X.-T. Liu et al.

#### Letter

# Iron(III) Chloride Catalyzed Nucleophilic Substitution of Tertiary Propargylic Alcohols and Synthesis of Iodo-3*H*-Pyrazoles

Α

Xiao-Tao Liu <sup>\*a</sup> Zong-Cang Ding<sup>b</sup> Lu-Chuan Ju<sup>b</sup> Zhao-Ning Tang<sup>b</sup> Feng Wu<sup>b</sup> Zhuang-Ping Zhan<sup>\*b</sup>

<sup>a</sup> Huaian Wanbang Aromatic Chemicals Industry Co., Ltd.,

Huaian 223300, Jiangsu, P. R. of China <sup>b</sup> Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. of China xiaotao.liu@wxintl.com zpzhan@xmu.edu.cn



Received: 26.09.2016 Accepted after revision: 06.11.2016 Published online: 18.11.2016 DOI: 10.1055/s-0036-1588362; Art ID: st-2016-w0640-I

**Abstract** A straightforward and concise method was developed for the efficient and rapid synthesis of iodo-3*H*-pyrazoles by the  $\text{FeCl}_3/l_2$ mediated propargylic substitution of tertiary propargylic alcohols with *p*-toluenesulfonyl hydrazide and subsequent cyclization under mild conditions. The method constitutes a novel approach to the synthesis of various iodo-3*H*-pyrazoles with a wide substrate scope and in high yields.

**Key words** propargylic alcohols, tosyl hydrazide, iodopyrazoles, cyclization, iodination

Transition-metal-catalyzed cascade reactions of propargylic alcohols have received considerable attention, because many complicated molecules can be directly constructed by these reactions from readily accessible starting materials under mild conditions.<sup>1</sup> Among such reactions, Lewis acid catalyzed nucleophilic substitutions of propargylic alcohols with various nucleophiles to achieve carboncarbon and carbon-heteroatom bond formations have been extensively studied.<sup>2</sup> Nevertheless, compared with the wide range of applications of amine nucleophiles in C-N bond formation, the substitution of propargylic alcohols, particularly tertiary propargylic alcohols, with hydrazines as nucleophiles has rarely been reported,<sup>3</sup> even though propargylic hydrazide products have been converted into useful compounds that contain one or two nitrogen atoms and that exhibit various biological activities.<sup>4</sup> The first convenient method for the preparation of propargylic hydrazides from tertiary propargylic alcohols through scandium-catalyzed hydrazination in MeNO<sub>2</sub>-H<sub>2</sub>O was reported by Yoshimatsu and co-workers in 2012 (Scheme 1, a).<sup>5</sup> However, when tertiary propargylic alcohols were used as substrates,  $R^3$  was limited to a PhS group, and the presence of  $Bu_4 NHSO_4$  as an additive was required.

Our group has made great efforts to synthesize heterocycles by using propargylic alcohols as substrates,<sup>6</sup> and we have reported a novel FeCl<sub>3</sub>-catalyzed domino regioselec-



X.-T. Liu et al.

tive propargylic substitution/aza-Meyer-Schuster rearrangement reaction for the synthesis of acrylonitriles from trimethylsilyl-substituted tertiary propargylic alcohols and *p*-toluenesulfonyl hydrazide (Scheme 1, c).<sup>7</sup> We have also developed a one-pot synthesis of pyrazoles from the same starting materials through a four-step cascade sequence (Scheme 1, d).<sup>8</sup> More recently, Chen and co-workers reported the Y(OTf)<sub>3</sub>-catalyzed stereoselective synthesis of  $\alpha$ , $\beta$ unsaturated hydrazones from tertiary propargylic alcohols and *p*-toluenesulfonyl hydrazide (Scheme 1, b).<sup>9</sup> As part of our ongoing efforts to expand the synthetic utility of tertiary propargylic hydrazides, we report a highly efficient FeCl<sub>3</sub>-catalyzed substitution of tertiary propargylic alcohols to give propargylic hydrazides, and the synthesis of iodo-3H-pyrazoles (Scheme 1, e), 3H-Pyrazole derivatives are used extensively in syntheses of cyclopropenes, carbene intermediates, and diazoalkenes; they can also undergo rearrangements, cycloadditions, or Diels-Alder reactions.<sup>10</sup> However, approaches to this family of heterocycles usually rely on the cycloaddition of diazo compounds, which always presents danger.<sup>11</sup> To the best of our knowledge, there are few reports on the preparation of iodo-3H-pyrazoles or their derivatization.

