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Photoredox-Mediated Remote C(sp*)-H Heteroarylation of N-Alkyl

Sulfonamides

Zhiqiang Deng, Guo-Xing Li,* Gang He, and Gong Chen*
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
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ABSTRACT: A Minisci-type 8-selective C(sp*)-H heteroarylation of sulfonyl-protected primary aliphatic amines with N-heteroarenes

under photoredox-catalyzed conditions was developed. The reaction typically uses a slight excess of amine reactant. The use of benzio-

doxole acetate (BI-OAc) oxidant and hexafluoroisopropanol solvent is critical to achieve high yield. Besides methylene C-H bonds,

heteroarylation reactions of § methyl C-H bonds also worked under more forced conditions. The reactions show a broad scope for both

amine and N-heteroarene substrates, offering a straightforward method for synthesis of complex 8-heteroarylalkylmines from simple

precursors.

INTRODUCTION

Aliphatic amines of various structures are commonly used in or-
ganic synthesis." Selective functionalization of the C(sp*)-H
bonds of these amines could potentially streamline the synthesis
of complex amines.” Among the existing methods?, radical-medi-
ated reactions featuring a 1,5-hydrogen atom transfer (1,5-HAT)
process of nitrogen-radical intermediates offer a convenient
strategy to selectively functionalize remote 8 C-H bond of alkyl
amines.* While the classic Hofmann-Loffler-Freytag (HLF) reac-
tion for synthesis of pyrrolidines uses N-halo-substituted amine
precursors,® new protocols of HLF-type reactions can avoid the
pre-activation step via in situ generation of reactive amine species
using various activating reagents (Scheme 1A).° More recently,
Knowles’ and Rovis*independently reported a redox neutral pro-
cess for § C-H alkylation reaction of acyl and sulfonyl protected
primary amines with electron-deficient alkenes under photore-
dox catalysis (Scheme 1B).’ Herein, we reported a new photore-
dox-mediated method for §-C(sp*)-Hheteroarylation of sulfonyl
protected primary alkyl amines with N-heteroarenes using ben-
ziodoxole acetate (BI-OAc) oxidant (Scheme 1C). %!

RESULTS AND DISCUSSION

We recently reported a photoredox-mediated §-selective C—
H heteroarylation reaction of free aliphatic alcohols with N-het-
eroarenes using perfluorinated hydroxybenziodoxole (PFBI-OH)
as oxidant."”” Encouraged by these results,

Scheme 1. Radical-mediated remote C-H functionalization
of aliphatic amines via 1,5-HAT.
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we wondered whether a similar protocol for C-H heteroarylation
of alkyl amine substrates can be developed. As shown in Table 1,
we were pleased to find that reaction of 1.5 equiv of 4-tert-bu-
tylphenylsulfonyl pentylamine 1, 1 equiv of 4-chloroquinoline 2,
2.5 equiv of benziodoxole

Table 1. Reaction optimization of § C-H heteroarylation of pro-
tected pentylamine.”
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. (1 equiv) u(bpy)3Cl, (0.5 mol%) _ N~
)H\/\/H\ CFL (230W), HFIP H‘PG:;
PG, Ar,30°C, 24 h s
1 (1.5 equiv) standard conditions
Entry  Change from the standard conditions Yield of
(equiv of reagents) 3 (%)

1 Standard conditions 85 (80%)
2 BIOAc — PFBI-OH 16
3 BIOAc — BI-OH 37
4 BIOAc — PhI(OAc). 17
5 BIOAc — PhI(OTFA). <5
6 BIOAc (2.5 — 2 equiv) 61
7 1 (1.5 > 1.2 equiv) 68
8 1 (1.5 > 2 equiv) 87
9 Ru(bpy)sCl2 (0.5 — 0.1 mol %) 15
10 No Ru(bpy)s;Cl <5
11 CFL — darkness <5
12 HFIP - DCM <5
13 HFIP — CH3;CN <5
14 HFIP — TFE 57
15 + TEMPO (2.5 equiv) 0

Reactions of 1 with different PG under the standard conditions®
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a) Unless otherwise indicated, reactions were conducted with 0.3
mmol of 1 and 0.2 mmol of 2 in 1 mL of solvent at 30 °C, yield of 3
was based on 'H-NMR of crude reaction mixture after workup. b)
Isolated yield.

acetate (BI-OAc) and 0.5 mol % of Ru(bpy);Cl, under the irra-
diation of household compact fluorescent lamp (CFL, 23 W) in
hexafluoroisopropanol (HFIP) at 30 °C for 24 hours gave the de-
sired product 3 in 80% isolated yield (entry 1)."* Replacing BI-
OAcwith other hypervalentiodine reagents gave lower yield (en-
try 2-5)."* Replacing the 4-tert-butylphenylsulfonyl group with
other acyl or sulfonyl group gave decreased yield under the same
reaction conditions. The use of 1.2 and 2.0 equiv of 1 gave 3 in
68% and 87% yield, respectively (entries 7, 8). Photosensitizer
Ru(bpy);Cl, and visible light irradiation were critical for the al-
kylation reaction (entries 10, 11). Use of dichloromethane
(DCM) and CH;CN as solvents gave significantly

Scheme 2. Scope of aliphatic sulfonamides.*
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a) Isolated yield on a 0.2 mmol scale. Unless otherwise indicated,
excellent § regioselectivity (§/other isomers > 20/1) was ob-
tained. b) 3 equiv of sulfonamide and 5 equiv of BI-OAc were
used. c) > 20/1 dr was observed. Stereochemistry has not been
established.

lower yield (entries 12, 13). Lower loading of photosensitizer
Ru(bpy);ClL, (0.1 mol %) resulted in decreased yield (entry 9).

The scope of amines was demonstrated in Scheme 2. Ali-
phatic sulfonamides of both linear and cyclic aliphatic scaffolds
were compatible with this protocol. Most sulfonamides carrying
simple linear alkyl chains proceeded with excellent & regioselec-
tivity (8/other isomers > 20/1). Notably, reaction of hexylamine
gave a moderate regioselectivity (4a: €/ § ~7/1). Functional
groups including ester, carbamate, azido, terminal alkyne and al-
kene were tolerated (e.g. 4d-4h). Besides the § methylene C-H
bonds, we were pleased to find that the heteroarylation at the
more inert & methyl group also proceeded in moderate yield un-
der more forced conditions (using 3 equiv of amine substrate and
S equiv of BI-OAc, see 4i). § Methylene C-H bonds of cyclic mo-
tifs can be heteroarylated in good yield with varied

Scheme 3. Scope of N-heteroarenes.
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a) Isolated yield on a 0.2 mmol scale. b) 3 equiv of sulfonamide and 5
equiv of BI-OAc were used. c) 48 h. d) No di-alkylated product was de-
tected. e) Trace amount (<5%) of di-alkylated product was detected.

diastereoselectivity (e.g. 4j-4q). For example, reactions of sul-
fonamides of cyclohexylamine and cyclooctylamine gave 4j and
4kin 77% and 69% yield respectively as roughly a 1:1 mixture of
diastereomers. Interestingly, reaction of sulfonamide of cyclodo-
decylamine gave the heteroarylated product 41in excellent syn di-
astereoselectivity (10/1) under the standard conditions. The
structure of 41 was confirmed by X-ray crystallography. As seen
in 4r, heteroarylation at the methine position gave little desired
product probably due to the facile oxidation of the resulting 3° C-
radical to a 3° carbocation.'

The scope of N-heteroarenes was then investigated with se-
lected 4-tert-butyl phenylsulfonyl protected aliphatic amines un-
der the optimized conditions (Scheme 3). In general, electron-
deficient N-heteroarenes showed much higher reactivity than
electron-rich ones (e.g. § vs 10). Chemoselectivity typical of
Minisci reactions was observed for heteroarenes as seen in quin-
olines (5-7), isoquinolines (9, 11) benzothiazole (12), quinox-
aline (13) and phenanthridine (14). Reaction of benzoyl pro-
tected drug molecule fasudil gave product 8 in 89% yield. As seen
in 4-chloroquinoline (15), quinaldine (16) and isoquinoline
(18), heteroarylation of § methyl C-H bond worked in moderate
yield under modified conditions with 3 equiv of amine and 5
equivof BI-OAc. Symmetric phthalazine (17) and pyridines (10,
19) mainly gave mono-alkylation products in moderate yields,

Scheme 4. Scale-up reaction and deprotection

The Journal of Organic Chemistry

Cl
N/ (1 mmol) BI-OAc (2.5 equiv) | A
Ru(bpy)3Cl, (0.5 mol%) Nz
+ ’
CFL (23 W), HFIP NHSO,(BP
A~~~ NHSO0,BP Ar,30°C, 24 h
3, 74%
1 (1.5 equiv)
PhOH (3 equiv)
S aq. HBr (48 %) 7
Nz > N~
130°C, 18 h
NHSO,BP NH,
5 20, 90%

along with significant amount of starting material (~50%) was re-
covered.

As shown in Scheme 4, the reaction of 4-chloroqunoline 2
with 4-tert-butylphenylsulfonyl pentylamine 1 conducted at 1
mmol scale worked well, giving product 3 in 74% yield. The 4-
tert-phenylsulfonamide group in product § can be cleanly re-
moved by the treatment of phenol in the aqueous hydrobromic
acid at 130 °C to give free amine product 20 in 90% yield.'s

Preliminary experiments have been conducted to probe the
mechanism of this N-heteroarylation reaction (Scheme $). In
our previous C-H heteroarylation reaction of free aliphatic alco-
hols, perfluorinated hydroxybenziodoxole (PFBI-OH) can read-
ily undergo substitution reaction with alcohols to give a new I-O
intermediate, which can be activated by Ru(II)* via single elec-
tron transfer (SET) to generate an alkoxyl radical.”? In contrast,
the corresponding substitution product 21 was not observed
when mixing BI-OAc with amine substrates. Furthermore, the re-
action of 22, a N-methylated derivative of 1, with 4-chloroquin-
oline 2 under the standard conditions did not gave any desired
alkylation product 23, supporting the involvement of a N-cen-
tered radical intermediate in this reaction system (Scheme SA)."”
Based on the these evidence and the related work by Knowles,”
Rovis® and Itami,'® the following mechanism is proposed for this
reaction system (Scheme 5B). Photoexcited Ru(II)* is first oxi-
dized by BI-OAc via SET, forming Ru(III) and BI. radical 24.
The sulfonamide substrate 1 is oxidized by a Ru(III) species via
SET or proton-coupled electron transfer process to form N-rad-
ical 25.25 undergoes 1,5-HAT to generate C-centered radical 26.
Following the typical Minisci reaction pathway,'*” 26 reacts
with protonated N-Heteroarenes to form intermediate 27. Reac-
tion of 27 with BI. via hydrogen atom abstraction or
SET/deprotonation give the final heteroarylation product’'.

In summary, we have developed a new method for 3-selective
C(sp*)-Hheteroarylation of sulfonyl-protected primary aliphatic
amines with N-heteroarenes under photoredox catalysis. The use
of the 4-tert-butylphenylsulfonyl protecting group for amine, cy-
clic hypervalent iodine BI-OAc as oxidant, and HFIP solvent is
critical to achieve high yield. The method show a broad scope for
both amine and

Scheme 5. Mechanistic considerations.
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N-heteroarene substrates, offering a straightforward method for
synthesis of complex §-heteroarylalkylmines from simple precur-
sors.

EXPERIMENTAL SECTION

General Information. All commercial materials were used asre-
ceived unless otherwise noted. The amine starting materials were
either purchased from TCI or synthesized according to the re-
ported procedure. [Ru(bpy);]Cl, (98%, Ru>>15.75%, Energy
Chemical) and HFIP (99.0%, ACS grade, J&K Chemical) were
used as received unless otherwise noted. Hydroxylbenziodoxole
(BI-OH) and acetoxybenziodoxole (BI-OAc) were synthesized
according to reported procedures and used as freshly prepared.”
All reactions were carried out in a 4 mL glass vial (Thermo
SCIENTIFIC National B7999-2, made from superior quality 33
expansion borosilicate clear glass), sealed with a PTFE cap on
bench top. 23 W CFL(made by NVC, S0Hz/S-RR) was used for
visible-light promoted reactions. Analytical thin layer chroma-
tography (TLC) were performed on silica gel Huanghai
HSGF254 plates and visualization of the developed chromato-
gram was performed by fluorescence quenching (Amax = 254
nm). Flash chromatography was performed using silica gel (200-
300 mesh) purchased from Qingdao Haiyang Chemical Co.,
China. NMR spectra were recorded on Bruker AVANCE AV 400
instruments and all NMR experiments were reported in units,
parts per million (ppm), using residual solvent peaks as internal
reference (CDCls, § 7.26 for "H and § 77.16 for *C). Multiplici-
ties are recorded as: s = singlet, d = doublet, t = triplet, br s =
broad singlet, m = multiplet. High resolution ESI mass experi-
ments were operated on a Thermo Q Exactive Focus instrument
with Quadrupole-Orbitrap mass analyzer.

