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Abstract: A Sc(OTf)3 catalyzed highly diastereoselective one-pot sequential [3+3] dipolar cycloaddition 

reaction of aldehyde or ketone, N-alkyl hydroxylamine and spirocyclopropyl oxindole is developed, 

allowing facile construction of spirocyclic oxindole-tetrahydro-1,2-oxazines in sufficient structural 

diversity. The corresponding catalytic enantioselective one-pot protocol of aldehydes is also reported, 

affording the desired adducts in up to 97% ee. The biological evaluation of selected oxindole-based 

spirocyclic tetrahydro-1,2-oxazines revealed that they exerted cytotoxic effects on human prostate 

cancer cells with the capacity to inhibit NFκB signaling in prostate cancer cells. 
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Introduction 

Spiro skeletons are widely distributed in bioactive natural products and pharmaceutically active 

compounds.1 Notably, spirocyclic compounds play an active role in modern drug discovery & 

development, because the incorporation of spiro-ring fusion can reduce the conformational entropy 

penalty upon binding with a protein target.2 As a result, much attention has been paid to the efficient 

construction of densely functionalized spirocyclic compounds with structural diversity.3 This is further 

fueled by the demand of probe- and drug-discovery programmes for synthetic libraries that replicate the 

structural features of natural products, to enhance the returns of high-throughput screenings.4 In 

particular, spirocyclic compounds derived from privileged scaffolds are highly desirable.  

Tetrahydro-1,2-oxazine moiety present in bioactive natural products such as nakadomarin A, (+)-

phyllantidine, FR900482 and FR 66979, as well as in synthetic bioactive compounds FK317 and 

FK973.5 The merger of this heterocycle into spirocycles is interesting to develop novel molecules for 

medicinal studies. Recently, inspired by the pioneering work of Young and Kerr in [3+3] cycloaddition 

of nitrones and donor-acceptor (D–A) cyclopropanes for the flexible construction of tetrahydro-1,2-

oxazines,6 as well as the efforts of Sibi and Tang groups in developing catalytic asymmetric versions,7 

we developed a highly diastereo- and enantioselective [3+3] cycloaddition of spirocyclopropyl 

oxindoles8 with both aldonitrones and ketonitrones (Scheme 1A).9 This enables the facile synthesis of 

oxindole based spirocyclic tetrahydro-1,2-oxazines. It is worth mentioning that spirocyclic oxindoles are 

prominent structural motifs in drugs and bioactive compounds as well, the diverse construction of this 

framework is of current interest.10 Because some nitrones are not easy to prepare or unstable due to 

oligomerization under acidic conditions, along with their highly hydroscopic nature, the development of 

more convenient and efficient protocols using nitrones formed in situ, without the isolation and handling 

of the nitrones, is very helpful to build up libraries of oxindole based spirocyclic 1,2-oxazines for 

medicinal studies. 
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Scheme 1. One-pot [3+3] Cycloaddition of Aldehyde or Ketone, Hydroxylamine with D-A 

Cyclopropane. 

 

In 2004, Kerr et al. developed an elegant three component protocol using aldehydes, hydroxylamines 

and D–A cyclopropanes (Scheme 1B).11 This strategy was further successfully applied to the total 

synthesis of nakadomarin A12a and (+)-phyllantidine12b as well as the construction of other privileged 

scaffolds.12c-e Their meaningful results encouraged us to develop a one-pot method for the facile 

construction of a library of spirocylic oxindole-1,2-oxazines for biological evaluation, although ketones 

have not been incorporated to such one-pot protocol and the corresponding catalytic enantioselective 

one-pot version remains undeveloped. As part of our research program for the efficient construction of 

spirocyclic oxindoles for biological evaluation,9,13 we attempt to develop a highly diastereoselective 

one-pot [3+3] cycloaddition of aldehydes or ketones, hydroxylamines with spirocyclopropyl oxindoles, 
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along with a catalytic enantioselective version (Scheme 1C). Here, we wish to report our research work 

and the initial results of biological evaluation.  

Results and discussion 

We began our research by using the [3+3] cycloaddition of 4-chlorobenzaldehyde 1a, N-

methylhydroxylamine hydrochloride 2a and N-diethoxyphosphoryl spirocyclopropyl oxindole 3a as 

model reaction, with K2CO3 as base to neutralize the reaction. Typically, 1a and 2a were combined 

initially in the presence of 4 Å molecular sieves (MS), 10 mol% Lewis acid catalyst and 0.75 equiv 

K2CO3 at 50 oC for 1 h. After the complete formation of nitrone, 3a was added and the resulting reaction 

mixture was stirred until 3a was fully consumed.  

