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Abstract- A rapid and convenient synthesis of the 3-trifluoromethanesuifonyloxy-2-pyridone 2, one of 
the first examples of this class of compound, was achieved by Vilsmeier formylation and cyclisation of 
the acyl enamine 6. The triflate 2 was found to undergo a range of palladium-catalysed coupling 
reactions giving a synthetic sequence of general use for the preparation of highly substituted 2-pyridones. 
© 1999 Elsevier Science Ltd. All rights reserved. 
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Substituted monocyclic 2-pyridones are an important class of biologically active compounds which 

have widespread pharmaceutical use including analgesic, hypnotic, antifungal and cardiotonic actionsJ 

Recently we identified the 2-pyridones 12 (Figure 1) and related compounds 3 as selective ligands for the 

benzodiazepine binding site of GABA-A receptors with potential application as anxiolytics with improved 

side-effect profiles. In connection with this work we sought a rapid and efficient synthetic route to explore the 

structure-activity relationships of compounds such as 1, especially by variation of the 3-substituent. The 

disconnection shown in Figure 1 was particularly attractive, and was envisaged to arise from palladium 

mediated cross-coupling reactions to the novel 3-tr if luoromethanesulfonyloxy-2-pyridone 2. This 

communication describes the successful formylation-cyclisation of an acyl enamine to give the triflate 2 and 

the subsequent cross-coupling chemistry that was achieved with this intermediate, providing a convenient, 

convergent and general route to highly functionalised pyridones of biological interest. 
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Figure I Figure 2 
At the outset of this work we were unable to find examples of transition metal mediated couplings to 3- 

trifluoromethanesulfonyloxy-2-pyridones. Recently the syntheses, Stille cross-couplings and reductions of the 

bicyclic pyridone 3-triflates 3 (Figure 2) were reported by Padwa e t  al .  4 The synthesis and reactivity of 4- 
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trifluoromethanesulfonyloxy-2-pyridones have been investigated, 5 but there are few reports concerning 5- 

tdfluoromethanesulfonyloxy-2-pyridones 6 which have now been used in a novel synthesis of tricyclic pyridone 

GABA-A ligands. 7 

The key triflate intermediate 2 was prepared by the formylation-cyclisation of an appropriately 

substituted acyl enamine using the Vilsmeier reagent 8 (Scheme 1). This method had been applied to the 

synthesis of alkyl substituted 2-pyridones and was known to be effective for the introduction of a phenoxy 

group at the 3-position of the beterocycle. 9 Ciaisen condensation of isonicotinic acid, activated as the 

imidazolide, with the enolate of methyl 4-methoxypbenylacetate was followed by decarboxylation under 

Krapcho conditions m° to yield the ketone 4. This was converted to the N-methyl imine 5 upon treatment with 

methylamine and titanium tetrachloride, t~ The crude imine was acylated with benzyloxyacetyl chloride '2 to 

provide the desired acyl enamine 6 in good yield (59%) accompanied by small amounts (<10%) of the ~lactam 

7, presumably as a result of competing ketene formation through elimination of the acid chloride and 

subsequent [2+2] cycloaddition to the imine. Indeed, if an equivalent of triethylamine was included in the 

acylation reaction, a 1:1 mixture of 6:7 was obtained (80%). Nevertheless, the required acyl enamine could be 

reliably prepared on multigram scale by this procedure. 
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Reagents and conditions: i) N,N'-carbonyldiimidazole, DMF, rt then methyl 4-methoxyphenylacetate, 
Nail, rt (45%); ii) NaCI, H20, DMSO, 1500C (87%!; iii) MeNH2, TioCrl4, CHCI3, 0°C; iv) CIOCCH2OBn, 
THF, 0=C (59%, two steps); v) POCI 3, DMF, 0-75 C then H20, 0 C (48%); vi) Pd-C, HCO2NH4, AcOH, 
MeOH, rt (75%); vii) (CF3SO2)20, pyddine, CH2CI 2, -78-0°C (90%) 

Scheme I 

Treatment of 6 with POCI3-DMF at elevated temperature 9 gave a 1-methyl-2-chloropyridinium 
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species  t3 whose presence could be inferred from analysis of  the reaction mixture by electrospray mass 

spectrometry. Fol lowing hydrolysis of  this material, the 2-pyridone 8 was isolated in fair yield (48%), 

accompanied by the chloropyridine 9 (ca. 5-10%), the result of demethylation of the intermediate pyridinium 

salt. The benzyl protecting group was removed by catalytic transfer hydrogenolysis and the 3-hydroxy-2- 

pyridone was converted in excellent yield to the triflate 2 under standard conditions. This route served to 

produce several grams of  the triflate 2, which did not significantly degrade upon storage at room temperature 

over several months. 
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=Method A: Pd(PPh3) 4, Na2CO3, DME-H20, 100°C; Method B: Pd(PPh3)4, THF, 50°C; Method C: Pd(PPh3) 4, DMF, 100°C; 
Method D: Pd(OAc)2, PPh3, LiCI, EhN, 100°C; Method E: Pd(PPh3) 4, CuI, EhN, 100°C. bIsolated yields (unoptimised) of final 
compounds with purity of 95-99% as measured by hplc. COrganozinc formed by deprotonation of a mixture of the 
regioisomeric protected heterocycle with Bu*Li and transmetalation with ZnCI2 (ref. 17). The major isomer is shown, dref. 19. 

A range of  palladium-catalysed couplings to 2 were examined (Scheme 2 and Tab le  1). In most cases 

commercial tetrakis(triphenylphosphine)palladium was an effective catalyst and no further optimisation of  the 

conditions or catalyst mixture was attempted. Both electron-rich and electron-poor arylboronic acids were 
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coupled to the triflate 2 (entries 1-11) under Suzuki conditions m̀ and these reactions were conveniently carried 

out in parallel in batches of 5-12 compounds.~5 

Other heteroeycles were introduced by Negishi coupling ~6 of the organozinc halides ~7 (entries 12, 13). 

For the SEM-protected imidazole and pyrazole, the protecting group was removed after coupling by acid 

treatment (5M HCI, 60°C, 47% and 53% yield respectively). Stille coupling t8 of a heterocyclic stannane ~9 to 

the triflate 2 was also effective (entry 14) and the successful Heck 2° and Sonogashira 2j reactions (entries 15, 16) 

further demonstrated the versatility of this intermediate. The biological activity of the target compounds 1 will 

be reported in due course. 22 

In summary, a rapid and convenient synthesis of the 3-trifluoromethanesulfonyloxy-2-pyridone 2, one 

of the first examples of this class of compound, was achieved by formylation-cyclisation of the acyl enamine 6. 

The triflate 2 was found to be a versatile intermediate for palladium-catalysed coupling reactions, completing a 

synthetic strategy that should be generally useful for the synthesis of other highly substituted 2-pyridones. 
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