Procedure for synthesis of 4-tert-butylphenylsulfonyl pen-
tylamine 1. Pentan-1-amine (0.22 g, 2.5 mmol, 1.0 equiv), tri-
ethylamine (0.28 g, 2.8 mmol, 1.1 equiv) and DMAP (31 mg,
0.25 mmol, 0.1 equiv) were dissolved in DCM (10 mL) at 0 °C.
4-(tert-Butyl)benzenesulfonyl chloride (651.6 mg, 2.8 mmol, 1.1
equiv) was added portionwisely. The reaction mixture was
stirred at room temperature for 1 hour, then washed with satu-
rated NaHCO; (aq), and brine. The organic phase was dried
over Na,SOy, filtered and concentrated in vacuo. The crude prod-
uct was purified by flash chromatography on silica gel to give
compound 1 in 86% yield (0.67 g) as white solid. Mp 66.5-
68.0 °C; Ry=0.7 (petroleum ether/ethyl acetae = 4:1). 'H NMR
(400 MHz, CDCl;) §7.78 (d, ] =6.9 Hz,2H), 7.52 (d, ] = 8.5 Hz,
2H), 4.43 (brs, 1H),2.97-2.91 (m,2H), 1.47-1.42 (m, 2H), 1.34
(s, 9H), 1.25-1.21 (m, 4H), 0.83 (t, ] = 5.7 Hz, 3H). C{'H}
NMR (101 MHz, CDCl;) § 156.5, 137.0, 127.1,126.2, 43.4, 35.3,
31.2, 29.4, 28.8, 22.3, 14.0. HRMS Calcd for C;sH,sNO,S*
[M+H"]: 284.1679, Found: 284.1684.

All the N-protected amines used in this study were synthesized
following the same procedur as compound 1 with the corre-
sponding protecting reagent. The starting materials are num-
bered as “product number-1”, such as 4a-1 for the pre-het-
eroarylated amine of compound 4a. Compounds 1-PG,* 1-
PGy 1-PGy> 1-PGs® 1-PG,* 1-PGg> and 1-PGy? are
known compounds, the spectra data are consistent with those re-
ported in literature.

Procedure for synthesis of 1,1,1-trifluoro-N-pentylme-
thanesulfonamide (1-PG,). Pentan-1-amine (0.22 g, 2.5 mmol,
1.0 equiv), triethylamine (0.28 g, 2.8 mmol, 1.1 equiv) and
DMAP (31 mg, 0.25 mmol, 0.1 equiv) were dissolved in DCM
(10 mL) at -20 °C. Trifluoromethanesulfonic anhydride (0.79 g,
2.8 mmol) was added dropwise, and the mixture was stirred at
room temperature for 1 hour. The mixture was then washed with
saturated NaHCO; (aq.) and brine. The organic phase was dried
over Na,SOy, filtered and concentrated in vacuo. The crude prod-
uct was purified by silica gel flash chromatography to give com-
pound 1-PGygas a colorless oil in 82% yield (0.4S g). The spectra
data of 1-PGy, is consistent with the reported in literature.”®

4-nitro-N-pentylbenzenesulfonamide (1-PGs). Yellow solid
(0.66 g, 97% yield); mp 61.3-62.4 °C; Ry = 0.7 (petroleum
ether/ethyl acetae =4:1). "H NMR (400 MHz, CDCl;) § 8.37 (d,
J=8.9Hz,2H),8.06 (d,]=8.9 Hz,2H), 4.73 (t, ] = 5.8 Hz, 3H),
3.03-2.98 (m, 2H), 1.52-1.45 (m, 2H), 1.28-1.20 (m, 4H), 0.86-
0.83 (t, ] = 6.9 Hz, 3H). ®C{'H} NMR (101 MHz, CDCl;) §
150.2, 146.1, 128.4, 124.5, 43.5, 29.5, 28.7, 22.2, 14.0. HRMS
Caled for C;HigNoNaO,S* [M+Na*]: 295.0723, Found:
295.0724.

4-(tert-butyl)-N-hexylbenzenesulfonamide (4a-1). White

solid (0.63 g, 85% yield); mp 59.7-61.3 °C; R;= 0.8 (petroleum

ether/ethyl acetae = 4:1). § "'H NMR (400 MHz, CDCl;) § 7.79

(d,J=8.6Hz,2H),7.51 (d,]= 8.5 Hz,2H), 4.55 (brs, 1H), 2.97-

2.92 (m, 2H), 1.48-1.40 (m, 2H), 1.34 (s, 9H), 1.28-1.20 (m,

6H),0.83 (t, ] = 6.8 Hz, 3H). *C{'H} NMR (101 MHz, CDCl;)

§156.4,137.0,127.0,126.2,43.4,35.3,31.4,31.2,29.7,26.3,22.6,
14.1. HRMS Calcd for CsH,sNO,S* [M+H*]: 298.1835, Found:
298.1840.
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4-(tert-butyl)-N-(hexan-2-yl)benzenesulfonamide (4b-1).
White solid (0.67 g, 86% yield); mp 58.6-60.0 °C; Ry= 0.8 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCI;)
8 7.80 (d, J = 8.5 Hz, 2H), 7.50 (d, ] = 8.5 Hz, 2H), 441 (br s,
1H), 3.33-3.26 (m, 1H), 1.36-1.30 (m, 2H), 1.33 (s, 9H), 1.21-
1.08 (m, 4H), 1.04 (d, ] = 6.5 Hz, 3H), 0.76 (t,] = 7.0 Hz, 3H).
13C{'H} NMR (101 MHz, CDCL) § 156.3, 138.3, 127.0, 126.1,
50.1, 37.3, 35.2, 31.2, 27.7, 22.4, 22.0, 14.1. HRMS Calcd for
CisHasNO,S* [M+H]: 298.1835, Found: 298.1831.

4-(tert-butyl)-N-hexadecylbenzenesulfonamide (4c-1).
White solid (0.92 g, 84% yield); mp 64.4-65.4 °C; Ry= 0.8 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCl;)
§7.78 (d, J = 8.4 Hz, 2H), 7.51 (d, ] = 8.6 Hz, 2H), 443 (br s,
1H), 2.97-2.92 (m, 2H), 1.48-1.41 (m, 2H), 1.34 (s, 9H), 1.25-
1.21 (m, 26H), 0.88 (t, J = 6.8 Hz, 3H). *C{'H} NMR (101
MHz, CDCl;) § 156.5,137.1,127.1,126.2, 43.4,35.3,32.1, 31.2,
29.83, 29.80, 29.76, 29.68, 29.58, 29.5, 29.2, 26.7, 22.8, 14.3.
HRMS Calcd for C,sHysNO,S™ [M+H*]: 438.3400, Found:
438.339S.

Methyl-8-((4-(tert-butyl) phenyl)sulfonamido)octanoate
(4d-1). Colorless oil (0.60 g, 65% yield); R; = 0.2 (petroleum
ether/ethyl acetae =4:1). 'HNMR (400 MHz, CDCl;) §7.77 (d,
J = 8.6 Hz, 2H), 7.51 (d, ] = 8.6 Hz, 2H), IH NMR (400 MHz,
CDCI3) §7.77 (d,] = 8.6 Hz,2H), 7.51 (d, ] = 8.6 Hz, 2H), 4.42
(t,J = 6.1 Hz, 1H), 3.66 (s, 3H), 2.93 (dd, ] = 13.5, 6.9 Hz, 2H),
227 (t, ] = 7.5 Hz, 2H), 1.56 (dd, J = 14.3, 7.1 Hz, 2H), 1.50-
1.40 (m, 2H), 1.34 (s, 9H), 1.25 (t, J = 7.2 Hz, 6H)., 3.66 (s, 3H),
2.96-2.91 (m, 2H), 2.27 (t, ] = 7.5 Hz, 2H), 1.59-1.54 (m, 2H),
1.49-1.42 (m, 2H), 1.34 (s, 9H), 1.27-1.24 (m, 6H). *C{'H}
NMR (101 MHz, CDCl;) § 174.3, 156.3, 137.0, 127.0, 126.1,
51.5, 43.3, 35.2, 34.0, 31.2, 29.5, 28.9, 28.7, 26.4, 24.8. HRMS
Calcd for C19H3,NO,S* [M+H*]: 370.2047, Found: 370.2042.
Tert-butyl-(10-((4-(tert-butyl)phenyl)sulfon-
amido)decyl)carbamate (4e-1). Colorless oil (0.96 g, 82%
yield); Ry = 0.3 (petroleum ether/ethyl acetae = 2:1). '"H NMR
(400 MHz, CDCl;) §7.78 (d,] = 8.6 Hz,2H), 7.50 (d, ] = 8.5 Hz,
2H), 4.61 (s, 1H), 4.51 (br s, 1H), 3.01-3.06 (m, 2H), 2.95-2.90
(m, 2H), 1.45-1.40 (m, 13H), 1.33 (s, 9H), 1.25-1.20 (m, 12H).
13C{'H} NMR (101 MHz, CDCL) § 156.4, 156.1, 137.1, 127.0,
126.2,79.1,43.4,40.7,35.2,31.2,30.2,29.7,29.5,29.4,29.3,29.2,
28.6, 26.9, 26.6. HRMS Calcd for CpsHysN,O,S* [M+H']:
469.3095, Found: 469.3090.
4-(tert-butyl)-N-(undec-10-yn-1-yl)benzenesulfonamide
(4g-1). White solid (0.84 g, 93% yield); mp 48.6-51.0 °C; Ry =
0.7 (petroleum ether/ethyl acetae = 4:1). "H NMR (400 MHz,
CDCl;) 8§ 7.78 (d, J = 8.6 Hz, 2H), 7.51 (d, ] = 8.5 Hz, 2H), 4.44
(brs, 1H),2.96-2.91 (m, 2H), 2.19-2.14 (m, 2H), 1.93 (t, ] = 2.6
Hz, 1H), 1.53-1.41 (m, 4H), 1.37-1.32 (m, 2H), 1.34 (s, 9H),
1.25-1.18 (m, 8H). BC{'H} NMR (101 MHz, CDCL;) § 156.5,
137.0,127.0, 126.2, 84.9, 68.2, 43.4, 35.3,31.2,29.7,29.4,29.14,
29.08, 28.8, 28.6, 26.6, 18.5. HRMS Calcd for C,HuNO,S*
[M+H*]: 364.2305, Found: 364.2301.

4-(tert-butyl)-N-(undec-10-en-1-yl)benzenesulfonamide

(4h-1). White solid (0.80 g, 87% yield); mp 45.5-46.7 °C; Ry =
0.6 (petroleum ether/ethyl acetae = 4:1); 'H NMR (400 MHz,
CDCl;) §7.78 (d,J= 8.5Hz,2H), 7.51 (d, ] = 8.6 Hz, 2H), 5.85-
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5.75 (m, 1H), 5.00-4.91 (m, 1H), 4.55 (brs, 1H), 2.96-2.91 (m,
2H), 2.05-1.99 (m, 2H), 1.46-1.41 (m, 2H), 1.36-1.31 (m, 2H),
1.34 (s, 9H), 1.27-1.18 (m, 11H). BC{'H} NMR (101 MHz,
CDCl;) § 156.4, 139.3, 137.1, 127.1, 126.2, 114.3, 43.4, 35.3,
33.9,31.2,29.7,29.49, 29.48, 29.2, 29.0, 26.6. HRMS Calcd for
CuHisNO,S* [M+H*]: 366.2461, Found: 366.2457.

4-(tert-butyl)-N-butylbenzenesulfonamide (4i-1). White
solid (0.60 g, 89% yield); mp 86.9-88.0 °C; R;= 0.9 (petroleum
ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCl;) § 7.79 (d,
J=8.4Hz,2H),7.51 (d, ] = 7.8 Hz, 2H), 4.54 (t, ] = 5.9 Hz, 1H),
2.95-2.92 (m, 2H), 1.48-1.40 (m, 2H), 1.34 (s, 9H), 1.30-1.24
(m, 2H), 0.84 (t, J = 7.2 Hz, 3H). BC{'H} NMR (101 MHz,
CDCl;) 8§ 156.4,137.0, 127.0, 126.2, 43.1, 35.3, 31.8, 31.2, 19.8,
13.7. HRMS Calcd for C,;H,,NO,S* [M+H*]: 270.1522, Found:
270.1528.

4-(tert-butyl)-N-cycloheptylbenzenesulfonamide  (4j-1).
White solid (0.67 g, 87% yield); mp 84.5-85.4 °C; Ry= 0.8 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCI;)
87.79 (d,] = 8.6 Hz,2H), 7.50 (d, ] = 8.5 Hz, 2H), 4.65-4.55 (m,
1H), 3.39-3.30 (m, 1H), 1.80-1.75 (m, 2H), 1.54-1.40 (m, 8H),
1.39-1.30 (m, 2H), 1.34 (s, 9H). “C{'"H} NMR (101 MHz,
CDCl;) § 156.2, 138.2, 126.9, 126.1, 54.9, 36.01, 35.99, 35.2,
31.2, 28.1, 23.6. HRMS Calcd for C;;H,sNO,S* [M+H*]:
310.1835, Found: 310.1838.