Table 1. Conditions Optimization 

 

Entry Cat. Solvent 
Temp. 

(oC) 

Time 

(h) 
Dra 

Yield 

(%) 

1 Ni(OTf)2 DCE 50 72 >20:1 42 

2 Ni(OTf)2 DCE 80 6 3.7:1 70 

3 Mg(OTf)2 DCE 50 72 9.6:1 56 

4 Mg(OTf)2 DCE 80 6 4.0:1 69 

5 Bi(OTf)3 DCE 50 24 >20:1 24 

6 Er(OTf)3 DCE 50 5 4.6:1 70 

7 Y(OTf)3 DCE 50 5 4.7:1 66 

8 Yb(OTf)3 DCE 50 5 4.7:1 73 

9 Sc(OTf)3 DCE 50 5 5.5:1 72 

11 Sc(OTf)3 THF 50 24 8.3:1 73 

12 Sc(OTf)3 Toluene 50 6 7.6:1 80 

13 Sc(OTf)3 EtOAc 50 6 10.3:1 85 
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a Determined by 1H NMR analysis. Note: 3a was not fully consumed in 
entry 1. 

Initially, the performance of different metal triflates was investigated using dichloroethane (DCE) as 

solvent. When the reaction of 1a, 2a and 3a were conducted in the absence of Lewis acid catalyst, the 

nitrone could be formed smoothly, but no further cycloaddition reaction could be detected. Ni(OTf)2, the 

best catalyst we identified in previous work9, catalyzed the reaction to give the desired product 4a in > 

20:1 dr, but resulted in incompletion of the [3+3] cycloaddition, and 4a was obtained in only 42% yield 

even after 72 h (entry 1, Table 1). The relative configuration of 4a was determined by NMR analysis 

combined with the reference of previous work9. Raising reaction temperature from 50 oC to 80 oC 

allowed the reaction to finish within 6 h, but afforded 4a in a much lower 3.7:1 dr (entry 2). Similar 

results were observed when using Mg(OTf)2 as catalyst (entries 3-4). Bi(OTf)3 was a less active catalyst 

for this reaction, giving 4a in only 24% yield (entry 5). Rare earth metal triflates such as Er(OTf)3, 

Y(OTf)3, Yb(OTf)3, and Sc(OTf)3 could allow the reaction to finish in 5 h (entries 6-9), but Sc(OTf)3 

gave the best result in term of reaction yield and dr value (entry 9). Subsequently, the solvent effects of 

the reaction catalyzed by Sc(OTf)3 were investigated to improve the diastereoselectivity. THF as the 

solvent resulted in higher dr but slower reaction rate (entry 11); however, the reaction in toluene could 

finish in 6 h, affording 4a in 80% yield with 7.6:1 dr (entry 12). Gratifyingly, ethyl acetate (EtOAc) 

turned out to be the best solvent of choice, and the reaction went for a completion within 6 h to give 4a 

in 85% yield and 10.3:1 dr (entry 13). Finally, we determined to run the reaction at 50 oC in EtOAc, 

using 10 mol% Sc(OTf)3 as the catalyst. 

The substrate scope of this one-pot sequential protocol with respect to differently substituted 

aldehydes 1, N-alkyl hydroxylamines 2 and oxindoles 3 was then studied (Scheme 2). In general, phenyl 

aldehydes with either electron-deficient or electron-rich substituents were all viable substrates, giving 

the desired products 4a-g in 77-83% yield and 6.5:1-10.0:1 dr. 2-Naphthaldehyde, 2-furanaldehyde and 

2-thenaldehyde gave the corresponding products 4h-j in high yield and dr values. Aliphatic aldehydes 

with an isopropyl or a cyclohexyl group also worked well, giving the corresponding products 4k and 4l 
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in high yield and diastereroselectivity. α,β-Unsaturated aldehydes were compatible substrates as well, as 

shown by the conversion of cinnamaldehyde to 4m in 90% yield and 14.0:1 dr. Furthermore, differently 

substituted hydroxyamines and spirocyclopropyl oxindoles were examined. BnNHOH gave the desired 

product 4n in 87% yield with 18.1:1 dr. On the other hand, the oxindoles 3 bearing a fluorine atom on 

C5 position of oxindole ring or a 2-naphthyl group on the cyclopropane ring all readily furnished the 

corresponding products 4o-p in good yield and diastereoselectivity.  

