction (see SI).  For 20 examples, isolated yields and Pd-contents are shown in Table 

1. 
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Table 1. Synthesis of biaryls with Suzuki-Miyaura cross-coupling of arylboronic acids 

and aryl halides in water under aerobic conditions catalyzed by the water-soluble Pd(II) 

complex Na2[Pd(BuHSS)]. 

 
Entry/ 

Compound  
No. 

Product 
Isolated 
yield,% 

Pd 
(ppm) 

1a 
 

82 (72j) 8 

2a           
84 3 

3a       
77 1 

4a 
      

89 14 

5b               
78 (74j) <1 

6b           
70 1 

7b       
82 <1 

8b 
       

91 4 

9c    
59 1 

10c         74 9 

11c 
      

90 2 

12d         
79 (82e, 89j) 4 

13d    70 (72e) 3 

14d 

      
70 2 

15d 
      

90 (89e) 21 

16f 
        

92 4 

17g 
      

79 1 

18g 

      

91 3 

19h 

      
78 n.d. 

20i 

      
90 n.d. 

Conditions: 5.0×10-7 mol Na2[Pd(BuHSS)], 5.0×10-4 mol 
aryl halide, 7.5×10-4  mol boronic acid,  5.0×10-4 mol 
Cs2CO3, 3 mL water, 80 °C, 2 h.  
abromobenzene, b4-bromoacetophenone, c4-bromoanisole, 
d4-nitro-1-iodobenzene, e4-nitro-1-bromobenzene, Pd-
content n.d., f4-bromobenzoic acid, g5-bromo-
salicylaldehyde, h2-iodopyridine, i2-bromo-1,3-thiazole. 
jAll quantities multiplied by 10, except V(H2O)=15 mL; 80 
°C, a-g2 h, h,i4 h. 
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Most biaryls were obtained in reactions of aryl bromides and/or aryl iodides; under conditions 

of Table 1 they reacted equally well. In general, the use of aryl halides as well as of arylboronic 

acids with either electron donating or electron withdrawing substituents resulted in high 

conversions with only 0.1 mol% of the Na2[Pd(BuHSS)] catalyst. Due to the method of workup, 

the isolated yields depend also on the aqueous solubility of the respective biaryl so they may 

not reflect fine differences in reactivity. Organic solvents were not used at all, neither for the 

cross-coupling reaction nor for workup, furthermore, the products were not recrystallized 

before recording 1H and 13C NMR spectra (Supporting Information). It is of utmost importance, 

that despite the simple method of isolation, Pd-content of the products was found very low, in 

14 cases below the 5 ppm limit47 established for active pharmaceutical intermediates (API-s). 

Accordingly, thorough washing with 0.01 M aqueous HCl is highly effective for removal of 

palladium from the solid products. Only in cases of the 4-carboxy-1,1’-biphenyl (4) and 4-

carboxy-4’-nitro-1,1’-biphenyl (15) were >10 ppm Pd-contents determined. Although 

formation of Pd-carboxylate complexes cannot be ruled out, 4 and 5 form water-insoluble 

dimers with strong H-bonds and their relatively high Pd-content may be due to inclusion of 

some of the reaction mixture during fast precipitation. The above synthesis can be scaled up 

easily; three biaryls (1, 5, 12; Table 1) were synthesized starting with 5 mmol of the respective 

aryl halides; quantities of other reactants were multiplied accordingly (but V(H2O) = 15 mL). 