4-(tert-butyl)-N-cyclooctylbenzenesulfonamide (4k-1).
White solid (0.68 g, 84% yield); mp 94.0-95.6 °C; Ry= 0.8 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCI;)
§7.79 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 4.51 (d, ] =
7.6Hz, 1H), 3.40-3.37 (m, 1H), 1.74-1.68 (m, 2H), 1.59-1.39 (m,
12H), 1.34 (s, 9H). *C{'H} NMR (101 MHz, CDCl;) § 156.3,
138.3,127.0,126.1,54.0,35.2,32.8,31.3,27.4,25.4,23.3. HRMS
Calcd for C1sH3o0NO,S* [M+H*]: 324.1992, Found: 324.1996.

4-(tert-butyl)-N-cyclododecylbenzenesulfonamide (41-1).
White solid (0.85 g, 90% yield); mp 141.2-142.5°C; Ry= 0.7 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCl;)
§7.81(d,J=8.6Hz, 2H),7.51 (d,] = 8.6 Hz, 2H), 4.24 (d,] =
7.8 Hz, 1H), 3.25-3.22 (m, 1H), 1.55-1.47 (m, 2H), 1.34 (s, 9H),
1.31-1.09 (m, 20H). ®*C{'H} NMR (101 MHz, CDCl;) § 156.4,
137.8,127.2, 126.1, 50.4, 35.3, 31.3, 23.6, 23.5, 23.4, 23.3, 21.3.
HRMS Calcd for C,H3NO,S™ [M+H*]: 380.2618, Found:
380.2621.

4-(tert-butyl)-N-(2-cyclopentylethyl)benzenesulfonamide
(4m-1). White solid (0.66 g, 86% yield); mp 97.9-99.0 °C; R, =
0.7 (petroleum ether/ethyl acetae = 4:1); 'H NMR (400 MHz,
CDCl;) §7.79 (d,] = 8.5 Hz, 2H), 7.51 (d, ] = 8.5 Hz, 2H), 4.68
(brs, 1H),2.97-2.92 (m, 2H), 1.71-1.63 (m, 3H), 1.56-1.48 (m,
2H), 1.46-1.43 (m, 4H), 1.34 (s, 9H), 1.02-0.94 (m, 2H). 3C{'H}
NMR (101 MHz, CDCl;) § 156.4,137.0,127.1,126.2,42.7, 37.3,
35.9, 35.2, 32.5, 31.2, 25.1. HRMS Calcd for C;H,sNO,S*
[M+H"]: 310.1835, Found: 310.1832.

4-(tert-butyl)-N-(2-cyclohexylethyl)benzenesulfonamide

(4n-1). White solid (0.77 g, 91% yield); mp 122.5-123.8°C; Ry=
0.7 (petroleum ether/ethyl acetae = 4:1). "H NMR (400 MHz,
CDCl;) §7.78 (d, J = 8.6 Hz, 2H), 7.52 (d, ] = 8.6 Hz, 2H), 4.45
(t, ] = 5.3 Hz, 1H), 2.99-2.94 (m, 2H), 1.64-1.54 (m, SH), 1.34
(s, 9H), 1.31 (d, J = 7.1 Hz, 2H), 1.25 -1.11 (m, 4H), 0.84-0.76
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(m, 2H). “C{'H} NMR (101 MHz, CDCL,) § 156.4, 137.0,
127.1,126.2, 41.1,37.1, 35.3, 34.9, 33.1, 31.2, 26.5, 26.2. HRMS
Calcd for CisHo)NNaO,S* [M+Na*]: 346.1811, Found:
346.1813.

4-(tert-butyl)-N-(2-cycloheptylethyl)benzenesulfonamide
(40-1). White solid (0.76 g, 91% yield); mp 103-104°C; Ry=0.8
(petroleum ether/ethyl acetae = 4:1). 'H NMR (400 MHz,
CDCl;) §7.79 (d,] = 8.6 Hz, 2H), 7.52 (d, ] = 8.6 Hz, 2H), 4.45
(t, ] = 5.9 Hz, 1H), 2.99-2.94 (m, 2H), 1.59-1.47 (m, 6H), 1.45-
1.39 (m, 3H), 1.38-1.29 (m, 4H), 1.34 (s, 9H), 1.11-1.02 (m,
2H). *C{!H} NMR (101 MHz, CDCl;) § 156.4, 137.0, 127.1,
126.2,41.6, 37.7, 36.4, 35.3, 34.3, 31.2, 28.5, 26.3. HRMS Calcd
for C1oH3;,NO,ST [M+H*]: 338.2148, Found: 338.2151.

4-(tert-butyl)-N-(cycloheptylmethyl)benzenesulfonamide
(4p-1). White solid (0.67 g, 87% yield); mp 109.5-111.0 °C; Ry=
0.8 (petroleum ether/ethyl acetae = 4:1); 'H NMR (400 MHz,
CDCl;) 8§ 7.78 (d, J = 8.6 Hz, 2H), 7.51 (d, ] = 8.6 Hz, 2H), 4.62
(brs, 1H),2.77 (t, ] = 6.6 Hz, 2H), 1.69-1.40 (m, 9H), 1.37-1.29
(m, 2H), 1.33 (s, 9H) 1.18-1.07 (m, 2H). *C{'H} NMR (101
MHz, CDCl;) § 156.4,137.2,127.0, 126.2,49.8, 39.4,35.3,31.9,
31.2, 284, 26.3. HRMS Calcd for Ci;sH3;)NO,S* [M+H*]:
324.1992, Found: 324.1987.

4-(tert-butyl)-N-(1-cyclohexylethyl)benzenesulfonamide
(49-1). White solid (0.65 g, 85% yield); mp 107.9-109.5 °C; Ry=
0.4 (petroleum ether/ethyl acetae = 4:1); 'H NMR (400 MHz,
CDCl;) 8§ 7.79 (d, J = 8.5 Hz, 2H), 7.49 (d, ] = 8.5 Hz, 2H), 4.64
(brs, 1H), 3.20-3.11 (m, 1H), 1.66-1.49 (m, SH), 1.33 (s, 9H),
1.28-1.19 (m, 1H), 1.17-0.99 (m, 4H), 0.92 (d, ] = 6.8 Hz, 3H),
0.88-0.77 (m, 1H). BC{*H} NMR (101 MHz, CDCl;) § 156.2,
138.4, 127.0, 126.0, 54.5, 43.5, 35.2, 31.2, 28.8, 28.5, 26.4, 26.3,
26.2, 18.4. HRMS Calcd for CisH;oNO,S* [M+H*]: 324.1992,
Found: 324.1987.
4-(tert-butyl)-N-(4-methylpentyl)benzenesulfonamide (4r-
1). White solid (0.6 g, 81% yield); mp 86.3-87.8 °C; Ry= 0.6 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDC;)
§7.79 (d, ] = 8.6 Hz, 2H), 7.51 (d, ] = 8.6 Hz, 2H), 4.55 (br s,
1H), 2.96-2.91 (m, 2H), 1.48-1.39 (m, 3H), 1.34 (s, 9H), 1.14-
1.08 (m,2H), 0.80 (d, ] = 6.6 Hz, 6H). *C{'H} NMR (101 MHz,
CDCl;) 8§ 156.4,137.1,127.1, 126.2, 43.7, 35.8, 35.3, 31.2, 27.7,
27.6, 22.5. HRMS Calcd for C;sH»NNaO,S* [M+Na*]:
320.1655, Found: 320.1665.

4-(tert-butyl)-N-isopentylbenzenesulfonamide (15-1 or 16-
1). White solid (0.61 g 86% yield); mp 90.6-92.0 °C; Ry = 0.7
(petroleum ether/ethyl acetae = 4:1). 'H NMR (400 MHz,
CDCl;) §7.79 (d,] = 8.6 Hz, 2H), 7.52 (d, ] = 8.6 Hz, 2H), 4.49
(brs, 1H),2.99-2.93 (m, 2H), 1.61-1.52 (m, 1H), 1.36-1.30 (m,
2H), 1.34 (s, 9H), 0.82 (d, J = 6.6 Hz, 6H).*C{'H} NMR (101
MHz, CDCl;) § 156.5, 137.0, 127.0, 126.2, 41.6, 38.5, 35.3,31.2,
25.5, 22.4. HRMS Calcd for C;sHysNNaO,S* [M+Na*]:
306.1498, Found: 306.1498.

Procedure for Synthesis of N-(10-azidodecyl)-4-(tert-bu-
tyl)benzenesulfonamide (4f-1).” HCI/EtOAc (4 N, 1.0 mL)
was added to a solution of substrate 4e-1 (0.47 g, 1.0 mmol) in
DCM (3 mL), and the reaction mixture was stirred at room tem-

perature for 0.5 h. Then the organic solvent was removed in vacuo.

The resulting residue was dissolved in MeOH (S mL). To this

solution, CuSO, * SH,0 (6.25 mg, 0.025 mmol), K,CO; (0.97
g, 7.0 mmol) and 1-H-imidazole-1-sulfonyl azide (0.25 g, 1.2
mmol) were added. The reaction mixture was stirred at room
temperature for 18 h. Water was added and the organic solvent
was removed in vacuo. The aqueous phase was adjusted to pH =
1 using HCI (1 N), and extracted with EtOAc. The ombined or-
ganic phase was washed with brine, dried over Na,SO, and con-
centrated in vacuo. The crude prouct was purified by flash chro-
matography on silica gel to give compound 4f-1 as a colorless oil
in 85% yield (0.33 g). Ry= 0.2 (petroleum ether/ethyl acetae =
4:1). '"H NMR (400 MHz, CDCl;) § 7.79 (d, J = 8.6 Hz, 2H),
7.50 (d, J = 8.6 Hz, 2H), IH NMR (400 MHz, CDCI3) § 7.79 (d,
J=8.6Hz,2H), 7.50 (d, ] = 8.6 Hz, 2H), 4.99 (t, ] = 6.1 Hz, 1H),
3.22(t,J=7.0Hz,2H),2.91 (dd, J= 13.4, 6.9 Hz,2H), 1.60-1.51
(m,2H), 1.47-1.38 (m, 2H), 1.36-1.28 (m, 11H), 1.23 (m, 10H).,
322 (t, J = 7.0 Hz, 2H), 2.93-2.88 (m, 2H), 1.59-1.52 (m, 2H),
1.46-1.39 (m, 2H), 1.35-1.28 (m, 2H), 1.32 (s, 9H), 1.26-1.19
(m, 10H). *C{'H} NMR (101 MHz, CDCL) § 156.3, 137.0,
127.0, 126.1, 51.5,43.3, 35.2, 31.1,29.6, 29.4, 29.3,29.11, 29.07,
28.9, 26.7, 26.5. HRMS Calcd for Cy0H3,N,O,SNa* [M+Na*]:
417.2295, Found: 417.2289.

Procedure for synthesis of (4-(isoquinolin-$-ylsulfonyl)-
1,4-diazepan-1-yl) (phenyl)methanone (8-1). Fasudil (0.58 g,
2.0 mmol, 1.0 equiv), triethylamine (0.71 g, 7.0 mmol, 3.5 equiv)
and DMAP (31 mg, 0.25 mmol, 0.12 equiv) were dissolved in
DCM (10 mL) at 0 °C. Benzoyl chloride (0.31 g, 2.2 mmol, 1.1
equiv) was added dropwise, and the reaction mixture was stirred
at room temperature for 1 hour. Then the reaction mixture was
washed with saturated NaHCO; (aq), brine. The organic phase
was dried over Na,SO,, filtered and concentrated in vacuo. The
crude product was purified by flash chromatography on silica gel
to afford compounds 8-1 as yellow solid in 95% yield (0.7 g).
mp 137.2-138.5 °C; Ry = 0.5 (dichloromethane/methanol =
40:1). 'H NMR (400 MHz, CDCl;) § 9.29 (s, 1H), 8.63 (t,] =
7.2 Hz, 1H), 8.35-8.24 (m, 2H), 8.14 (t, ] = 7.1 Hz, 1H), 7.66-
7.59 (m, 1H), 7.32-7.20 (m, SH), 3.83-3.75 (m, 2H), 3.52-3.27
(m, 6H), 2.10-2.03 (m, 1H), 1.78-1.71 (m, 1H).*C{'H} NMR
(101 MHz, CDCL;) § 171.8, 153.4, 145.3, 136.1, 134.2, 133.8,
133.3,131.5,129.7,129.3,128.6, 126.6, 126.4, 126.0,117.4, 51.8,
50.5,48.7,48.3,48.2,47.9,46.6,45.0,29.8,27.7. HRMS Calcd for
CuH,N;058* [M+H*]: 396.1376, Found: 396.1377.