Scheme 2. Substrate Scope with Aldehyde 
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4e: 6 h, 81%, 8.0:1 dr 4f: 5 h, 78%, 6.5:1 dr 4g: 6 h, 83%, 8.4:1 dr 4h: 4 h, 69%, 8.0:1 dr

4i: 4 h, 81%, 10.0:1 dr 4j: 4 h, 81%, 11.3:1 dr 4k: 6 h, 86%, 8.6:1 drb 4l: 6 h, 86%, 10.9:1 dr

4m: 4 h, 90%, 14.0:1 dr 4n: 4 h, 87%, 18.1:1 drc 4o: 4 h, 83%, 11.6:1 dr 4p: 4 h, 85%, 8.1:1 dr

4

Ph

R3
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a Dr value was determined by 1H NMR. b 2.0 mmol isobutyraldehyde was used. cReaction run without K2CO3.  
In the following, we investigated the feasibility of merging ketones into the one-pot procedure to 

construct spirocyclic tetrahydro-1,2-oxazines with adjacent quaternary and tetrasubstituted carbons. 

Since ketonitrones formation was more difficult, the corresponding procedure of the one-pot 

manipulation was modified slightly in that EtOH was used as solvent for ketonitrone formation.14 While 

the [3+3] cycloaddition of the thus obtained ketonitrone and spirocyclopropyl oxindoles could not take 
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place in EtOH, we then tried to remove EtOH after the formation of ketonitrone and use other solvents 

for the [3+3] cycloaddition reaction. All of the solvents screened could give the product 6a successfully, 

albeit with different reaction outcome (Table 2). When DCE or THF was used, product 6a could be 

obtained in 40% and 43% yield with 4.6:1 and 4.2:1 dr respectively (entry 1-2, Table 2). A higher yield 

could be obtained using toluene and EtOAc as solvent, but the diastereoselectivity decreased slightly 

(entries 3-4). Finally, when using iPrOAc as solvent, the reaction could finish in 24 h giving product 6a 

in 57% yield with 4.0:1 dr (entry 5, Table 2). We also tried to run the reaction in iPrOAc at 80 oC to 

improve the efficiency of nitrone formation and the [3+3] cycloaddition of ketonitrone and 

spirocyclopropyl oxindoles, but 6a was only obtained in 33% yield. (entry 6, Table 2). Finally, we 

determined to run the reaction of ketones at 50 oC in EtOAc. 

Table 2. Screening of Solvents for One-pot Sequential [3+3] Cycloaddition Using Ketone 

 

Entry Solvent Temp. (oC) Time (h) Dra Yield (%)b 

1 DCE 50 36 4.6:1 40 

2 THF 50 36 4.2:1 43 

3 Toluene 50 36 3.5:1 49 

4 EtOAc 50 36 3.7:1 54 

5 iPrOAc 50 24 4.0:1 57 

6 iPrOAc 80 24 mess 33 
a Determined by 1H NMR analysis of crude mixture.  

Under this condition, acetophenones with different phenyl substituents, along with methyl trans-

styrylketone were readily coordinated to the one-pot synthesis to afford the desired spirocyclic 

tetrahydro-1,2-oxazines 6a-e in 42-51% yields and moderate dr values (Scheme 3). Spirocyclopropyl 

oxindoles with different substituents at the oxindole framework or at the cyclopropane moiety all 

worked well to give the corresponding adducts 6f-6h in reasonable yield and moderate dr value. The 

reaction of cyclopentone was conducted at 80 oC, furnishing the product 6i in excellent 20:1 dr, albeit 

with moderate yield. The low yield may cause by the low conversion of nitrone formation step and the 
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instability of the nitrone. We have also tried to isolate the ketonitrone derivated from cyclopentone but 

failed. Despite the room for further improvement in terms of diasteresoselectivity, our results clearly 

suggested the potential of in situ formation of unactivated ketonitrones for diverted-oriented synthesis. 

Scheme 3. Substrate Scope with Ketone 

 

We also tried the catalytic asymmetric version of the one-pot sequential [3+3] cycloaddition 

reaction. Chiral bisoxazoline 7/Ni(OTf)2, the previously established catalyst,9 was found to mediate the 

one-pot transformation well, affording the chiral spirocyclic products 4a-b, 4e and 4m in considerable 

yield and excellent ee value, albeit with diminished dr value as compared with the corresponding 

enantioselective cycloaddition of pre-prepared aldonitrones9 (Scheme 4).  
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Scheme 4. Asymmetric One-pot Sequential [3+3] Dipolar Cycloaddition Reaction 

 

Biological Studies 

Next, we investigated the biological activities of the thus obtained spirocylic oxindole-1,2-oxazines 

in a NFκB signaling inhibitory assay. As a transcription factor, nuclear factor κB (NFκB) plays key roles 

in regulation of cell proliferation, survival and immune responses.15 Constitutive activation of NFκB 

signaling pathway is often detected in hormone refractory prostate cancer, which is the resistance stage 

to androgen deprivation therapy. Moreover, the inhibition of NFκB activation has proved to be a 

promising approach for prostate cancer treatment.16 Therefore, small molecule inhibitors that inhibit 

NFκB transcriptional activity would be potential candidate to treat hormone refractory prostate cancer. 