In our previous studies, we found that FeCl<sub>3</sub> is an efficient catalyst for propargylic substitution. To prepare propargyl hydrazides with high efficiency, we screened various solvents and temperatures (Table 1). Initially, the tertiary propargylic alcohol 1a and p-toluenesulfonyl hydrazide (2) were treated with FeCl<sub>3</sub> (10 mol%) in dichloromethane at room temperature; this gave the target product **3a** in 89% yield (Table 1, entry 1), whereas CH<sub>2</sub>Cl<sub>2</sub> at reflux decreased the yield to 50% (entry 2). Changing the solvent to MeCN re-

Table 1 Optimization of Reaction Conditions for the Propargylic Substitution<sup>a</sup>

| $\times$       | + TsNH            | NH <sub>2</sub> FeCl <sub>3</sub> (10 | FeCl <sub>3</sub> (10 mol%) |                        |  |
|----------------|-------------------|---------------------------------------|-----------------------------|------------------------|--|
| 1a             | Ph 2              | SOIVE                                 | ent                         | Ph<br>3a               |  |
| Entry          | Solvent           | Temp (°C)                             | Time (h)                    | Yield <sup>b</sup> (%) |  |
| 1              | $CH_2CI_2$        | 25                                    | 20                          | 89                     |  |
| 2              | $CH_2CI_2$        | reflux                                | 2                           | 50                     |  |
| 3              | MeCN              | 25                                    | 12                          | 75                     |  |
| 4              | MeNO <sub>2</sub> | 25                                    | 6                           | 95                     |  |
| 5              | MeNO <sub>2</sub> | 30                                    | 2                           | 90                     |  |
| 6              | MeNO <sub>2</sub> | 60                                    | 0.1                         | 74                     |  |
| 7              | PhCl              | 25                                    | 24                          | 20                     |  |
| 8 <sup>c</sup> | MeNO <sub>2</sub> | 25                                    | 14                          | 84                     |  |

<sup>a</sup> Reaction conditions: 1a (0.5 mmol), 2 (0.75 mmol), solvent (5 mL), r.t., in air <sup>b</sup> Isolated yield based on **1a**.

<sup>c</sup> FeCl<sub>3</sub> (5 mol%).

OH

Letter

sulted in an unsatisfactory yield of 3a (entry 3). To our delight, the reaction in MeNO<sub>2</sub> gave a 95% yield of **3a** at room temperature (entry 4); raising the reaction temperature gave lower yields (entries 5 and 6). A test with PhCl as the solvent was unsuccessful (entry 7). In contrast, reducing the amount of FeCl<sub>3</sub> to 5 mol% led to a decrease in the yield of 3a to 84% (entry 8). Therefore, the optimal conditions for this reaction were determined to be MeNO<sub>2</sub> as the solvent, at room temperature, with  $FeCl_3$  (10 mol%) as the catalyst for about six hours (entry 4).

We next optimized the I<sub>2</sub>-mediated synthesis of 4-iodo-3.3-dimethyl-5-phenyl-4.5-dihydro-3*H*-pyrazole (**4a**) from hydrazide 3a (Table 2). We were pleased to find that the propargyl hydrazide **3a** could be smoothly converted into the pyrazole 4a by treatment with three equivalents of  $I_2$ and NaHCO<sub>3</sub> in MeCN (Table 2, entry 1; 94% yield). Reducing the amounts of catalysts or changing the solvent resulted in unsatisfactory yields (entries 2-5). Therefore, the optimal reaction conditions for the cyclization of propargyl hydrazides are three equivalents of I<sub>2</sub> and NaHCO<sub>3</sub> as catalyst and base, respectively, with MeCN as the solvent at room temperature in air (entry 1).

 
 Table 2
 Optimization of Reaction Conditions for the I<sub>2</sub>-Mediated Cv clization of Propargylic Hydrazide 3a

| NHNHTs<br>Ph<br>3a |                   | I <sub>2</sub> , NaHCO <sub>3</sub> |                            | N=N<br>Ph |                        |
|--------------------|-------------------|-------------------------------------|----------------------------|-----------|------------------------|
| Entry              | Solvent           | l <sub>2</sub> (equiv)              | NaHCO <sub>3</sub> (equiv) | Time (h)  | Yield <sup>♭</sup> (%) |
| 1                  | MeCN              | 3.0                                 | 3.0                        | 1         | 94                     |
| 2                  | MeCN              | 2.0                                 | 2.0                        | 2         | 89                     |
| 3                  | MeNO <sub>2</sub> | 3.0                                 | 3.0                        | 4         | 88                     |
| 4                  | MeOH              | 3.0                                 | 3.0                        | 24        | N.R. <sup>c</sup>      |
| 5                  | THF               | 3.0                                 | 3.0                        | 24        | N.R.                   |

<sup>a</sup> Reaction conditions: **3a** (0.5 mmol), solvent (5 mL), r.t., in air.