Procedure for Synthesis of 4-(tert-butyl)-N-methyl-N-pen-
tylbenzenesulfonamide (22)*. NaH (0.1 g 2.5 mmol, 2.5
equiv) was added to a solution of compound 1 (0.28 g, 1.0 mmol,
1.0 equiv) in DMF (10 mL) at 0 °C, and the mixture was stirred
for S min. Then Mel (0.16 g, 1.1 mmol) was added, and the reac-
tion mixture was stirred at room temperature for 0.5 h. Water (10
mL) was added and the resulting mixture was extracted with
EtOAc. The combined organic layer was washed with water (10
mL x 3) and brine. The organic phase was dried over Na,SOs, fil-
tered and concentrated in vacuo. The crude product was purified
by flash chromatography on silica gel (PE:EA = 15:1) to give
compounds 22 as colorless oil in 84% yield (0.62 g). Ry= 0.8 (pe-
troleum ether/ethyl acetae = 4:1). "H NMR (400 MHz, CDCI;)
§7.69 (d, ] = 8.6 Hz, 2H), 7.51 (d, ] = 8.6 Hz, 2H), 3.01-2.97 (t,
J = 8.5 Hz, 2H), 2.72 (s, 3H), 1.56-1.48 (m, 2H), 1.34 (s, 9H),
1.32-1.28 (m, 4H), 0.88 (t, ] = 6.9 Hz, 3H). *C{'H} NMR (101
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MHz, CDCL;) § 156.2, 134.7, 127.4,126.1, 50.2, 35.2, 34.7, 31.2,
28.8, 27.4, 22.4, 14.1. HRMS Calcd for CisH,sNO,S* [M+H*]:
298.1835, Found: 298.1838.

General Procedure for Minisci Alkylation Reaction. N-het-
eroarene substrate (0.2 mmol, 1.0 equiv), N-alkyl sulfonamide
(0.3 mmol, 1.5 equiv) and BI-OAc (0.5 mmol, 2.5 equiv) were
added to a solution of Ru(bpy);Cl, (0.001 mmol, 0.5 mol%) in
HFIP (1.0 mL). The reaction vial was purged with Ar for 1 min
and sealed with PTFE cap, then the mixture was stirred at 30 °C
under the irradiation of Compact Fluorescent Lamps irradiation
(23 W, palced S cm away from the vial) for 24 h. The solvent was
removed in vacuo and the residue was dissolved in DCM (1 mL).
K,CO; (approximate 150 mg) was added to the solution, and the
resulting mixture was vigorously stirred for 10 min. Then the
mixture was filtrated through a pad of Celite and washed with
DCM. The filtrate was concentrated in vacuo and the residue was
purified by preparative thin layer chromatography or flash chro-
matography on silica gel to give the desired product.
N-(4-(4-chloroquinolin-2-yl)pentyl)benzamide  (3-PG,).
Yellow oil (6 mg, 8%, Isolated yield); Ry = 0.2 (petroleum
ether/ethyl acetae = 3:1); 'H NMR (400 MHz, CDCl;) § 8.18
(d,J=8.3Hz, 1H),7.98 (d,] = 8.4 Hz, 1H), 7.77 (d, ] = 7.1 Hz,
2H), 7.71 (t,] = 7.7 Hz, 1H), 7.58 (t, ] = 7.6 Hz, 1H), 7.49-7.46
(m, 1H), 7.42-7.38 (m, 3H), 6.51 (brs, 1H), 3.52-3.38 (m, 2H),
3.18-3.09 (m, 1H), 2.00-1.90 (m, 2H), 1.83-1.74 (m, 1H), 1.70-
1.61 (m 1H), 1.59-1.47 (m, 1H), 1.38 (d, J = 6.9 Hz, 3H).*C{'H}
NMR (101 MHz, CDCl;) § 167.7, 166.5, 148.7, 143.1, 135.0,
131.4,130.4,129.4,128.6,127.1,127.0,125.3, 124.1, 120.0, 42.4,
40.3, 34.4,27.6, 21.0. HRMS Calcd for C,;H,,CIN,O* [M+H*]:
353.1415, Found: 353.1415.
N-(4-(4-chloroquinolin-2-yl)pentyl)benzenesulfonamide
(3-PG,). Yellow oil (44 mg, 57%, Isolated yield); Ry= 0.3 (pe-
troleum ether/ethyl acetae = 3:1); '"H NMR (400 MHz, CDC;)
88.14 (d,J=8.1Hz, 1H), 8.04 (d,]J = 8.4 Hz, 1H),7.79 (d,] =
7.3 Hz, 2H), 7.71 (t, ] = 7.1 Hz, 1H), 7.56 (t, ] = 7.2 Hz, 1H),
7.44 (t, ] = 7.3 Hz, 1H), 7.37 (t, ] = 7.4 Hz, 2H), 7.29 (s, 1H),
5.70 (t, J = 5.7 Hz, 1H), 2.99-2.85 (m, 3H), 1.81-1.72 (m, 1H),
1.65-1.56 (m, 1H), 1.48-1.39 (m, 1H), 1.36-1.28 (m, 1H), 1.25
(d, J = 6.9 Hz, 3H). ®*C{'H} NMR (101 MHz, CDCl;) § 166.1,
148.3, 143.0, 139.9, 132.4, 130.5, 129.2, 129.0, 127.0, 126.9,
125.1,123.9,119.8,43.1,41.8, 33.5,27.2,20.8. HRMS Calcd for
CaoH,,CIN;0,S* [M+H*]: 389.1085, Found: 389.1083.
N-(4-(4-chloroquinolin-2-yl)pentyl)-4-methoxybenzene-
sulfonamide (3-PG,). Yellow oil (32 mg, 38%, Isolated yield);
Ry = 0.3 (petroleum ether/ethyl acetae = 3:1); '"H NMR (400
MHz, CDCl;) §8.15 (d, J=8.3 Hz, 1H), 8.05 (d,J=8.4 Hz, 1H),
7.73-7.70 (m, 3H), 7.57 (t, ] = 7.6 Hz, 1H), 7.31 (s, 1H), 6.86 (d,
J=8.8 Hz, 2H), 5.45 (t, J = 5.8 Hz, 1H), 3.79 (s, 3H), 3.00-2.83
(m, 3H), 1.84-1.75 (m, 1H), 1.67-1.58 (m, 1H), 1.48-1.41 (m,
1H), 1.39-1.32 (m, 1H), 1.27 (d, ] = 6.9 Hz, 3H). *C{'H} NMR
(101 MHz, CDCl) § 166.1, 162.7, 148.4, 143.0, 131.6, 130.5,
129.3, 129.2, 127.0, 1252, 124.0, 119.9, 114.2, 55.6, 43.1, 41.9,
33.6, 27.2, 20.9. HRMS Calcd for Cy;H,,CIN,058* [M+H*]:
419.1191, Found: 419.1188.

N-(4-(4-chloroquinolin-2-yl)pentyl)-4-methylbenzenesul-
fonamide (3-PGs). Yellow oil (39 mg, 49%, Isolated yield); Ry=
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0.3 (petroleum ether/ethyl acetae = 3:1); 'H NMR (400 MHz,
CDCl;) §8.16 (d, J = 8.3 Hz, 1H), 8.07 (d, ] = 8.4 Hz, 1H), 7.73
(t,J=7.7Hz,1H),7.67 (d, ] = 8.2 Hz, 2H), 7.58 (t, ] = 7.6 Hz,
1H), 7.31 (s, 1H), 7.19 (d, ] = 8.0 Hz, 2H), 5.44 (t, ] = 5.8 Hz,
1H), 3.00-2.84 (m, 3H), 2.35 (s, 3H), 1.845-1.75 (m, 1H), 1.67-
1.58 (m, 1H), 1.48-1.41 (m, 1H), 1.39-1.32 (m, 1H), 1.27 (d, ] =
6.9 Hz, 3H). *C{'H} NMR (101 MHz, CDCIl;) § 166.1, 148.5,
143.2, 143.1, 137.0, 130.5, 129.7, 129.3, 127.1, 127.0, 125.2,
124.0, 119.9, 43.1, 41.9, 33.6, 27.2, 21.5, 21.0. HRMS Calcd for
C1H,,CIN,0,S* [M+H*]: 403.1242, Found: 403.1240.