Small or no changes of the isolated yields (%) were observed (Table 1) so the synthesis proved 

applicable for several gram quantities of target molecules. In  general, in terms of catalytic 

activity our findings are compare well to those obtained with similar N/O coordinated Pd 

complexes with the additional benefit of no use of organic solvents.36-38, 40, 41 

 Sodium tetraphenylborate and potassium phenyltrifluoroborate can serve as convenient 

phenyl sources in Suzuki-Miyaura cross-couplings.26 Although their use limits the modularity 

of such processes to syntheses of biaryls with (at least) one unsubstituted phenyl ring, the water-
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solubility of Na[BPh4] and K[BPhF3] leads to high reaction rates with hydrosoluble catalysts 

especially in cases (at temperatures) when the aryl halide is soluble in the aqueous reaction 

mixture (Table 2). For example, with Na[BPh4] poorly water-soluble 4-bromoacetophenone 

underwent only 5% conversion at room temperature while it reacted with 100% conversion at 

80 °C. In contrast, 4-bromobenzoic acid afforded 4-carboxy-1,1’-biphenyl (4) with 100% 

conversion in short reaction times both at 80 °C (15 min) and at room temperature (30 min). 

Such high reaction rates demonstrate the efficiency of catalysis in purely aqueous reaction 

mixtures under proper conditions. Again, the water-insoluble products could be obtained in 

analytical purity after washing with 0.01 M HCl.  

 

Table 2. Phenylboronic acid, Na-tetraphenylborate and K-phenyltrifluoroborate as 

phenyl-group donors in Suzuki-Miyaura cross-couplings catalyzed by Na2[Pd(BuHSS)] in 

water 

  
Conversion (%) 

PhB(OH)2
a Na[BPh4]b K[PhBF3]a 

bromobenzene 72 88 78 
4-bromoanisole 28 73 47 
4-bromoacetophenone 94 100 97 
4-bromobenzoic acid 100 100 100 
4-nitro-1-
bromobenzene 

55 100 80 

4-iodotoluene 60 90 10 
Conditions: 5.0×10-7 mol Na2[Pd(BuHSS)], 7.5×10-4 mol 
phenylboronic acid/Na-tetraphenylborate/K-phenyltrifluoro-
borate, 5.0×10-4  mol aryl halide, 5.0×10-4 base (aCs2CO3, 
bNa2CO3), 3 mL water, 80 °C, 1 h.  

 

 

 

Table 3 shows the results of catalyst recycling experiments. At the end of each cycle the 

undiluted reaction mixture was filtered carefully to collect as much of the aqueous phase as 

possible, which was then supplied with new batches of 4-bromoacetophenone, phenylboronic 

acid and base. At the end of each cycle the yield was determined according to the mass of the 

isolated product. These results demonstrate that in the presence of Cs2CO3 the catalyst can be 
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recycled three times with no loss of activity. However, while the product biaryl precipitated 

nicely in the first three cycles, there was no precipitation in the 4th cycle. After extraction of the 

reaction mixture with CHCl3, gas chromatography showed only 45% conversion of the aryl 

halide. When Na2CO3 was used as base, we observed a rapid loss of the catalyst’s activity from 

cycle to cycle. Inorganic byproducts, such as bromide accumulate in the recycled catalyst 

solution (concentration of Br- is 0.67 M at the end of the 4th cycle) and its complex formation 

with Pd(II) may be responsible for catalyst deactivation. In summary, while originally both 

Cs2CO3 and Na2CO3 are very effective as bases in the cross-coupling reaction, Na2[Pd(BuHSS)] 

looses its activity much faster in Na2CO3 solutions than in the presence of Cs2CO3. In addition, 

the precipitates from Na2CO3-containing reaction mixtures are more sticky and can be collected 

by filtration with difficulties. Concerning the physical state of the catalyst during the reaction, 

a drop of conversion from 95% to 76%  was observed in  the presence of Hg (cross-coupling of 

4-bromoacetophenone with phenylboronic acid, conditions as in Table 1, except 1 h reaction  

time). This may refer to participation of nanoparticles in catalysis, however, this question was 

not investigated in detail.  

