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Abstract: A rapid and convenient synthesis of the 3-trifluoromethanesulfonyloxy-2-pyridone 2, one of
the first examples of this class of compound, was achieved by Vilsmeier formylation and cyclisation of
the acyl enamine 6. The triflate 2 was found to undergo a range of palladium-catalysed coupling
reactions giving a synthetic sequence of general use for the preparation of highly substituted 2-pyridones.
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Substituted monocyclic 2-pyridones are an important class of biologically active compounds which
have widespread pharmaceutical use including analgesic, hypnotic, antifungal and cardiotonic actions.’
Recently we identified the 2-pyridones 12 (Figure 1) and related compounds® as selective ligands for the
benzodiazepine binding site of GABA-A receptors with potential application as anxiolytics with improved
side-effect profiles. In connection with this work we sought a rapid and efficient synthetic route to explore the
structure—activity relationships of compounds such as 1, especially by variation of the 3-substituent. The
disconnection shown in Figure 1 was particularly attractive, and was envisaged to arise from palladium
mediated cross-coupling reactions to the novel 3-triflaioromethanesulfonyloxy-2-pyridone 2. This
communication describes the successful formylation-cyclisation of an acyl enamine to give the triflate 2 and
the subsequent cross-coupling chemistry that was achieved with this intermediate, providing a convenient,
convergent and general route to highly functionalised pyridones of biological interest.
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At the outset of this work we were unable to find examples of transition metal mediated couplings to 3-
trifluoromethanesulfonyloxy-2-pyridones. Recently the syntheses, Stille cross-couplings and reductions of the
bicyclic pyridone 3-triflates 3 (Figure 2) were reported by Padwa et al.* The synthesis and reactivity of 4-
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triflaoromethanesulfonyloxy-2-pyridones have been investigated,’ but there are few reports concerning 5-
trifluoromethanesulfonyloxy-2-pyridones® which have now been used in a novel synthesis of tricyclic pyridone
GABA-A ligands.’

The key triflate intermediate 2 was prepared by the formylation-cyclisation of an appropriately
substituted acyl enamine using the Vilsmeier reagent® (Scheme 1). This method had been applied to the
synthesis of alkyl substituted 2-pyridones and was known to be effective for the introduction of a phenoxy
group at the 3-position of the heterocycle.” Claisen condensation of isonicotinic acid, activated as the
imidazolide, with the enolate of methyl 4-methoxyphenylacetate was followed by decarboxylation under
Krapcho conditions' to yield the ketone 4. This was converted to the N-methyl imine 5 upon treatment with

' The crude imine was acylated with benzyloxyacetyl chloride" to

methylamine and titanium tetrachloride.
provide the desired acyl enamine 6 in good yield (59%) accompanied by small amounts (<10%) of the p-lactam
7, presumably as a result of competing ketene formation through elimination of the acid chloride and
subsequent [2+2] cycloaddition to the imine. Indeed, if an equivalent of triethylamine was included in the
acylation reaction, a 1:1 mixture of 6:7 was obtained (80%). Nevertheless, the required acyl enamine could be

reliably prepared on multigram scale by this procedure.
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Reagents and conditions: i) N,N'-carbonyldiimidazole, DMF, rt then methyl 4-methoxyphenylacetate,
NaH, rt (45%); ii) NaCl, H,0, DMSO, 150°C (87%); iiij) MeNH,, TiCls, CHCI3, 0°C; iv) CIOCCH,0Bn,
THF, 0°C (59%, two steps); v) POCly, DMF, 0~75°C then H;0, 0°C (48%); vi) Pd-C, HCO,NH,4, AcOH,
MeOH, rt (75%); vii) (CF3S0,),0, pyridine, CHoCl,, -78-0°C (90%)

Scheme 1

Treatment of 6 with POCl,-DMF at elevated temperature’ gave a 1-methyl-2-chloropyridinium
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species'’ whose presence could be inferred from analysis of the reaction mixture by electrospray mass
spectrometry. Following hydrolysis of this material, the 2-pyridone 8 was isolated in fair yield (48%),
accompanied by the chloropyridine 9 (ca. 5-10%), the result of demethylation of the intermediate pyridinium
salt. The benzyl protecting group was removed by catalytic transfer hydrogenolysis and the 3-hydroxy-2-
pyridone was converted in excellent yield to the triflate 2 under standard conditions. This route served to
produce several grams of the triflate 2, which did not significantly degrade upon storage at room temperature

over several months.
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Table 1
No. | Method* M-R Yield® [ No. | Method® M-R Yield®
(%) (%)
SEM,
I A O 61 |12 | B D—Me 51
and isomer
2 2-OMe 63 SEM~N,N
3 3-OMe 70 13¢ B H—Me 28
4 Xy 4-OMe 41 CIZnM
5 A | ’\, 4-Cl 36 and isomer
6 (HO)B™ ™ 4F 47
7 4CF, | 21 N
8 3NH, | 61 |14 C )':c> 44
9 3-NO, | 29 BusSn
" s
10 A = 67 15 D N 41
(HO),B Z “CO.Me
Y
11 A 69 16 E 27
(HO),B = ///\ OH

*Method A: Pd(PPh;),, Na,CO;, DME-H,0, 100°C; Method B: Pd(PPh,),, THF, 50°C; Method C: Pd(PPh,),, DMF, 100°C:
Method D: Pd(OAc),, PPh,, LiCl, Et;N, 100°C; Method E: Pd(PPh;),, Cul, Et;N, 100°C. "Isolated yields (unoptimised) of final
compounds with purity of 95-99% as measured by hplc. °Organozinc formed by deprotonation of a mixture of the
regioisomeric protected heterocycle with BuLi and transmetalation with ZnCl, (ref. 17). The major isomer is shown. ‘ref. 19.

A range of palladium-catalysed couplings to 2 were examined (Scheme 2 and Table 1). In most cases
commercial tetrakis(triphenylphosphine)palladium was an effective catalyst and no further optimisation of the
conditions or catalyst mixture was attempted. Both electron-rich and electron-poor arylboronic acids were
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coupled to the triflate 2 (entries 1-11) under Suzuki conditions' and these reactions were conveniently carried
out in parallel in batches of 5-12 compounds.'*

Other heterocycles were introduced by Negishi coupling’ of the organozinc halides!” (entries 12, 13).
For the SEM-protected imidazole and pyrazole, the protecting group was removed after coupling by acid
treatment (SM HCl, 60°C, 47% and 53% yield respectively). Stille coupling' of a heterocyclic stannane’ to
the triflate 2 was also effective (entry 14) and the successful Heck® and Sonogashira?' reactions (entries 15, 16)
further demonstrated the versatility of this intermediate. The biological activity of the target compounds 1 will
be reported in due course.?

In summary, a rapid and convenient synthesis of the 3-trifluoromethanesulfonyloxy-2-pyridone 2, one
of the first examples of this class of compound, was achieved by formylation-cyclisation of the acyl enamine 6.
The triflate 2 was found to be a versatile intermediate for palladium-catalysed coupling reactions, completing a
synthetic strategy that should be generally useful for the synthesis of other highly substituted 2-pyridones.
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