<sup>b</sup> Isolated vield based on **3a**.

<sup>c</sup> No reaction.

Next, we evaluated the scope of the reaction under the optimal conditions by placing various substituents at various positions on the propargylic alcohol 1 (Scheme 2). A variety of propargyl hydrazides 3 and the corresponding iodo-3H-pyrazoles 4 were successfully obtained. Propargylic alcohols with a terminal aromatic group  $(R^3 = Ph)$  reacted better than did those with an alkyl group (3a versus 3c and **3d**; **4a** versus **4c** and **4d**). In addition, the presence of a long chain at the propargyl position reduced the yield slightly (3b and 4b; 72 and 90% yield, respectively). Substrates with a phenyl and a methyl group in the propargyl position reacted smoothly to afford the desired products (3e-g, 78-90% yield; 4e-g, 80-91% yield). Product 3h decomposed over the course of column chromatography; however, 4h

NHNHT

## Syn lett

X.-T. Liu et al.





**Scheme 2** Synthesis of propargyl hydrazides **3** and the corresponding iodo-3*H*-pyrazoles **4**. *Reagents and conditions*: **1** (0.5 mmol), **2** (0.75 mmol), FeCl<sub>3</sub> (10 mol%), MeNO<sub>2</sub> (5 mL), r.t., air, then **3** (0.5 mmol), I<sub>2</sub> (1.5 mmol), NaHCO<sub>3</sub> (1.5 mmol), MeCN (5 mL), air, 25 °C. <sup>a</sup> **3h** decomposed over the course of column chromatography. <sup>b</sup> **4h** was synthesized in one pot by reacting **1h** and **2** for 12 h; upon completion of the reaction, MeNO<sub>2</sub> was removed in vacuo and the crude residue was treated with iodine and NaHCO<sub>3</sub> in MeCN.

was obtained in a moderate 54% yield by a one-pot synthesis starting from **1h** and **2**. On replacing a cyclohexyl group with a cyclopentyl group, we obtained **3i** successfully in 83% yield, but this could not be converted into the iodo-3*H*pyrazole **4i**. Interestingly, the present method was also compatible with a large-ring propargyl alcohol as the substrate, albeit with moderate efficiency (**3j**, 66% yield; **4j**, 46% yield). Replacement of the phenyl group at R<sup>3</sup> in **3e** with a butyl group was also tolerated (**3k**, 63% yield; **4k**, 80% yield).

To demonstrate the synthetic utility of this method, derivatization reactions of the iodo-3*H*-pyrazole **4a** were carried out (Scheme 3). Under classic conditions, the Sono-gashira, Suzuki, and Heck reactions all proceeded smoothly to give the corresponding products **5**, **6**, and **7** in 85, 90, and 91% yield, respectively.

Based on the experimental results presented above, the reaction mechanism shown Scheme 4 is proposed. First, the propargylic alcohol **1** reacts under iron catalysis to yield a



Scheme 3 Derivatization reactions of the iodo-3H-pyrazole 4a

### Synlett

#### X.-T. Liu et al.

propargylic cation. Next, propargylic substitution occurs regioselectively by attack on the terminal nitrogen atom  $(-NH_2)$ of hydrazide **2** to give the substitution product **3**. Coordination of the I<sup>+</sup> catalyst with the alkyne activates the triple bond of **3** to nucleophilic attack by the substituted nitrogen atom of the hydrazide (-NHTs); subsequent elimination of one molecule of 4-toluenesulfonic acid leads to the formation of the final product **4**.



In conclusion, we have developed a highly efficient method for the synthesis of propargyl hydrazides and their corresponding iodo-3H-pyrazoles from tertiary propargylic alcohols and *p*-toluenesulfonyl hydrazide.<sup>12</sup> The reactions are high-yielding with a broad substrate scope and proceed under extremely mild conditions. The present method complements conventional reactions for the preparation of this family of compounds, and has potential applications in

#### Acknowledgment

medicinal chemistry.

We are grateful to the National Natural Science Foundation of China (No. 21272190), and NFFTBS (No. J1310024).

#### **Supporting Information**

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588362.