 

Table 3. Recycling of the Na2[Pd(BuHSS)] catalyst in Suzuki-Miyaura cross-coupling of 

phenylboronic acid and 4-bromoacetophenone 

No. of cycles 
Yield (%) 

Base: Cs2CO3 Base: Na2CO3 
1 76 89 
2 86 73a 
3 81 15a 
4 45a 0a 

Conditions: 5.0×10-7 mol Na2[Pd(BuHSS)], 7.5×10-4 mol 
phenylboronic acid, 5.0×10-4  mol 4-bromoacetophenone, 
5.0×10-4 base, 3 mL water, 80 °C, 1 h each cycle. aNo biaryl 
precipitates, conversions determined by GC. 
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 In conclusion, a green method was developed for synthesis of biaryls by Suzuki-

Miyaura cross-coupling of aryl halides and arylboronic acids in water in the presence of an 

inorganic base (Cs2CO3). An easily available, highly active salan-type water-soluble catalyst, 

Na2[Pd(BuHSS)] (BuHSS = N,N’-bis(2-hydroxy-5-sulfonatobenzyl)-1,4-diaminobutane) was 

employed in 0.1 mol%  and the various biaryls were isolated in high yields.  No organic solvents 

were used in synthesis or workup; the water-insoluble products were isolated from the reaction 

mixture by simple filtration in high purity and –in most cases– with Pd-content below 5 ppm. 

 

Experimental part 

Na2[Pd(BuHSS)] was synthesized as described in reference 45. All other reagents were 

commercial products of Sigma-Aldrich and were used as received. Solvents were obtained from 

Molar. Deionized water was used throughout. Melting points were determined on a Büchi 

melting point apparatus Model B-540 and are uncorrected. Pd contents were determined with 

use of an Agilent MP-AES spectrometer (biaryls were dissolved in aqua regia with the aid of 

an MLS 1200 microwave digestion equipment).  

1H- and 13C{1H} NMR spectra were recorded on a Bruker 360 MHz instrument at room 

temperature and were referenced to tetramethylsilane (TMS), as well as to 1H or 13C resonances 

of residual non-deuterated solvents in CH3OD, CDCl3 and dmso-d6 (99.9% isotopic purity,  

Sigma-Aldrich), respectively (CH3OH: 1H NMR δ=3.34 ppm, 13C{1H} NMR δ=49.05 ppm; 

CHCl3: 1H NMR δ=7.24 ppm, 13C{1H} NMR δ=77.23 ppm; dmso: 1H NMR δ=2.50 ppm, 

13C{1H} NMR δ=39.51 ppm).  

Single crystal X-Ray analyses were performed with the use of a Bruker D8 Venture system. 

Conversions of aryl halides were determined by gas chromatography. 
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Typical procedure of Suzuki-Miyaura cross-couplings: Synthesis of biphenyl in reaction of 

iodobenzene and phenylboronic acid. 

Bromobenzene (52 μL; 0.5 mmol), phenylboronic acid (92 mg; 0.75 mmol), and Cs2CO3 (163 

mg, 0.5 mmol) were placed into a Schlenk tube or a screw cap vial. 300 μL of an aqueous 

solution of Na2[Pd(BuHSS)] (1.7 mM; 0.51 μmol – synthesized according to reference 60) was 

added followed by addition of 2.7 mL distilled water. The reaction vesssel was closed with a 

septum and the reaction mixture was magnetically stirred at 80 °C (water bath) in air for 2 

hours. After cooling to room temperature it was diluted with 15 mL water facilitating 

precipitation of the product. The white solid was collected on a filter, washed thoroughly with 

0.01 M aqueous HCl and dried in air to constant weight. Yield: 63 mg (82%), mp: 74-75 °C  (lit. 

mp: 69-73 °C).48 

 

The following products were obtained by the above general method with 0.5mmol aryl halide 

(for reaction times and composition of the reaction mixtures see Table 1): 

 

Biphenyl (1) from phenylboronic acid and bromobenzene: Yield 63 mg (82%), white solid, 

mp: 74-75 °C, after recrystallization from CHCl3, mp: 70-71 °C  (lit. mp: 69-73 °C).48  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.62 (d, 4H, JHH = 7.2 Hz), 7.46 (t, 4H, JHH = 7.3 Hz), 

7.37 (t, 2H, JHH = 7.2 Hz) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6):  = 140.1, 128.8, 

127.3, 126.5 ppm. 