N-(4-(4-chloroquinolin-2-yl)pentyl)methanesulfonamide
(3-PG,). Colorless oil (10 mg, 15%, Isolated yield); Ry= 0.2 (pe-
troleum ether/ethyl acetae = 2:1); '"H NMR (400 MHz, CDC;)
88.18 (d, J=8.4 Hz, 1H), 8.07 (d, ] =8.5 Hz, 1H), 7.74 (t, ] =
7.7Hz, 1H),7.59 (t,J = 8.2 Hz, 1H), 7.39 (s, 1H), 5.11 (br s, 1H),
3.18-3.04 (m, 3H), 2.88 (s, 3H), 1.98-1.88 (m, 1H), 1.78-1.72
(m, 1H), 1.62-1.44 (m, 2H), 1.36 (d, ] = 6.9 Hz, 3H). *C{'H}
NMR (101 MHz, CDCl;) § 166.1, 148.5, 143.2, 130.6, 129.3,
127.1, 125.3, 124.1, 120.0, 43.3, 42.1, 40.2, 33.6, 27.8, 21.1.
HRMS Calcd for C;sHCIN,O,S* [M+H*]: 327.0929, Found:
327.0929.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)pentyl)ben-
zenesulfonamide (3). Yellow oil (71 mg, 80% yield); R;= 0.5
(petroleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz,
CDCl;) §8.15(d,J=7.4Hz, 1H), 8.06 (d, ] = 7.4 Hz, 1H), 7.75-
7.70 (m, 3H), 7.58-7.55 (m, 1H), 7.44-7.42 (m, 2H), 7.33 (s,
1H). 5.49 (br s, 1H), 3.02-2.87 (m, 3H), 1.86-1.77 (m, 1H),
1.68-1.60 (m, 1H), 1.53-1.34 (m, 2H), 1.29 (s, 9H), 1.26 (d, ] =
6.9 Hz, 1H). *C{'H} NMR (101 MHz, CDCl;) § 166.1, 156.2,
148.5, 143.0, 137.0, 130.5, 129.3, 127.0, 126.0, 125.2, 124.0,
119.9, 43.2, 41.9, 35.1, 33.5, 31.1, 27.3, 20.9. HRMS Calcd for
C14H3CIN,0,S* [M+H*]: 445.1711, Found: 445.1711.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)hexyl)benzene-
sulfonamide (4a). An inseparable mixture of §- and e-arylated
products (7:1), yellow oil (70 mg, 76% yield); Ry = 0.5 (petro-
leum ether/ethyl acetate = 4:1); '"H NMR (400 MHz, CDCl;) §
8.18 (d,] = 8.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.77-7.71 (m,
3H), 7.60 (t, ] = 7.6 Hz, 1H), 7.44 (d, ] = 8.6 Hz, 2H), 7.35 (s,
1H), 5.28 (br s, 1H), 3.01-2.84 (m, 2H), 2.79-2.72 (m, 1H),
1.79-1.65 (m, 4H), 1.36-1.32 (m, 2H), 1.31 (s, 9H), 0.78 (t, ] =
7.4 Hz, 3H). *C{'H} NMR (101 MHz, CDCl;) § 165.2, 156.3,
148.6, 143.1, 137.1, 130.6, 129.5, 127.1, 127.0, 126.14, 126.08,
125.3, 124.1, 120.4, 49.4, 43.3, 35.2, 32.1, 31.2, 28.7,27.2, 12.1.
HRMS Calcd for CsH3,CIN,O,S* [M+H*]:459.1868, Found:
459.1866.
4-(tert-butyl)-N-(5-(4-chloroquinolin-2-yl)hexan-2-yl)ben-
zenesulfonamide (4b). Two separable diastereomers were ob-
tained. For one isomer 4b’: colorless oil (33 mg, 36% yield); Ry=
0.4 (petroleum ether/ethyl acetate = 4:1); "H NMR (400 MHz,
CDCl;) §8.23 (d,J=8.5Hz, 1H), 8.18 (d, ] = 8.3 Hz, 1H), 7.83
(d, ] =8.6Hz,2H),7.78 (t,] = 7.7 Hz, 1H), 7.60 (t, ] = 7.6 Hz,
1H),7.47 (d,] =8.5Hz,2H), 7.31 (s, 1H), 5.47 (brs, 1H), 3.32-
3.22 (m, 1H), 2.95-2.86 (m, 1H), 1.69-1.60 (m, 1H), 1.48-1.37
(m, 2H), 1.33-1.28 (m, 1H), 1.30 (s, 9H), 1.17 (d, ] = 7.0 Hz,
3H), 1.05 (d,J = 6.5 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;)
8 166.0, 156.3, 148.6, 143.1, 138.0, 130.8, 129.4, 127.1, 126.0,
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125.2,124.0,120.7,50.3,41.9,34.7,31.2,31.1,22.5,21.7. HRMS
Caled for CysHxCIN,O,S* [M+H']: 459.1868, Found:
459.1865. For the another isomer 4b”: colorless oil (29 mg, 32%
yield); Ry=0.35 (petroleum ether/ethyl acetate = 4:1); 'HNMR
(400 MHz, CDCl;) §8.18 (d,] = 8.3 Hz, 1H),8.11 (d,] = 8.5 Hz,
1H), 7.77-7.73 (m, 3H), 7.59 (t, ] = 7.6 Hz, 1H), 7.41 (d, ] = 8.6
Hz, 2H), 7.32 (s, 1H), 5.20 (brs, 1H), 3.34-3.24 (m, 1H), 2.93-
2.84 (m, 1H), 1.74-1.59 (m, 2H), 1.44-1.30 (m, 2H), 1.28 (s,
9H), 1.24 (d, J= 7.0 Hz, 3H), 1.04 (d, ] = 6.5 Hz, 3H). BC{'H}
NMR (101 MHz, CDCl;) § 166.2, 156.2, 148.6, 143.0, 138.2,
130.6, 129.5, 127.01, 126.94, 126.0, 125.2, 124.0, 120.0, S0.5,
419, 35.2, 35.0, 32.7, 31.2, 22.3, 20.8. HRMS Calcd for
CosH3,CIN, 0,8 [M+H?*]: 459.1868, Found: 459.1867.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)hexadecyl)ben-
zenesulfonamide (4c). Colorless oil (86 mg, 72% yield); Ry =
0.6 (petroleum ether/ethyl acetate = 4:1); "H NMR (400 MHz,
CDCl;) §8.18(d,J=8.3Hz,1H),8.12 (d,] = 8.4 Hz, 1H), 7.77-
7.70 (m, 3H), 7.62-7.58 (m, 1H), 7.43 (d, J = 8.6 Hz, 2H), 7.30
(s, 1H), 5.27 (t, ] = 5.28 Hz, 1H), 2.99-2.92 (m, 1H), 2.91-2.80
(m, 2H), 1.78-1.60 (m, 4H), 1.43 -1.33 (m, 3H), 1.31 (s, 9H),
1.25-1.18 (m, 18H), 1.10-1.02 (m, 1H), 0.86 (t, J = 6.9 Hz, 3H).
BC{'H} NMR (101 MHz, CDCL;) § 165.4, 156.3, 148.6, 143.0,
137.0,130.6,129.5,127.1,127.0,126.1, 125.3, 124.1, 120.3,47.9,
43.3,13.3, 35.9, 35.2, 32.5, 32.0, 31.2, 29.8, 29.76, 29.74, 29.69,
29.56, 29.46, 27.6, 27.2, 22.8, 14.3. HRMS Calcd for
C3sHs,CIN,0,S* [M+H*]: 599.3433, Found: 599.3431.
Methyl-8-((4-(tert-butyl)phenyl)sulfonamido)-5-(4-chlo-
roquinolin-2-yl)octanoate (4d). Colorless oil (59 mg, 56%
yield); Ry= 0.5 (petroleum ether/ethyl acetate = 2:1); "H NMR
(400 MHz, CDCL;) §8.18 (d, J = 8.3 Hz, 1H), 8.08 (d, ] = 8.5 Hz,
1H), 7.77-7.69 (m, 3H), 7.60 (t, ] = 8.2 Hz, 1H), 7.43 (d, ] = 8.6
Hz,2H),7.30 (s, 1H), 5.19 (brs, 1H), 3.61 (s, 3H), 2.97-2.90 (m,
1H), 2.88-2.83 (m, 2H), 2.25 (t, ] = 7.5 Hz, 2H), 1.83-1.65 (m,
4H), 1.61-1.50 (m, 1H), 1.47-1.36 (m, 2H), 1.34-1.32 (m, 1H),
1.30 (s, 9H). *C{'H} NMR (101 MHz, CDCl;) § 173.9, 164.6,
156.3, 148.6, 143.2, 136.9, 130.6, 129.5, 127.1, 127.0, 126.1,
125.3, 124.1, 120.3, 51.6, 47.6, 43.2, 35.2, 35.0, 34.0, 32.4, 31.2,
27.2, 22.9. HRMS Calcd for CyH3CIN,O,S* [M+H']:
531.2079, Found: 531.2082.
Tert-butyl(10-((4-(tert-butyl)phenyl)sulfonamido)-7-(4-
chloroquinolin-2-yl)decyl)carbamate (4e). An inseparable
mixture of §- and other-arylated products (7:1), colorless oil (99
mg, 79% yield); Ry= 0.4 (petroleum ether/ethyl acetate = 2:1);
'"H NMR (400 MHz, CDCl;) § 8.16 (d, ] = 7.7 Hz, 1H), 8.08 (4,
J=8.4Hz, 1H),7.75-7.69 (m, 3H), 7.58 (t, ] = 7.1 Hz, 1H), 7.42
(d,J=8.6Hz,2H), 7.29 (s, 1H), 5.38 (t, ] =5.7 Hz, 1H), 4.51 (4,
J=6.1Hz,1H), 3.05-3.00 (m, 2H), 2.96-2.89 (m, 1H), 2.88-2.78
(m, 2H), 1.77-1.61 (m, 4H), 1.40-1.35 (m, 13H), 1.29 (s, 9H),
1.24-1.20 (m, 6H). C{'H} NMR (101 MHz, CDCL;) 5 165.3,
156.2, 148.6, 143.0, 137.0, 130.5, 129.5, 127.00, 126.95, 126.1,
126.0,125.2,124.0,120.3,79.0, 47.9,43.2,40.6,35.7,35.1,32.4,
31.2, 30.0, 29.4, 28.5, 27.4, 27.3, 26.6. HRMS Calcd for
C3sHyCIN;0,S* [M+H*]: 630.3127, Found: 630.3127.
N-(10-azido-4-(4-chloroquinolin-2-yl)decyl)-4-(tert-bu-
tyl)benzenesulfonamide (4f). Yellow oil (78 mg, 70% yield); Ry
=0.3 (petroleum ether/ethyl acetate = 2:1); 'H NMR (400 MHz,

