Direct Synthesis of Lactones by Double Carbonylation of (2-Bromoethyl)benzene Catalyzed by Sn(Co(CO)₄)₄

Eric Monflier, Sylvain Pellegrini, André Mortreux* and Francis Petit*

Laboratoire de Chimie Organique Appliquée associé au CNRS Ecole Nationale Supérieure de Chimie de Lille B.P. 108 - 59659 Villeneuve d'Ascq, France

Key-words: Double carbonylation, Sn-Co catalyst, lactone synthesis, (2-bromoethyl)benzene.

Abstract: The direct synthesis of lactones is performed by double carbonylation of (2-bromoethyl)benzene under carbon monoxide pressure. The reaction is catalyzed by Sn(Co(CO)4))4 in the presence of a base in hydro-alcoholic medium.

Double carbonylation reactions have been largely investigated during these last years.¹ Thus, double carbonylation of (2-bromoethyl)benzene 1 to benzylpyruvic acid $C_6H_5(CH_2)_2COCO_2H 2$ is catalyzed with good yield and selectivity by $Co_2(CO)_8$ at 85°C under 65 bar of carbon monoxide.²

We now report that in contrast with $Co_2(CO)_8$ (Table), the use³ of $Sn(Co(CO)_4)_4$, which can be considered as a source⁴ of $Co_2(CO)_8$, gives rise during double carbonylation to the selective production of lactones 3 and 4 rather than 2, according to eq. 1.

$$C_{6}H_{5}(CH_{2})Br + CO = \begin{pmatrix} 1 & Sn(Co(CO)_{4})_{4} \\ Ca(OH)_{2} & H_{2}O & (CH_{3})_{3}COH & P_{CO} \\ 2 & H_{3}O^{+} & R_{1} & R_{2} & OH \\ 1 & 3 & 4 \\ R = C_{6}H_{5}(CH_{2})_{2} & R_{1} = C_{6}H_{5}CH_{2} & R_{2} = -COOH \\ \end{pmatrix}$$
(1)

In a typical experiment, 7 mL (51 mmol) of 1, 30 mL (0.32 mol) of 2-methyl-2-propanol, 0.8 g (1 mmol) of $Sn(Co(CO)_4)_4$, 10 g (0.13 mol) of calcium hydroxide and 80 mL (4.5 mol) of water are introduced under nitrogen in a 300 mL stainless steel autoclave, which is pressurized at 65 bar at room temperature and stirred for 16 hours at 85 °C. The reaction mixture is cooled to room temperature, depressurized and filtered. The crude cake is washed with 10 mL of water and 3 x 10 mL of diethylether to give a white solid, which is acidified with a 0.1 N HCl solution and extracted with diethylether. The solution is dried over anhydrous MgSO4 and evaporated. The solid products mixture is then analyzed.⁵

Entry	Catalyst	Base	PCO (bar)	Yield (%) a	
				22	<u>3 + 4 b</u>
1	SnCl ₂	LiOH	20	0	0
2	Co ₂ (CO) ₈	LiOH	20	35	0
3	Sn(Co(CO) ₄) ₄	LiOH	20	25	0
4	$Co_2(CO)_8$	Ca(OH) ₂	65	70	0
5	Sn(Co(CO) ₄) ₄	Ca(OH) ₂	20	traces	57
6	Sn(Co(CO) ₄) ₄	Ca(OH) ₂	65	traces	67
7	$Co_2(CO)_8 + SnCl_2$	Ca(OH) ₂	65	traces	65

Table. Catalytic double carbonylation of 1 under various conditions.

(a) isolated yield ; (b) the ratio 3 / 4 depends on acidification conditions ; Sn = 1 mmol ; Co = 4 mmol ; LiOH = 0.26 mol ; $Ca(OH)_2 = 0.13 \text{ mol}$; $C_6H_5(CH_2)_2Br = 51 \text{ mmol}$; $T = 85^\circ$ C ; t = 16 h.