 

4-Methylbiphenyl (2) from p-tolylboronic acid and bromobenzene: Yield 71 mg (84%), white 

solid, mp: 49-50 °C (lit. mp: 49-50 °C).49, 50  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.93-7.19 (m, 9H), 2.51 (s, 3H) ppm. 13C{1H} NMR 

(90 MHz, 298 K, CDCl3): = 141.4, 138.6, 137.2, 129.7, 128.9, 127.2, 21.3 ppm. 
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4-Methoxybiphenyl (3) from 4-methoxyphenylboronic acid and bromobenzene: Yield 71 mg 

(77%), white solid, mp: 91-92 °C (lit. mp: 91-92 °C).50  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.51- 7.60 (m, 4H), 7.43 (t, 2H, JHH = 7.8 Hz), 7.31 

(t, 1H, JHH = 7.0 Hz), 6.99 (d, 2H, JHH = 8.7 Hz), 3.85 (s, 3H) ppm. 13C{1H} NMR (90 MHz, 

298 K, CDCl3):  =159.3, 141.0, 133.9, 128.9, 128.3, 126.9, 126.8, 114.3, 55.5 ppm. 

 

4-Methoxybiphenyl (3) from phenylboronic acid and 4-bromoanisole: Yield 68 mg (74%), 

white solid, mp: 91-92 °C (lit. mp: 91-92 °C).50  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.50-7.68 (m, 4H), 7.41 (t, 2H, JHH = 7.8 Hz,, 7.29 (t, 

1H, JHH = 7.0 Hz), 6.97 (d, 2H, JHH = 8.5 Hz), 3.84 (s, 3H) ppm. 13C{1H}NMR (90 MHz, 298 

K, CDCl3):  = 159.3, 141.0, 133.9, 128.9, 128.3, 126.9, 126.8, 114.3, 55.5 ppm. 

 

4-Carboxybiphenyl (4) from 4-carboxyphenylboronic acid and bromobenzene: Yield 88 mg 

(89%), white solid, mp: 228-230 °C (lit. mp: 228-230 °C).51  

1H NMR (360 MHz, 298 K, dmso-d6):  = 12.97, 8.02 (d, J HH= 7.8 Hz, 2H), 7.80 (d, JHH = 7.8 

Hz, 2H), 7.72 (d, JHH= 8.1 Hz, 2H), 7.55-7.46 (m, 2H), 7.45-7.34 (m, 1H) ppm. 13C{1H} NMR 

(90 MHz, dmso-d6): = 167.1, 144.3, 139.0, 129.9, 129.6, 129.1, 128.3, 127.0, 126.8 ppm. 

 

4-Carboxybiphenyl (4) from phenylboronic acid and 4-bromobenzoic acid: Yield 83 mg 

(85%), white solid, mp: 228-230 °C (lit. mp: 228-230 °C).51  

1H NMR (360 MHz, 298 K, dmso-d6):  = 12.96 (s), 8.02 (d, JHH = 7.8 Hz, 2H), 7.79 (d, JHH = 

7.6 Hz, 2H), 7.73 (d, JHH = 8.0 Hz, 2H), 7.56-7.46 (m, 2H), 7.46-7.34 (m,1H) ppm. 13C{1H} 

NMR (90 MHz, dmso-d6):  =167.3, 144.4, 139.1, 130.1, 129.7, 129.2, 128.4, 127.1, 126.9 

ppm. 
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4-Acetylbiphenyl (5) from phenylboronic acid and 4-bromoacetophenone: Yield 76 mg (78%), 

white solid, mp: 127-128 °C (lit. mp: 126-128 °C).52  

1H NMR (360 MHz, 298 K, CDCl3):  = 8.02 (d, JHH = 8.3 Hz, 2 H), 7.67 (d, JHH = 8.0 Hz, 2 

H), 7.61 (d, JHH = 7.5 Hz, 2H), 7.53-7,34 (m, 3H), 2.63 (s, 3H) ppm. 13C{1H} NMR (90 MHz, 