#### **References and Notes**

- (1) (a) Hao, L.; Zhan, Z.-P. Curr. Org. Chem. 2011, 15, 1625. (b) Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914. (c) Ljungdahl, N.; Kann, N. Angew. Chem. Int. Ed. 2009, 48, 642. (d) Detz, R.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2009, 6263.
- (2) (a) Guillena, G.; Ramón, D.; Yus, M. Chem. Rev. 2010, 110, 1611.
  (b) Debleds, O.; Gayon, E.; Ostaszuk, E.; Vrancken, E.; Campagne, J.-M. Chem. Eur. J. 2010, 16, 12207. (c) Kabelka, G. W.; Yao, M.-L. Curr. Org. Synth. 2008, 5, 28. (d) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. (e) Wang, X.; Li, S.-y.; Pan, Y.-m.;

Letter

Wang, H.-s.; Liang, H.; Chen, Z.-f.; Qin, X.-h. Org. Lett. **2014**, *16*, 580. (f) Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. **2011**, *13*, 1024. (g) Bauer, E. I. Synthesis **2012**, *44*, 1131. (h) Yin, G.; Zhu, Y.; Zhang, L.; Lu, P.; Wang, Y. Org. Lett. **2011**, *13*, 940. (i) Chatterjee, P.; Roy, S. J. Org. Chem. **2010**, *75*, 4413. (j) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J.; Shi, X. Org. Lett. **2010**, *12*, 3308. (k) Fang, Z.; Liu, J.; Liu, Q.; Bi, X. Angew. Chem. Int. Ed. **2014**, *53*, 7209. (l) Yoshimatsu, M.; Watanabe, H.; Koketsu, E. Org. Lett. **2010**, *12*, 4192. (m) Fang, C.; Pang, Y.; Forsyth, C. Org. Lett. **2010**, *12*, 4528. (n) Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Org. Lett. **2007**, *9*, 727. (o) Zhan, Z.-p.; Yang, W.-z.; Yang, R.-f.; Yu, J.-l.; Li, J.-p.; Liu, H.-j. Chem. Commun. **2006**, 3352.

- (3) For selected examples of the use of secondary propargyl alcohols and hydrazines as nucleophiles, see: (a) Xu, S.-X.; Hao, L.; Wang, T.; Ding, Z.-C.; Zhan, Z.-P. Org. Biomol. Chem. 2013, 11, 294. (b) Reddy, C.; Vijaykumar, J.; Grée, R. Synthesis 2013, 45, 830.
- (4) (a) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. In *Targets in Heterocyclic Systems: Chemistry and Properties*; Vol. 6; Attanasi, O. A.; Spinelli, D., Eds.; RSC: Cambridge, **2002**, 52. (b) Kiyokawa, K.; Ito, Y.; Kakehi, R.; Ogawa, T.; Goto, Y.; Yoshimatsu, M. *Eur. J. Org. Chem.* **2016**, 4998.
- (5) Yoshimatsu, M.; Ohta, K.; Takahashi, N. Chem. Eur. J. 2012, 18, 15602.
- (6) (a) Wen, J.-J.; Zhu, Y.; Zhan, Z.-P. Asian J. Org. Chem. 2012, 1, 108. (b) Wang, T.; Chen, X.-I.; Chen, L.; Zhan, Z.-p. Org. Lett. 2011, 13, 3324. (c) Liu, X.-t.; Huang, L.; Zheng, F.-j.; Zhan, Z.-p. Adv. Synth. Catal. 2008, 350, 2778. (d) Pan, Y.-m.; Zheng, F.-j.; Lin, H.-x.; Zhan, Z.-p. J. Org. Chem. 2009, 74, 3148. (e) Gao, X.; Pan, Y.-m.; Lin, M.; Chen, L.; Zhan, Z.-p. Org. Biomol. Chem. 2010, 8, 3259. (f) Hao, L.; Pan, Y.; Wang, T.; Lin, M.; Chen, L.; Zhan, Z.-p. Adv. Synth. Catal. 2010, 352, 3215. (g) Zhan, Z.-p.; Yu, J.-l.; Liu, H.-j.; Cui, Y.-y.; Yang, R.-f.; Yang, W-z.; Li, J.-p. J. Org. Chem. 2006, 71, 8298.
- (7) Hao, L.; Wu, F.; Ding, Z.-C.; Xu, S.-X.; Ma, Y.-L.; Chen, L.; Zhan, Z.p. Chem. Eur. J. 2012, 18, 6453.
- (8) Hao, L.; Hong, J.-J.; Zhu, J.; Zhan, Z.-p. Chem. Eur. J. 2013, 19, 5715.
- (9) Liu, W.; Wang, H.; Zhao, H.; Li, B.; Chen, S. Synlett **2015**, *26*, 2170.
- (10) (a) Closs, G. L.; Boll, W. A. J. Am. Chem. Soc. 1963, 85, 3904.
  (b) Hamdi, N.; Dixneuf, P. H.; Arfaoui, Y.; Haloui, E. J. Chem. Res. 2005, 289. (c) Hamdi, N.; Lachheb, J.; Msaddek, M. J. Soc. Alger. Chim. 2007, 17, 37. (d) Anet, R.; Anet, F. A. L. J. Am. Chem. Soc. 1964, 86, 525. (e) Padwa, A.; Wannamaker, M. W.; Dyszlewski, A. D. J. Org. Chem. 1987, 52, 4760. (f) Mataka, S.; Ohshima, T.; Tashiro, M. J. Org. Chem. 1981, 46, 3960. (g) Jefferson, E. A.; Warkentin, J. J. Org. Chem. 1994, 59, 455. (h) Franck-Neumann, M. Angew. Chem. Int. Ed. 1967, 6, 79. (i) Rigby, J. H.; Kierkus, P. C. J. Am. Chem. Soc. 1989, 111, 4125. (j) Merchant, R. R.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. J. Org. Chem. 2014, 79, 8800.
- (11) (a) Moritani, I.; Hosokawa, T.; Obata, N. J. Org. Chem. 1969, 34, 670. (b) Wenkert, E.; McPherson, C. A. J. Am. Chem. Soc. 1972, 94, 8084. (c) Pyron, R. S.; Jones, W. M. J. Org. Chem. 1967, 32, 4048. (d) Zimmerman, H. E.; Hovey, M. C. J. Org. Chem. 1979, 44, 2331.