The synthesis of a lactone similar to 3 ($R = R_1 = CH_3$, $R_2 = C_5H_{11}$) has already been reported from dimethylmaleic anhydride and the Grignard compound of pentyl chloride.⁶ It has to be noticed that the selective synthesis of 3 and 4 is only observed when Ca(OH)₂ is used, 2 being the only product obtained if an alkaline base like LiOH is used. Further experiments have shown that the lactones are quantitatively transformed into 2 by treatment at 80°C in hydro-alcoholic medium with LiOH or NaOH,whereas this reaction does not occur with Ca(OH)₂, as expected. Furthermore, we have observed that SnCl₂, as well as Sn(Co(CO)₄)₄, induces the synthesis of lactones 3 and 4 from 2 in the presence of Ca(OH)₂ in hydro-alcoholic medium. A spectroscopic study performed on the white solid obtained before acidification has revealed that v (c=o) lactones vibrations are not detected. This shows, as described in the literature⁶, that the cyclisation reactions and the dehydratation leading to 3 and 4 occur during the acidic workup.

These experiments demonstrate the bifunctional character of the bimetallic compound $Sn(Co(CO)_4)_4$, generating tetracarbonylcobaltate anions (responsible for synthesis of 2 as calcium salt) and concommitantly a tin species which promotes an aldol condensation⁷ between the two RCOCOO⁻ fragments bound to Ca²⁺. If an alkaline base like LiOH is used, a retrograde aldol condensation can take place in the course of the reaction and 2 is the only final product (entry 3).⁸

ACKNOWLEDGMENTS

The authors gratefully acknowledge S.N.P.E. for its financial support.

REFERENCES AND NOTES

- 1. For a review see Collin, J. Bull. Soc. Chim. Fr. 1988, 6, 976-981. (55 References)
- 2. Fell, B.; Chrobaczeck, H.; Kohl, W. Chem. Zeitung 1985, 109, 167-170. Lee, J.Y.; Wolfram, J. U.S. Pat. 4, 492, 798 (1984).
- We have recently described the synthesis and uses of Sn(Co(CO)₄)₄ in several reactions: Cabrera, A.; Samain, H.; Mortreux, A.; Petit, F.; Welch, A.J. Organometallics 1990, 9, 959-964. Cabrera, A.; Mortreux, A.; Petit, F. J. Mol. Catal. 1981, 47, 11-15.
- Samain, H.; Carpentier, J.F.; Mortreux, A.; Petit, F. New J. Chem. 1991, 15, 367-371.
 Some selected characteristics are listed below: 3: 2(3-(2-benzene)ethyl-4-benzyl.5-carboxylic acid.5-bydr
- Some selected characteristics are listed below: 3: 2(3-(2-benzene)ethyl-4-benzyl-5-carboxylic acid-5-hydroxy) furanone; I.R.: 3436 (OH), 1735 (COOR), 2400-3200 (COOH) cm⁻¹. MS / FAB⁺ high resolution (CH₃OH / Glycerol): 339 (M + H) (Molecular weight obtained by peak matching: 339.1257; calculated for C₂₀ H₁₉ O₅ = 339.1232), 294 ((M + H)-COOH), 277 ((M + H)-COOH,-OH).¹³C NMR (DMSO-d₆): δ 169.67, 168.19, 137.1, 130.12, 85.91, 35.27, 29.07, 28.87. ¹H NMR (DMSO-d₆): δ 3.81 (d, J = 15.1 Hz, 1H), 3.45 (d, J = 15.1 Hz, 1H), 2.4-2 (m, 4H). 4: 2-oxo-3-(2-benzene)ethyl-3-hydroxy-4-benzyl-5-carboxylic acid-5-hydoxy tetrahydrofuran; I.R.: 3430 (OH), 3331 (OH), 1775 (COOR), 2400-3200 (COOH) cm⁻¹. MS / FAB⁺ (CH₃OH, Glycerol): 357 (M + H), 340 ((M + H)-OH), 323 ((M + H)-(2 x OH)), 312 ((M + H)-COOH), 295 ((M + H) -COOH, -OH). ¹³C NMR (DMSO-d₆): δ 176.35, 168.97, 99.38, 75.28, 53.03, 35.95, 28.85, 28.67. ¹H NMR (DMSO-d₆): δ 3.2 (m, 1H), 2.9-2.65 (m, 4H), 2.15-1.95 (m, 2H).
- 6. Lardelli, G.; Dijkstra, P.; Harkes, D.; Boldingh, J. Rec. Trav. Chim. 1966, 85, (1), 43-55 and references therein.
- 7. Kobayashi, K.; Kawanisi, M.; Hitomi, T.; Kozima, S. Chem. Lett. 1983, 851-854. Stevens, R.W.; Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1982, 353-356.
- 8. The experiment 3, stopped after 2 hours (c.a. 13 % yield), has given a mixture of 2, 3, 4, as indicated by I.R. spectroscopy.

(Received in France 31 May 1991)