298 K, CDCl3):  = 198.0, 146.1, 140.2, 136.2, 129.2 (d), 128.5, 127.5 (d), 26.69 ppm. 

 

4-Methyl-4’-Acetylbiphenyl (6) from p-tolylboronic acid and 4-bromoacetophenone: Yield 74 

mg (70%), white solid, mp: 127-128 °C (lit. mp: 126-128 °C).52  

1H NMR (360 MHz, 298 K, CDCl3):  = 8.03 (d, JHH = 8.5 Hz, 2H), 7.68 (d, JHH = 7.8 Hz, 2H), 

7.54 (d, JHH = 7.7 Hz, 2H), 7.29 (d, J = 7.7 Hz, 2H), 2.64 (s, 3H), 2.41 (s, 3H) ppm.  

13C{1H} NMR (90 MHz, 298 K, CDCl3):  = 197.9, 145.9, 138.4. 137.2, 135.8, 129.9, 129,1 

127.3, 127.2, 26.8, 21.4 ppm. 

 

4-Methoxy-4’-Acetylbiphenyl (7) from 4-methoxyphenylboronic acid and 4-

bromoacetophenone: Yield 93 mg (82%), white solid, mp: 161-162 °C (lit. mp: 156.5-157.0 

°C53 and 156-158 °C54).  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.98 (d, JHH = 8.9 Hz, 2H), 7.61 (d, JHH = 8.8 Hz, 2H), 

7.55 (d, JHH = 8.9 Hz, 2H), 6.97 (d, JHH = 8.8 Hz, 2H), 3.83 (s, 3H), 2.60 (s, 3H) ppm. 13C{1H} 

NMR (90 MHz, 298 K, CDCl3):  = 197.9, 160.1, 145.5, 135.4, 132.3, 129.1, 128.5, 126.7, 

114.6, 55.5, 26.8 ppm. 

 

4-Carboxy-4’-Acetylbiphenyl (8) from 4-carboxyphenylboronic acid and 4-

bromoacetophenone: Yield 109 mg (91%), white solid, mp >300 °C (lit. mp: 309-310 °C).20  
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1H NMR (360 MHz, 298 K, dmso-d6):  = 12.86 (bs), 8.16-7.99 (m, 4H), 7.96-7.81 (m, 4H), 

2.62 (s, 3H) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6):  = 197.5, 167.0, 143.3, 142.9, 

136.2, 130.5, 130.0, 128.9, 127.2, 127.1, 26.8 ppm. 

 

4-Methyl-4′-Methoxybiphenyl (9) from p-tolylboronic acid and 4-bromoanisole:: Yield 58 

mg (59%), white solid, mp: 112-113 °C; (lit. mp 111-112 °C).50  

1H NMR (360 MHz, 298 K, CDCl3) = 7.60-7.40 (md, 4H), 7.33-7.11 (md, 2H), 6.98 (md, 

JHH = 8.7 Hz, 2H), 3.86 (s, 3H), 2.40 (s, 3H) ppm. 13C{1H} NMR (90 MHz, 298 K, CDCl3): = 

159.0, 138.0, 136.4, 133.8, 129.5, 128.0, 126.7, 114.2, 55.4, 21.1 ppm. 

 

4-Methoxy-4′-Methoxybiphenyl (10) from 4-methoxyphenylboronic acid and 4-

bromoanisole: Yield 78 mg (74%), white solid, mp: 186-187 °C (lit. mp: 180-182 °C).55  

1H NMR (360 MHz, 298 K, CDCl3):  = 7.5 (d, JHH = 8.8 Hz, 4H), 6.98 (d, JHH = 8.8 Hz, 

4H), 3.86 (s, 6H) ppm. 13C{1H} NMR (90 MHz, 298 K, CDCl3)  = 158.9, 133.7, 127.9, 114.4, 

55.5 ppm. 