CDCl;) §8.18 (d,J=8.3Hz, 1H), 8.09 (d,] = 7.3 Hz, 1H), 7.76-
7.70 (m, 3H), 7.59 (t, ] = 7.5 Hz, 1H), 7.43 (d, ] = 8.5 Hz, 2H),
7.30 (s, 1H), 5.29 (brs, 1H), 3.19 (t, ] = 6.9 Hz, 2H), 2.99-2.80
(m, 3H), 1.81-1.60 (m, 4H), 1.52-1.49 (m, 2H), 1.44-1.33 (m,
3H), 1.30 (s,9H), 1.26-1.21 (m, SH). *C{'H} NMR (101 MHz,
CDCl;) § 165.2, 156.2, 148.6, 143.0, 136.9, 130.6, 129.4, 127.1,
127.0,126.1,125.2. 124.0, 120.3, 51.5,47.9,43.2,35.7,35.2, 32.4,
31.2, 29.2, 28.8, 274, 27.3, 26.6. HRMS Calcd for
CsH3yCINSO,S* [M+H*]: 556.2508, Found: 556.2508.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)undec-10-yn-1-
yl)benzenesulfonamide (4g). Yellow oil (61 mg, 58% yield); R¢
=0.3 (petroleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz,
CDCl;) §8.17 (d, J = 8.4 Hz, 1H), 8.08 (d, ] = 8.4 Hz, 1H), 7.76
-7.70 (m, 3H), 7.59 (t, ] = 7.6 Hz, 1H), 7.43 (d, ] = 8.5 Hz, 2H),
7.30 (s, 1H), 5.33 (br s, 1H), 2.98-2.90 (m, 1H), 2.89-2.79 (m,
2H), 2.12-2.08 (m, 2H), 1.89 (t, ] = 2.6 Hz, 1H), 1.81-1.59 (m,
4H), 1.45-1.38 (m, 3H), 1.36-1.27 (m, 3H), 1.30 (s, 9H) 1.25-
1.21 (m, 1H), 1.14-1.04 (m, 1H). BC{'H} NMR (101 MHz,
CDCl;) § 165.2,156.2, 148.6,143.0, 136.9, 130.5, 129.4, 127.02,
126.95, 126.0, 125.2, 124.0, 120.3, 84.6, 68.3, 47.8, 43.2, 35.6,
35.1, 32.4, 31.2, 28.8, 28.3, 27.2, 27.0.18.4. HRMS Calcd for
C30H35CIN,O,8* [M+H*]: 525.2337, Found: 525.2338.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)undec-10-en-1-
yl)benzenesulfonamide (4h). Colorless oil (63 mg, 60% yield);
Ry = 0.4 (petroleum ether/ethyl acetate = 4:1); '"H NMR (400
MHz, CDCl;) §8.19 (d,J=8.3Hz,1H), 8.11 (d,J=8.4 Hz, 1H),
7.77-7.74 (m, 1H), 7.71 (d, ] = 8.4 Hz, 2H), 7.60 (t, ] = 7.5 Hz,
1H), 7.43 (d, J = 8.4 Hz, 2H), 7.30 (s, 1H), 5.79-5.69 (m, 1H),
5.21 (s, 1H), 4.95-4.88 (m, 2H), 3.00-2.92 (m, 1H), 2.91-2.79
(m, 2H), 1.99-1.94 (m, 2H), 1.82-1.59 (m, 4H), 1.42-1.34 (m,
2H), 1.31 (s,9H), 1.28-1.23 (m, 6H). “C{'H} NMR (101 MHz,
CDCl;) § 165.3, 156.3, 148.6, 143.1, 139.1, 136.9, 130.6, 129.5,
127.1, 127.0, 126.1, 125.3, 124.1, 120.3, 114.4, 47.9, 43.3, 35.8,
35.2, 33.8, 32.5, 31.2, 29.24, 28.8, 29.2, 28.8, 27.4, 27.2. HRMS
Caled for C3HyCIN,O,S* [M+H*]: 527.2494, Found:
527.2494.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)butyl)benzene-
sulfonamide (4i). Colorless oil (35 mg, 41% yield); R=0.2 (pe-
troleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz, CDCl;)
§8.18 (d,] = 8.3 Hz, 1H), 8.09 (d, ] = 8.4 Hz, 1H), 7.77-7.73 (m,
3H),7.59 (t, ] = 7.6 Hz, 1H), 7.46 (d, ] = 8.6 Hz, 2H), 7.34 (s,
1H), 5.33 (brs, 1H), 3.04-2.99 (m, 2H), 2.89 (t,] = 7.4 Hz, 2H),
1.88-1.81 (m, 2H), 1.62-1.55 (m, 2H), 1.31 (s, 9H). *C{'H}
NMR (101 MHz, CDCl;) § 161.9, 156.4, 148.7, 143.0, 137.1,
130.7, 129.3, 127.05, 127.03, 126.1, 125.1, 124.1, 121.5, 43.0,
37.7, 35.2, 31.2, 28.8, 26.2. HRMS Calcd for C,3H,3CIN,O,S*
[M+H"]: 431.1555, Found: 431.1552.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)cyclohep-
tyl)benzenesulfonamide (4j). Two separable diastereomers
were obtained. For one isomer 4j’: colorless oil (40 mg, 42%
yield); Ry= 0.6 (petroleum ether/ethyl acetate = 4:1); "H NMR
(400 MHz, CDCL;) §8.15 (d, J = 8.3 Hz, 1H), 8.00 (d, ] = 8.4 Hz,
1H),7.83 (d,] = 8.4 Hz,2H), 7.71 (t,] = 7.4 Hz, 1H), 7.58-7.51
(m, 3H),7.31 (s, 1H), 4.81 (br s, 1H), 3.52-3.47 (m, 1H), 3.03-
2.97 (m, 1H), 2.08-1.99 (m, 2H), 1.96-1.89 (m, 2H), 1.80-1.65
(m, SH), 1.59-1.50 (m, 1H), 1.34 (s, 9H). “C{'H} NMR (101
MHz, CDCl;) § 167.0, 156.4, 148.6, 142.8, 138.2, 130.4, 129.4,
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126.93, 126.87, 126.2, 125.2, 124.0, 120.0, 55.0, 49.2, 35.6, 35.4,
35.3, 34.2, 31.2, 30.4, 22.2. HRMS Calcd for CysH;,CIN,O,S*
[M+H"]: 471.1868, Found: 471.1866. For the another isomer
4j”: yellow oil (33 mg, 35% vyield); Ry = 0.2 (petroleum
ether/ethyl acetate = 4:1); 'H NMR (400 MHz, CDCl;) § 8.42
(d, J=8.4Hz, 1H),8.17 (d, ] = 8.3 Hz, 1H), 7.85 (d, J = 8.5 Hz,
2H),7.79 (t, ] = 7.1 Hz, 1H), 7.60 (t, ] = 7.6 Hz, 1H), 7.45 (d, ]
=8.5Hz,2H), 7.32 (s, 1H), 7.22 (d, ] = 9.1 Hz, 1H), 3.79 (br s,
1H), 3.30-3.24 (m, 1H), 2.21-2.11 (m, 1H), 2.00-1.94 (m, 1H),
1.90-1.68 (m, 4H), 1.64-1.60 (m, 2H), 1.53-1.44 (m, 1H), 1.37-
1.30 (m, 1H), 1.30 (s, 9H). *C{'H} NMR (101 MHz, CDCl;) §
166.8, 155.9, 148.2, 143.2, 139.0, 130.9, 129.4, 127.1, 126.8,
126.0,125.1,123.9, 121.0, 53.2, 45.9, 36.5, 35.1, 34.1, 32.4, 31.2,
26.4, 21.6. HRMS Calcd for CyH3CIN,O,S* [M+H']:
471.1868, Found: 471.1866.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)cyclooctyl)ben-
zenesulfonamide (4k). Two separable diastereomers were ob-
tained. For one isomer 4Kk’: colorless oil (33 mg, 34% yield); Ry=
0.5 (petroleum ether/ethyl acetate = 4:1); "H NMR (400 MHz,
CDCl;) §8.16 (d, J = 8.3 Hz, 1H), 8.04 (d, ] =8.4 Hz, 1H), 7.82
(d, ] =8.4Hz 2H),7.72 (t, ] =7.6 Hz, 1H), 7.57 (t, ] = 7.6 Hz,
1H), 7.49 (d, ] = 8.3 Hz, 2H), 7.32 (s, 1H), 4.99 (d, ] = 7.3 Hz,
1H), 3.50-3.48 (m, 1H), 3.01-2.97 (m, 1H), 1.92-1.74 (m, 9H),
1.65-1.52 (m, 3H), 1.31 (s, 9H). *C{'H} NMR (101 MHz,
CDCl;) § 167.5, 156.3, 148.6, 142.8, 138.2, 130.4, 129.4, 127.0,
126.9,126.1,125.1, 124.0, 120.3, 53.5, 47.3, 35.2, 32.4, 31.6, 31.5,
31.2, 284, 26.1, 23.3. HRMS Caled for Cy;H;4CIN,O,S*
[M+H"]: 485.2024, Found: 485.2021. For the another isomer
4k”: colorless oil (34 mg, 35% yield); Ry = 0.45 (petroleum
ether/ethyl acetate = 4:1); '"H NMR (400 MHz, CDCI3) § 8.16
(d,]=8.3Hz, 1H), 8.01 (d, ] = 8.4 Hz, 1H), 7.82 (d, ] = 8.5 Hz,
2H), 7.74-7.69 (m, 1H), 7.58-7.54 (m, 1H), 7.49 (d, ] = 8.6 Hz,
2H), 7.31 (s, 1H), 4.85 (d, ] = 7.3 Hz, 1H), 3.57-3.51 (m, 1H),
3.06-3.00 (m, 1H), 2.04-1.93 (m, 4H), 1.87-1.71 (m, 4H), 1.65-
1.42 (m, 4H), 1.32 (s, 9H). ®C{'H} NMR (101 MHz, CDCl;) §
167.6, 156.3, 148.5, 142.8, 138.2, 130.4, 129.4, 127.0, 126.9,
126.1,125.1, 124.0, 120.2, 54.0, 48.1, 35.2, 32.3, 31.7, 31.5, 31.2,
29.8, 26.8, 23.3. HRMS Calcd for Cp;H;3CIN,O,S* [M+H"]:
485.2024, Found: 485.2021.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)cyclodo-
decyl)benzenesulfonamide (41). An inseparable mixture of
two diastereomers (10:1) was obtained, white solid (86 mg, 80%
yield); mp 186.1-187.5 °C; Ry= 0.7 (petroleum ether/ethyl ace-
tate = 4:1); '"H NMR (400 MHz, CDCL;) § 8.20 (d, ] = 7.6 Hz,
1H), 8.08 (d, J = 8.4 Hz,5 1H), 7.78 (d, ] = 8.2 Hz, 2H), 7.73 (t,
J=7.0 Hz, 1H), 7.58 (t, ] = 7.6 Hz, 1H), 7.49 (s, 1H), 7.27-7.25
(m, 2H), 4.51 (d, ] = 8.2Hz, 1H), 3.58-3.52 (m, 1H), 3.08-3.02
(m, 1H), 1.92-1.84 (m, 1H), 1.80-1.70 (m, 3H), 1.68-1.63 (m,
1H), 1.61-1.51 (m, 1H), 1.46-1.28 (m, 12H), 1.20-1.12 (m, 2H),
1.16 (s, 9H). *C{'H} NMR (101 MHz, CDCl;) § 166.1, 156.2,
149.0, 142.4, 138.4, 130.2, 129.7, 126.9, 126.7, 125.9, 125.3,
124.0, 121.6, 50.4, 42.6, 35.0, 31.6, 31.2, 31.1, 30.8, 27.6, 24.3,
23.6, 23.1, 23.0, 22.9, 22.1. HRMS Calcd for C3H4,CIN,O,S*
[M+H"]: 541.2650, Found: 541.2649.
4-(tert-butyl)-N-(2-(2-(4-chloroquinolin-2-yl)cyclopen-
tyl)ethyl)benzenesulfonamide (4m). Colorless oil (76 mg, 81%
yield); Ry= 0.6 (petroleum ether/ethyl acetate = 4:1); 'H NMR
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(400 MHz, CDCl;) § 8.18 (t, J = 7.8 Hz,2H), 7.79 (t, ] = 7.6 Hz,
1H), 7.62 (t, ] = 7.7 Hz, 1H), 7.52 (d, ] = 8.5 Hz, 2H), 7.33 (s,
1H), 7.30-7.26 (m, 2H), 6.19 (br s, 1H), 3.03-2.95 (m, 1H),
2.89-2.83 (m, 1H), 2.76-2.68 (m, 1H), 2.54-2.44 (m, 1H), 2.19-
2.11 (m, 1H), 1.95-1.88 (m, 1H), 1.78-1.62 (m, 4H), 1.53-1.45
(m, 1H), 1.34-1.30 (m, 1H), 1.26 (s, 9H). *C{'H} NMR (101
MHz, CDCl;) § 165.0, 155.9, 148.3, 143.0, 137.0, 130.9, 129.3,
127.1, 126.8,125.8, 125.2, 124.0, 120.8, 53.3, 41.8, 41.5, 35.1,
34.8, 34.5, 33.1, 31.1, 24.7. HRMS Calcd for CysH;,CIN,O,S*
[M+H"]: 471.1868, Found: 471.1866.
4-(tert-butyl)-N-(2-(2-(4-chloroquinolin-2-yl)cyclo-
hexyl)ethyl)benzenesulfonamide (4n). An inseparable mix-
ture of two diastereomers (> 16:1) was obtained. Colorless oil
(74 mg, 76% yield); Ry = 0.6 (petroleum ether/ethyl acetate =
4:1); '"H NMR (400 MHz, CDCL;) § 8.31 (d, ] = 8.4 Hz, 1H),
8.18 (d,] = 8.3 Hz, 1H), 7.83-7.77 (m, 1H), 7.73 (d, ] = 8.4 Hz,
2H), 7.67-7.60 (m, 1H), 7.42 (d, ] = 8.4 Hz, 2H), 7.33 (s, 1H),
6.10 (brs, 1H), 2.94-2.89 (m, 2H),2.57-2.52 (m, 1H), 1.94-1.88
(m, 1H), 1.82-1.68 (m, 4H), 1.36-1.33 (m, 2H), 1.30 (s, 9H),
1.19-0.96 (m, 4H). BC{'H} NMR (101 MHz, CDCl;) § 165.6,
156.1, 148.6, 143.3, 136.9, 131.0, 129.4, 127.2, 127.1, 126.0,
125.2, 124.1, 121.4, 51.9, 40.8, 37.1, 35.2, 35.1, 33.4, 32.3, 31.2,
26.4, 26.1. HRMS Calcd for CyH3CIN,O,S* [M+H']:
485.2024, Found: 485.2024.
4-(tert-butyl)-N-(2-((2-(4-chloroquinolin-2-yl)cyclohep-
tyl)ethyl)benzenesulfonamide (40). Yellow oil (62 mg, 62%
yield); Ry= 0.6 (petroleum ether/ethyl acetate = 4:1); "H NMR
(400 MHz, CDCl;) §8.34 (d,J=8.4Hz, 1H), 8.19 (d,]=8.0 Hz,
1H), 7.83 (t, J = 7.2 Hz, 1H), 7.69 (d, ] = 8.5 Hz, 2H), 7.64 (t, ]
=7.4Hz, 1H),7.40 (d, J = 8.5 Hz,2H), 7.34 (s, 1H), 6.15 (, ] =
4.4Hz, 1H),2.94-2.89 (m, 2H), 2.75-2.70 (m, 1H),2.18-2.15 (m,
1H), 1.88-1.82 (m, 1H), 1.76-1.67 (m, 3H), 1.60-1.39 (m, 7H),
1.36-1.33 (m, 1H), 1.30 (s, 9H), 1.27-1.20 (m, 3H). *C{'H}
NMR (101 MHz, CDCl;) § 166.7, 156.0, 148.0, 143.3, 136.9,
131.1,129.4, 127.3,127.0, 126.0, 125.1, 124.0, 121.8, 53.7, 41.1,
38.6, 35.2, 34.9, 34.7, 31.8, 31.2, 29.1, 26.2, 26.1. HRMS Calcd
for CpsH36CIN,O,S" [M+H*]: 499.2181, Found: 499.2179.
4-(tert-butyl)-N-((3-(4-chloroquinolin-2-yl)cyclohep-
tyl)methyl)benzenesulfonamide (4p). Two separable dia-
stereomers were obtained. For one isomer 4p’: colorless oil (39
mg, 40% yield); Ry= 0.6 (petroleum ether/ethyl acetate = 4:1);
'H NMR (400 MHz, CDCl;) § 8.34 (d, ] = 8.5 Hz, 1H), 8.12 (d,
J =83 Hz, 1H), 7.76-7.69 (m, 3H), 7.55 (t, ] = 7.6 Hz, 1H), 7.37
(d, ] =8.5Hz,2H), 7.29 (s, 1H), 6.68 (br's, 1H), 3.14-3.09 (m,
1H), 3.00-2.94 (m, 1H), 2.79-2.72 (m, 1H), 2.23-2.15 (m, 2H),
1.92-1.90 (m, 1H), 1.82-1.76 (m, 2H), 1.65-1.39 (m, SH), 1.31-
1.23 (m, 1H), 1.23 (s, 9H), 1.20-1.08 (m, 2H). *C{'H} NMR
(101 MHz, CDCl;) § 166.9, 156.0, 148.4, 143.0, 137.1, 130.9,
129.2, 127.1, 127.0, 126.0, 125.1, 123.9, 120.8, 49.7, 43.2, 35.2,
35.0, 34.6, 34.5, 34.3, 31.2, 29.4, 26.9. HRMS Calcd for
CyH3,CIN,O,S* [M+H*]: 485.2024, Found: 485.2021. For the
another isomer 4p”: colorless oil (45 mg, 47% yield); Ry = 0.4
(petroleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz,
CDCl;) §8.15(d, ] = 8.2 Hz, 1H),7.98 (d, ] = 8.4 Hz, 1H), 7.75
(d, ] =8.4Hz 2H),7.70 (t, ] = 7.6 Hz, 1H), 7.56 (t, ] = 7.6 Hz,
1H), 7.46 (d, ] = 8.4 Hz, 2H), 7.32 (s, 1H), 5.02 (t, ] = 6.3 Hz,
1H), 3.00-2.95 (m, 1H), 2.83 (t, ] = 6.3 Hz, 2H), 2.00-1.92 (m,
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2H), 1.80-1.71 (m, 4H), 1.68-1.54 (m, 4H), 1.36-1.32 (m, 1H),
1.29 (s, 9H). *C{'H} NMR (101 MHz, CDCl;) § 167.5, 156.4,
148.5, 142.9, 137.0, 130.4, 129.3, 127.0, 126.8, 126.1, 125.2,
124.0, 119.9, 49.8, 48.2, 39.1, 38.4, 35.3, 35.2, 31.8, 31.2, 264,
25.2. HRMS Calcd for C,;H3,CIN,O,S* [M+H*]: 485.2024,
Found: 485.2024.
4-(tert-butyl)-N-(1-(3-(4-chloroquinolin-2-yl)cyclo-
hexyl)ethyl)benzenesulfonamide (4q). Two separable dia-
stereomers were obtained. For one isomer 4q’: colorless oil (9
mg, 9%yield); R;=0.5 (petroleum ether/ethyl acetate =4:1); 'H
NMR (400 MHz, CDCl;) 8.17 (d, ] = 8.1 Hz, 1H), 8.03 (d,] =
8.5 Hz, 1H), 7.81 (d, ] = 8.3 Hz, 2H), 7.72 (t, ] = 7.4 Hz, 1H),
7.57 (t, ] = 7.5 Hz, 1H), 7.46 (d, ] = 8.3 Hz, 2H), 7.40 (s, 1H),
4.45 (d, J = 8.6 Hz, 1H), 3.48 -3.39 (m, 1H), 3.08-3.00 (m, 1H),
2.12-2.02 (m, 1H), 1.88-1.79 (m, 3H), 1.71-1.65 (m, 2H), 1.53-
1.44 (m, 2H), 1.40-1.37 (m, 1H), 1.32 (s, 9H), 1.05 (d, ] = 6.5
Hz, 3H). BC{'H} NMR (101 MHz, CDCL) § 165.4, 156.4,
148.7, 142.7, 138.1, 130.3, 129.6, 127.1, 126.9, 126.1, 124.0,
120.1, 51.5, 40.8, 39.6, 32.4, 31.4, 31.2, 31.1, 27.3, 21.2, 19.7.
HRMS Calcd for CyH33CIN,NaO,S* [M+Na*]: 507.1843,
Found: 507.1843. For the another isomer 4q”: colorless oil (57
mg, 59% yield); Ry= 0.4 (petroleum ether/ethyl acetate = 4:1);
'H NMR (400 MHz, CDCL;) § 8.15 (d, ] = 8.3 Hz, 1H), 8.01 (d,
J=8.3Hz, 1H),7.81(d,]=8.6 Hz,2H), 7.71 (t,J = 7.7 Hz, 1H),
7.56 (t, ] = 7.2 Hz, 1H), 7.44 (d, ] = 8.5 Hz, 2H), 7.35 (s, 1H),
4.80 (brs, 1H), 3.29-3.19 (m, 1H), 2.82-2.76 (m, 1H), 1.96-1.88
(m, 2H), 1.79 (t,] = 11.1 Hz, 2H), 1.56-1.45 (m, 2H), 1.41-1.30
(m, 3H), 1.23 (s, 9H), 0.99 (d, J = 6.8 Hz, 3H). *C{'H} NMR
(101 MHz, CDCl;) § 166.0, 156.3, 148.7, 142.8, 138.0, 130.3,
129.4, 127.0, 126.8, 126.0, 125.3, 124.0, 119.9, 54.3, 47.0, 43.4,
35.1, 347, 32.2, 31.1, 27.8, 25.9, 18.7. HRMS Calcd for
C»H34CIN,0,S* [M+H"]: 485.2024, Found: 485.2023.
1-((4-(tert-butyl)phenyl)sulfonyl)-2,2-dimethylpyrrolidine
(4r-by product). Colorless oil (47 mg, 53% yield). Ry= 0.7 (pe-
troleum ether/ethyl acetate = 4:1). 'H NMR (400 MHz, CDCl,)
87.76 (d,] = 8.2 Hz, 2H), 7.47 (d, ] = 8.2 Hz, 2H), 3.39 (t, ] =
6.2 Hz, 2H), 1.83-1.77 (m, 4H), 1.45 (s, 6H), 1.33 (s, 9H).
13C{'H} NMR (101 MHz, CDCL) § 155.6, 138.8, 127.1, 125.8,
652, 49.4, 43.1, 352, 31.3, 28.4, 22.6. HRMS Calcd for
C1sHyNO,S* [M+H*]: 296.1679, Found: 296.1677.
4-(tert-butyl)-N-(4-(4-methylquinolin-2-yl)pentyl)ben-
zenesulfonamide (5). Yellow solid (68 mg, 80% yield); mp
128.1-129.4 °C; Ry = 0.1 (petroleum ether/ethyl acetate = 4:1);
'"H NMR (400 MHz, CDCl;) § 8.12 (d, ] = 8.4 Hz, 1H), 7.95 (4,
J=82Hz, 1H),7.73-7.68 (m, 3H), 7.53 (t, ] = 7.2 Hz, 1H), 7.43
(d, J = 8.5 Hz,2H), 7.09 (s, 1H), 5.50 (d, J = 5.4 Hz, 1H), 3.03-
2.85 (m, 3H), 2.68 (s, 3H), 1.88-1.79 (m, 1H), 1.69-1.60 (m,
1H), 1.48-1.38 (m, 2H), 1.31 (s, 9H), 1.28 (d, J = 7.0 Hz, 3H).
13C{'H} NMR (101 MHz, CDCL) § 158.9, 156.5, 152.9, 148.3,
137.0, 129.73, 129.68, 129.1, 127.0, 126.2, 125.6, 125.4, 122.8,
118.5, 43.3, 35.2, 34.1, 33.0, 31.2, 27.7, 25.6,21.3. HRMS Calcd
for CysH;3N,0,8* [M+H*]: 425.2257, Found: 425.2253.
4-(tert-butyl)-N-(4-(4,7-dichloroquinolin-2-yl)pentyl)ben-
zenesulfonamide (6). Yellow oil (62 mg, 65% yield); R;= 0.6
(petroleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz,
CDCl;) §8.10 (d, J = 8.9 Hz, 1H), 8.06 (d, ] = 1.8 Hz, 1H), 7.74
(d,] = 8.6 Hz, 2H), 7.54-7.50 (m, 1H), 7.47 (d, ] = 8.5 Hz, 2H),