(12) N'-(1,1-Dimethyl-3-phenylprop-2-yn-1-yl)-4-toluenesulfonohydrazide (3a); Typical Procedure TsNHNH<sub>2</sub> (2; 129.5mg, 0.75 mmol), propargylic alcohol 1a (80 mg, 0.5 mmol), and FeCl<sub>3</sub> (8.1 mg, 0.05 mmol) were added to a 10 mL round-bottomed flask. MeNO<sub>2</sub> (5 mL) was added, and the mixture was stirred in air at r.t. until the reaction was complete (TLC). The solvent was removed under vacuum, and the crude

#### X.-T. Liu et al.

residue was purified by column chromatography on silica gel to give a white solid; yield: 156 mg (95%); mp 117–119 °C. IR (film): 3461, 3130, 2180, 1598, 1499 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.29 (s, 6 H), 2.41 (s, 3 H), 3.67 (s, 1 H), 6.15 (s, 1 H), 7.26–7.38 (m, 7 H), 7.82 (d, *J* = 8.0 Hz, 2 H). <sup>13</sup>C NMR (100 MHz, CDCl3):  $\delta$  = 21.5, 27.0, 53.2, 83.3, 91.7, 122.4, 128.2, 128.3, 128.3, 129.3, 131.7, 135.3, 143.8. HRMS (ESI): *m/z* [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>S: 329.1318; found: 329.1320.

#### 4-lodo-3,3-dimethyl-5-phenyl-3H-pyrazole (4a)

Propargyl hydrazide **3a** (164 mg, 0.5 mmol),  $I_2$  (381 mg, 1.5 mmol), and NaHCO<sub>3</sub> (126 mg, 1.5 mmol) were added to a 10 mL round-bottomed flask. MeCN (5 mL) was added, and the

mixture was stirred at r.t. in air until the reaction was complete (TLC). Sat. aq Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> was added to quench the reaction, and the mixture was diluted with H<sub>2</sub>O (10 mL). The aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), the solvent was removed under vacuum, and the crude residue was purified by column chromatography (silica gel) to give a yellow solid; yield: 140 mg (94%); mp 138–140 °C. IR (film): 3102, 1597, 1489 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.47 (s, 6 H), 7.47–7.53 (m, 3 H), 8.26–8.28 (m, 2 H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.3, 97.5, 111.3, 128.2, 128.5, 129.5, 130.6, 154.0. HRMS (ESI): *m/z* [M + H]<sup>+</sup> calcd for C<sub>11</sub>H<sub>12</sub>IN<sub>2</sub>: 299.0040; found: 299.0042.