 

4-Carboxy-4′-Methoxybiphenyl (11) from 4-carboxyphenylboronic acid and 4-bromoanisole: 

Yield 96 mg (90%), white solid, mp: 250-253 °C (lit. mp: 250.0-251.7 °C).56  

1H NMR (360 MHz, 298 K, dmso-d6):  = 8.04-7.94 (m, 2H), 7.81-7.63 (m, 4H), 7.15-6.96 (m, 

2 H), 3.81 (s, 3 H) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6):  =167.2, 159.6, 143.9, 

131.2, 129.9, 128.8, 128.1, 126.1, 114.5, 55.2 ppm. 

 

4-Carboxy-4′-Methoxybiphenyl (11) from 4-methoxyphenylboronic acid and 4-

bromobenzoic acid: Yield 95 mg (89%), white solid, mp: 250-253 °C (lit mp: 250.0-251.7 °C).56  
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1H NMR (360 MHz, 298 K, dmso-d6):  = 8.04-7.94 (m, 2H), 7.81-7.63 (m, 4H), 7.15-6.96 (m, 

2H), 3.81 (s, 3H) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6):  =167.2, 159.6, 143.9, 

131.2, 129.9, 128.8, 128.1, 126.1, 114.5, 55.2 ppm. 

 

4-Nitrobiphenyl (12) from phenylboronic acid and 4-nitro-1-iodobenzene: Yield 79 mg (79%), 

light yellow solid, mp: 118-119 °C. (lit. mp: 114.5-115.0 °C).53  

1H NMR (360 MHz, 298 K, CDCl3):  = 8.26 (d, J HH= 8.4 Hz, 2H), 7.70 (d, J HH = 8.6 Hz, 

2H), 7.61 (d, J HH = 7.0 Hz, 2H), 7.53–7.38 (m, 3H) ppm. 13C{1H} NMR (90 MHz, 298 K, 

CDCl3)  = 147.8, 147.3, 138.9, 129.3, 129.1, 127.9, 127.6, 124.3 ppm. 

 

4-Methyl-4’-Nitrobiphenyl (13) from p-tolylboronic acid and 4-nitro-1-iodobenzene: Yield 

75 mg (70%), yellow solid, mp: 142-143 °C (lit. mp: 142.5-143.0 °C).53   

1H NMR (360 MHz, 298 K, CDCl3):  = 8.28 (d, JHH = 8.3 Hz, 2H), 7.72 (d, JHH = 8.8 Hz, 2H), 

7.54 (d, JHH = 7.9 Hz, 2H), 7.32 (d, JHH = 8.8 Hz, 2H), 2.44 (s, 3H) ppm. 13C{1H}NMR (90 

MHz, 298 K, CDCl3):  = 147.6, 146.9, 139.2, 135.9, 130.0, 127.4(d), 124.2, 21.3 ppm. 

 

4-Methoxy-4’-Nitrobiphenyl (14) from 4-methoxyphenylboronic acid and 4-nitro-1-

iodobenzene: Yield 81 mg (70%), yellow solid, mp: 104-105 °C (lit. mp: 104-105 °C).57 

1H NMR (360 MHz, 298 K, CDCl3):  = 8.25 (d, JHH= 8.8 Hz, 2 H), 7.67 (d, JHH = 8.8 Hz, 2H), 

7.58 (d, JHH = 8.8 Hz, 2H), 7.00 (d, JHH = 9.0 Hz, 2H), 3.86 (s, 3H) ppm. 13C{1H} NMR (90 

MHz, 298 K, CDCl3): = 160.7, 147.3, 146.8, 131.4, 128.9, 127.4, 124.4, 114.9, 55.7 ppm. 

 

4-Carboxy-4’-Nitrobiphenyl (15) from 4-carboxyphenylboronic acid and 4-nitro-1-

iodobenzene: Yield 110 mg (90%), yellow solid, mp: >300 °C (lit. mp: 340 °C). 58, 59 
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1H NMR (360 MHz, 298 K, dmso-d6):  = 13.27(s), 8.32 (d, JHH=8.0, 2H), 8.15-7.96 (dd, JHH 

= 8.0, 4H) 7.89 (d, JHH=7.5, 2H) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6)  = 167.1, 

147.1, 145.6, 141.2, 132.4, 130.0, 128.2, 127.3, 124.1 ppm. 