7.32 (s, 1H), 5.03 (t, ] = 5.9 Hz, 1H), 3.00-2.90 (m, 3H), 1.87-
1.77 (m, 1H), 1.70-1.61 (m, 1H), 1.52-1.37(m, 2H), 1.31 (s, 9H),
1.28 (d, ] = 6.9 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;) §
167.6, 156.4, 149.0, 143.0, 137.0, 136.6, 128.4, 128.0, 127.0,
126.1,125.5,123.8,120.3,43.2, 42.0, 35.2, 33.5, 31.2,27.5, 20.8.
HRMS Calcd for Cy4H,0CLN,O,S* [M+H*]: 479.1321, Found:
479.1322.

Methyl-2-(1-((4-(tert-butyl)phenyl)sulfonamido )undec-
10-yn-4-yl)-4-chloro-7-methoxyquinoline-6-carboxylate
(7). Yellow oil (88 mg, 72% yield); Ry = 0.2 (petroleum
ether/ethyl acetate = 2:1); '"H NMR (400 MHz, CDCl;) §8.65
(s,1H),7.77 (d,J=8.5Hz,2H), 7.64 (s, 1H), 7.51 (d, ] = 8.6 Hz,
2H), 7.33 (s, 1H), 5.50 (br s, 1H), 4.12 (s, 3H), 4.04 (s, 3H),
3.06-2.84 (m, 3H), 2.20-2.17 (m, 2H), 1.98-1.94 (m, 1H), 1.90-
1.65 (m, SH), 1.53-1.47 (m, 4H), 1.45-1.38 (m, 14H). 1.38 (s,
9H). *C{!H} NMR (101 MHz, CDCl;) § 168.0, 166.1, 159.8,
156.3, 151.3, 143.8, 136.9, 128.6, 127.0, 126.1, 122.8, 119.2,
119.1, 108.8, 84.6, 68.4, 56.7, 52.7, 47.9, 43.2, 35.7, 35.2, 32.2,
31.2, 28.8, 283, 272, 27.1, 184. HRMS Calcd for
C3;:HiCIN,O5S* [M+H*]: 613.2497, Found: 613.2492.
N-(2-(2-(4-((4-benzoyl-1,4-diazepan-1-yl)sulfonyl)iso-
quinolin-1-yl)cyclohexyl)ethyl)-4-(tert-butyl)benzenesul-
fonamide (8). Yellow solid (128 mg, 89% yield). mp 113.9-
115.2 °C; Ry= 0.2 (petroleum ether/Acetone = 10:1). "H NMR
(400 MHz, CD;0D) 8 8.67 (t, ] = 8.6 Hz, 1H), 8.59-8.54 (m,
1H), 8.43-8.36 (m, 1H), 8.31 (t, ] = 6.3 Hz, 1H), 7.81-7.73 (m,
1H), 7.53-7.48 (m, 4H), 7.44-7.38 (m, 4H), 7.27 (d, ] = 7.7 Hz,
1H), 3.83-3.79 (d, ] = 4.4 Hz, 2H), 3.66-3.63 (m, 1H), 3.60-3.56
(m, 1H), 3.53-3.43 (m, 4H), 2.69-2.62 (m, 1H), 2.57-2.50 (m,
1H), 2.09-2.03 (m, 2H), 1.88-1.70 (m, SH), 1.61-1.40 (m, 2H),
1.41-1.35 (m, 1H), 1.31 (s, 9H), 1.21- 1.15 (m, 1H), 1.11-1.06
(m, 2H). BC{'H} NMR (101 MHz, CDCl;) § 174.0, 173.8,
167.6, 167.5, 157.2, 144.3, 138.6, 137.3, 136.4, 134.1, 133.6,
133.5, 131.9, 131.8, 130.8, 129.7, 129.3, 127.8, 127.4, 127.3,
127.1, 117.1, 101.3, 52.3, 50.4, 50.0, 48.0, 47.4, 47.3, 46.0, 42.0,
39.7, 39.6, 35.9, 35.7, 35.5, 33.0, 31.5, 31.2, 29.2, 27.4, 27.2.
HRMS Calcd for C3oHyoN,OsS," [M+H*]: 717.3139, Found:
717.3134.
Methyl-1-(3-(((4-(tert-butyl)phenyl)sulfonamido)me-
thyl) cycloheptyl)isoquinoline-3-carboxylate (9). Two sepa-
rable diastereomers were obtained. For one isomer 9’: yellow oil
(43 mg, 42% yield); Ry = 0.7 (petroleum ether/ethyl acetate =
3:1); 'THNMR (400 MHz, CDCl;) §8.37 (s, 1H), 8.18 (d,J=7.6
Hz, 1H), 7.94-7.87 (m, 3H), 7.74-7.67 (m, 2H), 7.43 (d, ] = 8.6
Hz, 2H), 6.79 (d, ] = 6.7 Hz, 1H), 4.10 (s, 3H), 3.98-3.92 (m,
1H), 2.94-2.89 (m, 2H), 2.63-2.55 (m, 2H), 2.34-2.26(m, 1H),
1.93-1.80 (m, 2H), 1.71-1.64 (m, 2H), 1.62-1.52 (m, 1H), 1.46-
1.37 (m, 1H), 1.34-1.32 (m, 2H), 1.29 (s, 9H). *C{'H} NMR
(101 MHz, CDCl;) § 167.9, 167.1, 155.5, 140.0, 137.8, 136.0,
130.5, 129.5, 129.1, 127.6, 127.2, 125.7, 125.2, 122.6, 53.0, 50.1,
39.0, 36.7, 35.6, 35.1, 35.0, 34.9, 31.2, 30.7, 26.4. HRMS Calcd
for CosHsN,0,S* [M+H*]: 509.2469, Found: 509.2465. For the
another isomer 9”: yellow oil (53 mg, 52% yield); Ry= 0.5 (pe-
troleum ether/ethyl acetate = 3:1); 'H NMR (400 MHz, CDCl,)
88.36 (s, 1H), 8.20-8.17 (m, 1H), 7.94-7.91 (m, 1H), 7.75-7.67
(m, 4H), 7.45 (d, ] = 8.6 Hz, 2H), 4.94 (br s, 1H), 3.99 (s, 3H),
3.73-3.67 (m, 1H), 2.89-2.78 (m, 2H), 2.05-1.61 (m, 11H), 1.30
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(s,9H). ®*C{'H} NMR (101 MHz, CDCl;) § 166.9, 166.8, 156.3,
140.4, 137.0, 136.2, 130.4, 129.4, 129.2, 127.4, 127.0, 126.1,
125.0, 122.7, 52.7, 49.8, 39.7, 37.6, 35.2, 34.9, 31.9, 31.2, 26.5,
25.4. HRMS Calcd for CyH3N,0,S" [M+H*]: 509.2469,
Found: 509.2466.