 

4,4'-Dicarboxybiphenyl (16) from 4-carboxyphenylboronic acid and 4-bromobenzoic acid: 

Yield 111 mg (92%),  white solid, mp >300 °C (lit. mp: 309-310 °C).20  

1H NMR (360 MHz, 298 K, dmso-d6):  = 13.03 (2H), 8.05 (d, JHH = 6.9 Hz, 4H), 7.86 (d,  

JHH = 7.3 Hz, 4H) ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6) = 167.5, 143.6, 130.8, 

130.5, 107.6 ppm. 

 

4-Hydroxy-3-formylbiphenyl (17) from phenylboronic acid and 5-bromosalicylaldehyde: 

Yield 79 mg (79%),   yellow solid, mp: 107-108 °C (lit. mp: 95-97 °C)60  

1H NMR (360 MHz, 298 K, dmso-d6)  = 10.87 (s, 1H,), 10.32 (s, 1H), 7.97-7.88 (m, 1H), 7.88-

7.76 (m, 1H) 7.67-7.54 (m, 2H), 7.52-7.38 (bt, 2H), 7.37-7.26 (m, 1H), 7.10 (d, J = 9.0 Hz, 1H) 

ppm. 13C{1H} NMR (90 MHz, dmso-d6): δ = 191.7, 160.3, 138.9, 134.6, 131.5, 129.0, 127.1, 

127.0, 126.1, 122.5, 118.0 ppm. 

 

3'-Formyl-4'-hydroxy[1,1'-biphenyl]-4-carboxylic acid (18)61 from 4-carboxyphenylboronic 

acid and 5-bromosalicylaldehyde: Yield 111 mg (91%), yellow solid, mp >300 °C (mp not 

available in reference 61).  

1H NMR (360 MHz, 298 K, dmso-d6) = 12.03 (br), 10.27 (s, 1H), 8.04-7.89 (m, 3H), 7.88-

7.82 (m, 1H), 7.75-7.65 (m, 2H), 7.09-7.06 (m, 1H) ppm. 13C{1H} NMR (90 MHz, 298 K, 

dmso-d6) = 191.3, 167.2, 161.0, 143.2, 142.9, 134.7, 130.1, 130.0, 127.1, 126.0, 122.6, 118.2 

ppm. 
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4-(Pyridin-2-yl)benzoic acid (19)62 from 4-carboxyphenylboronic acid and 2-iodopyridine: 

Yield 72 mg (78%), white solid, mp: 230-232 °C (lit. mp: 238-240 °C) 63. 1H NMR (360 MHz, 

298 K, dmso-d6):  = 13.03 (s, 1H), 8.69-8.79 (m, 1H), 8.17-8.37 (m, 2H), 8.02-8.15 (m, 2H), 

7.85-8.00 (q, 2H), 7.38-7.49 (m, 1H) ppm. 13C{1H} NMR (90 MHz, 298 K, CH3OD): = 169.4, 

157.5, 150.3, 144.3, 139.4, 134.5, 132.6, 131.3, 129.7, 128.2, 124.6, 123.2 ppm. 

 

4-(1,3-Thiazol-2-yl)benzoic acid (20)64 from 4-carboxyphenylboronic acid and 2-

bromothiazole: Yield 92 mg (90%), white solid, mp: 230-231 °C  (lit. mp: 235-237 °C)65. 1H 

NMR (360 MHz, 298 K, dmso-d6):  = 12.94 (s, 1H), 8.11-8.44 (m, 2H), 7.77-8.08 (m, 4H) 

ppm. 13C{1H} NMR (90 MHz, 298 K, dmso-d6): = 167.3, 141.6, 133.9, 133.3, 131.8, 128.1, 

127.9 ppm. 
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Supporting Information 

1H and 13C NMR spectra of biaryls 1-20; CIF files and X-ray structures of compounds 8, 11, 

15, 17, 18. 
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