4-(tert-butyl)-N-(4-(4-(tert-butyl) pyridin-2-yl)pentyl)ben-
zenesulfonamide(10). Yellow oil (22 mg, 26% yield); Ry = 0.2
(petroleum ether/ethyl acetate = 4:1); 'H NMR (400 MHz,
CDCl;)88.39 (d, ] = 5.3 Hz, 1H), 7.75 (d, ] = 8.5 Hz, 2H), 7.49
(d,J=8.6 Hz,2H), 7.11-7.09 (m, 1H), 7.06 (d, ] = 1.2 Hz, 1H),
4.98 (t, ] = 5.4 Hz, 1H), 2.95-2.86 (m, 2H), 2.83-2.74 (m, 1H),
1.76-1.67 (m, 1H), 1.60-1.41 (m, 3H), 1.33 (s, 9H), 1.29 (s, 9H),
1.21 (d, J = 6.9 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;) §
165.4,160.9, 156.3, 148.9, 137.0, 127.0, 126.1, 118.7, 43.4, 41.4,
35.2, 348, 33.9, 31.2, 30.7, 27.6, 21.2. HRMS Calcd for
CH3yN,0,8* [M+H*]: 417.2570, Found: 417.2572.
N-(4-(7-bromoisoquinolin-1-yl)pentyl)-4-(tert-butyl)ben-
zenesulfonamide (11). Colorless oil (56 mg, 57% yield); Ry =
0.3 (petroleum ether/ ethyl acetate = 2:1); '"H NMR (400 MHz,
CDCl;) § 8.50 (d, ] = 5.6 Hz, 1H), 8.30 (s, 1H), 7.75-7.69 (m,
4H), 7.48-7.46 (m, 3H), 4.87 (br s, 1H), 3.66-3.58 (m, 2H),
2.98-2.85 (m, 2H), 2.08-1.98 (m, 1H), 1.75-1.66 (m, 1H), 1.58-
1.47 (m, 1H), 1.38 (s, 1H),1.32 (s, 9H), 1.30 (d, ] = 6.9 Hz, 3H).
BC{'H} NMR (101 MHz, CDCl;) § 164.1, 156.4, 142.4, 135.0,
133.4, 129.5, 127.9, 127.11, 127.06, 126.1, 121.2, 119.0, 43.4,
36.1, 352, 325, 312, 27.7, 21.6HRMS Calcd for
C1H0BrN, 0,8 [M+H?*]: 489.1206, Found: 489.1209.
N-(4-(benzo[d]thiazol-2-yl)pentyl)-4-(tert-butyl)benzene-
sulfonamide (12). Yellow solid (38 mg, 46% yield); mp 118.3-
119.6 °C; Ry = 0.2 (petroleum ether/ ethyl acetate = 4:1); 'H
NMR (400 MHz, CDCl;) § 7.99 (d,] = 8.1 Hz, 1H), 7.84 (d,] =
7.9 Hz, 1H), 7.74 (d, ] = 8.5 Hz, 2H), 7.48-7.44 (m, 3H), 7.38-
7.34 (m, 1H), 4.77 (t, ] = 6.0 Hz, 1H), 3.27-3.18 (m, 1H), 3.04-
2.92 (m, 2H), 1.91-1.82 (m, 1H), 1.80-1.71 (m, 1H), 1.58-1.46
(m, 2H), 140 (d, J = 7.0 Hz, 3H), 1.32 (s, 9H). *C{'H} NMR
(101 MHz, CDCI3) § 177.1, 156.5, 153.0, 137.0, 134.7, 127.0,
126.18, 126.16, 125.0, 122.9, 121.7, 43.2, 39.0, 35.3, 34.1, 31.2,
27.3,21.6. HRMS Calcd for C,,H»N,O,S," [M+H*]: 417.1665,
Found: 417.1660.
4-(tert-butyl)-N-(4-(3-methylquinoxalin-2-yl)pentyl)ben-
zenesulfonamide (13). Yellow solid (38 mg, 45% yield); mp
107.8-109.0 °C; Ry = 0.1 (petroleum ether/ethyl acetate = 2:1);
'H NMR (400 MHz, CDCl;) § 8.05-8.02 (m, 1H), 7.98-7.94 (m,
1H),7.71 (d, J = 8.5 Hz, 2H), 7.68-7.65 (m, 2H), 7.44 (d,] = 8.5
Hz, 2H), 4.71 (t, ] = 5.9 Hz, 1H), 3.26-3.17 (m, 1H), 3.00-2.87
(m, 2H), 2.73 (s, 3H), 2.09-2.00 (m, 1H), 1.71-1.62 (m, 1H),
1.58-1.51 (m, 1H), 1.38-1.34 (m, 1H), 1.31 (s, 9H), 1.26 (d, ] =
6.8 Hz, 3H). *C{'H} NMR (101 MHz, CDCIl;) § 159.8, 156.4,
153.0, 141.3, 140.9, 137.0, 129.1, 129.0, 128.8, 128.4, 127.0,
126.1, 43.3,37.2, 35.2, 32.0, 31.2, 27.7, 22.9, 20.5. HRMS Calcd
for C,4H3:,N30,S" [M+H*]: 426.2210, Found: 426.2210.
4-(tert-butyl)-N-(4-(phenanthridin-6-yl)pentyl)benzene-
sulfonamide (14). Yellow oil (77 mg, 84% yield); Ry= 0.4 (pe-
troleum ether/ ethyl acetate = 4:1); "H NMR (400 MHz, CDCl;)
§8.66 (d,J=8.2Hz, 1H),8.55 (d,J = 7.9 Hz, 1H), 8.26-8.20 (m,
2H),7.83 (t, ] = 7.6 Hz, 1H), 7.75 (t, ] =8.1 Hz, 1H), 7.70-7.62
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(m, 4H),7.37 (d,] = 8.5 Hz,2H), 5.06 (t, ] = 5.7 Hz, 1H), 3.81-
3.73 (m,1H), 3.01-2.94 (m, 1H), 2.91-2.84 (m, 1H), 2.33-2.24
(m, 1H), 1.77-1.68 (m, 1H), 1.64-1.56(m, 1H), 1.47-1.40 (m,
1H),1.37(d,J= 6.9Hz,3H), 1.28 (s, 9H).*C{'H} NMR § 164.6,
156.2, 143.7, 137.1, 133.3, 130.4, 130.0, 128.9, 127.4, 127.0,
126.6, 126.0, 125.6, 125.1, 123.5, 122.8, 122.0, 43.3, 36.5, 35.1,
31.6,31.2,27.7, 21.6. HRMS Calcd for CsH33N,0,5* [M+H*]:
461.2257, Found: 461.2252.
4-(tert-butyl)-N-(4-(4-chloroquinolin-2-yl)-3-methyl-
butyl)benzenesulfonamide (15). Yellow oil (43 mg, 48%
yield); Ry= 0.2 (petroleum ether/ethyl acetate = 4:1); 'H NMR
(400 MHz, CDCl;) §8.19 (d, J = 8.7 Hz,2H), 7.80-7.76 (m, 3H),
7.62 (t, ] = 7.9 Hz, 1H), 7.45 (d, ] = 8.5 Hz, 2H), 7.33 (s, 1H),
6.21 (brs, 1H), 3.11-2.98 (m, 2H), 2.85-2.75 (m, 2H), 2.25-2.15
(m, 1H), 1.51-1.45 (m, 2H), 1.31 (s, 9H), 0.90 (d, ] = 6.8 Hz,
3H). BC{'H} NMR (101 MHz, CDCL) § 161.1, 156.2, 148.5,
143.1,137.1,130.9,129.2,127.2,126.1,125.1,124.1, 112.3,44.6,
41.0, 35.2, 31.2, 31.0, 20.2. HRMS Calcd for C,4H3,CIN,O,S*
[M+H*]: 445.1711, Found: 445.1710.
4-(tert-butyl)-N-(3-methyl-4-(2-methylquinolin-4-yl)bu-
tyl)benzenesulfonamide (16). Yellow oil (44 mg, 52% yield);
Ry = 0.2 (petroleum ether/ethyl acetate = 3:1); '"H NMR (400
MHz, CDCl;) §7.99 (d, = 8.3 Hz, 1H), 7.91 (d, ] = 8.2 Hz, 1H),
7.74 (d, ] = 8.6 Hz, 2H), 7.64 (t, ] = 8.2 Hz, 1H), 7.49-7.45 (m,
3H), 7.04 (s, 1H), 4.66 (brs, 1H), 3.14-3.06 (m, 1H), 3.01-2.93
(m, 2H), 2.76-2.71 (m, 1H), 2.66 (s, 3H), 2.04-1.96 (m, 1H),
1.65-1.56 (m, 1H), 1.47-1.38 (m, 1H), 1.31 (s, 9H), 0.85 (d, ] =
6.6 Hz, 3H). *C{'H} NMR (101 MHz, CDCIl;) § 158.5, 156.6,
148.3, 146.6, 136.7, 129.5, 129.2, 127.0, 126.2, 126.1, 125.7,
123.6,123.0,41.3, 39.7, 36.8, 35.2, 31.4, 31.2, 25.4, 19.6. HRMS
Calcd for C,5H33N,0,S" [M+H*]: 425.2257, Found: 425.2254.

4-(tert-butyl)-N-(4-(phthalazin-1-yl)butyl)benzenesulfona-
mide (17). Yellow oil (35 mg, 44% yield); R;= 0.1 (petroleum
ether/acetone = 10:1); 'H NMR (400 MHz, CDCl;) § 9.37 (s,
1H), 8.10 (d, J= 7.6 Hz, 1H), 7.95-7.86 (m, 3H), 7.78 (d,] = 8.5
Hz, 2H), 7.48 (d, ] = 8.5 Hz, 2H), 5.34 (t, ] = 6.1 Hz, 1H), 3.33
(t, ] = 7.6 Hz, 2H), 3.07-3.01 (m, 2H), 2.00-1.92 (m, 2H), 1.73-
1.66 (m,2H), 1.31 (s, 9H). ®C{'H} NMR (101 MHz, CDCl;) §
156.3, 150.6 137.0, 132.8, 132.3, 127.2, 127.01, 126.98, 126.6,
12622, 125.7, 124.1, 43.0, 35.2, 32.3, 31.2, 29.4, 25.8. HRMS
Calcd for C;,H,sN;0,S* [M+H*]: 398.1897, Found: 398.1895.
4-(tert-butyl)-N-(4-(isoquinolin-1-yl)butyl)benzenesulfon-
amide (18); Yellow oil (38 mg, 48% yield); Ry= 0.3 (petroleum
ether/ethyl acetate = 3:1); 'H NMR (400 MHz, CDCl;) § 8.38
(d, ] = 5.7 Hz, 1H), 8.09 (d, ] = 8.4 Hz, 1H), 7.80-7.76 (m, 3H),
7.65 (t, ] =7.5 Hz, 1H), 7.57 (t, ] = 7.7 Hz, 1H), 7.49-7.45 (m,
3H), 5.88 (s, 1H), 3.24 (t, ] = 7.5 Hz, 2H), 3.04-2.99 (m, 2H),
1.91-1.84 (m, 2H), 1.66-1.59 (m, 2H), 1.30 (s, 9H). *C{'H}
NMR (101 MHz, CDCl;) § 161.2, 156.2, 141.5, 137.0, 136.3,
130.1, 127.5, 127.3, 127.0, 126.1, 125.2, 119.6, 43.1, 35.1, 34.0,
31.2, 29.1, 25.9. HRMS Calcd for Cyp;HpN,0,S* [M+H*]:
397.1944, Found: 397.1940.
4-(tert-butyl)-N-(4-(4-(trifluoromethyl) pyridin-2-yl)bu-
tyl)benzenesulfonamide (19). Yellow oil (31 mg, 37% yield);
Ry = 0.2 (petroleum ether/ ethyl acetate = 4:1); "H NMR (400
MHz, CDCl;) §8.68 (d, J=5.1Hz,1H),7.77 (d,] = 8.6 Hz, 2H),
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7.50 (d, J= 8.6 Hz, 2H), 7.33 (d, J = 4.9 Hz, 2H), 4.77 (t, ] = 6.1
Hz, 1H), 3.02-2.97 (M, 2H), 2.83 (t, J = 7.6 Hz, 2H), 1.81-1.74
(m, 2H), 1.60-1.53 (m, 2H), 1.33 (s, 9H). *C{'H} NMR (101
MHz, CDCl;) § 163.2, 156.5, 150.3, 139.0(s), 138.8 (q, J = 33.7
Hz), 136.9, 127.0,126.2,126.2,123.0 (q, J=273.2 Hz), 118.6 (q,
J=3.7Hz),117.0(q,J =6.9,3.3 Hz), 43.1,37.5,35.3,31.2,29.2,
26.4. HRMS Calcd for CypHasFsN,0,S* [M+H']: 415.1662,
Found: 415.1658.

Removal of 4-tert-phenylsulfonyl protecting group. A mix-
ture of compound 5 (84.8 mg, 0.2 mmol, 1.0 equiv), phenol
(56.4 mg, 0.2 mmol, 1.0 equiv) and HBr (1.0 mL, 48%) was
heated to 130 °C for 18 hours in a sealed tube (using heating
block). After being cooled to room temperature, the reaction so-
lution was diluted with iced water, then adjusted to pH = 8~9
with K,COs. The resulting mixture was extracted with EtOAc (S
mL x 3). The combined organic phase was dried over Na,SO,,
filtered and concentrated in vacuo. The crude product was puri-
fied by flash chromatography on silica gel (DCM:MeOH = 5:1)
to give compounds 20 in 90% yield (41 mg) as yellow oil.'* Ry =
0.3 (Dichloromethane/Methanol = 20:1). '"H NMR (400 MHz,
CDCl;) §8.02 (d, J = 8.4 Hz, 1H),7.93 (d, ] = 8.3 Hz, 1H), 7.65
(t,J=7.6 Hz, 1H), 7.48 (t, ] = 7.6 Hz, 1H), 7.12 (s, 1H), 3.05-
2.99 (m, 1H), 2.67-2.64 (m, SH), 1.92 (s, 2H), 1.87-1.79 (m,
1H), 1.73-1.64 (m, 1H), 1.55-1.44 (m, 1H), 1.36-1.30 (m, 4H).
BC{'H} NMR (101 MHz, CDCL;) § 166.5, 147.7, 144.5, 129.6,

129.1,127.1,125.6,123.7,120.3, 42.8, 42.2, 34.2, 31.7,21.0, 19.0.

HRMS Calcd fOI' C:15H21N2+ [M+H+]: 2291699; Found:
229.1697.
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