Several potent NFκB signaling inhibitors, such as JSH-23, have been recently reported.17 

We tested whether the thus obtained spirocylic oxindole-1,2-oxazines can suppress NFκB activity in 

a hormone refractory prostate cancer DU145 cell line. As a well-known inducer of NFκB activity, TNFα 

treatment successfully increased the NFκB transcriptional activity (Figure 1). Notably, all of the four 

selected compounds (4b, 4f, 6a and 6c) significantly inhibited the transcriptional activity of NFκB in 

DU145 cells in a dose-dependent manner. 
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Figure 1. Compounds 4b, 4f, 6a and 6c inhibited NFκB signaling pathway. DU145 cells were 
transfected with 6xNFκB-luciferase reporter plasmid. After 24 h, the cells were pre-treated with 4b, 4f, 
6a and 6c for 4 h, followed by 10 ng/mL TNFα treatment. The luciferase activities were calculated as a 
rate of firefly luciferase activity/total protein. The relative luciferase activity of vehicle control was set 
as 100%. N = 3. The data were repeated in three biological independent replicates and presented as 
mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

Since constitutive activation of NFκB signaling is positively associated with prostate cancer cell 

proliferation and survival, we next examine whether these four compounds (4b, 4f, 6a and 6c) can 

induce cytotoxicity on hormone refractory prostate cancer cells. Two human hormone refractory prostate 

cancer cell lines (DU145 and PC3) and one non-malignant prostate epithelial cell line (BPH1) with four 

compounds for 48 h and then measured the cell viability using the MTT assay. The half-maximal 

inhibitory concentration (IC50) values were measured in DU145, PC3 and BPH1 cells. All the 

compounds given in Table 3 showed cytotoxic effects to prostate cancer cells. Interestingly, DU145 and 

PC3 cells showed more sensitivity to these four compounds than BPH1 cells. Next, we compared these 

four compounds with a well-known NFκB inhibitor (JSH-23) on cytotoxic effects. The IC50 of JSH-23 

is higher than 4b, 4f, 6a and 6c in DU145 and PC3 cells (Table 3). Overall, these four new compounds 

can be taken as potent inhibitors of NFκB signaling pathway and have higher cytotoxic effects than JSH-

23 in DU145 and PC3 cells. 
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Table 3. IC50 Values of Four Compounds in a Non-malignant Prostate Epithelial BPH1 Cells and 

two Hormone Refractory Prostate Cancer DU145 and PC3 Cells 

Compound 
 IC50 (µM, mean ± SD) 

DU145 cell line PC3 cell line BPH1 cell line 

4b 19.09±2.19 22.87±5.21  >30 

4f 16.50±3.13 20.00±3.52  >30 

6a 15.45±0.95 22.03±5.92  >30 

6c 14.57±1.90    18.92±2.71     >30 

JSH-23 110.47 70.64  - 

 

Conclusion 

In summary, we have developed a one-pot sequential [3+3] dipolar cycloaddition reaction of 

aldehyde/ketone, N-alkyl hydroxylamines and spirocyclopropyl oxindoles for the facile synthesis of 

oxindole-based spirocyclic tetrahydro-1,2-oxazines. The biological studies indicate that the thus 

obtained spirocyclic oxindole-1,2-oxazines possess cytotoxic effect on hormone refractory prostate 

cancer cells with the capacity to inhibit NFκB transcriptional activity. Further structural modification 

and bioactivity studies of the thus obtained spirocyclic tetrahydro-1,2-oxazines are on going in our lab. 

Experimental Section 

General Information. Reactions were monitored by thin layer chromatography using UV light to 

visualize the course of reaction. Purification of reaction products was carried out by flash 

chromatography on silica gel. Chemical yields referred to pure isolated substances. Infrared (IR) spectra 

were obtained using a Bruker tensor 27 infrared spectrometer. 1H NMR, 13C{1H}NMR, 31P NMR and 

19F NMR spectra were obtained using Bruker DPX-400 or DPX-300 MHz spectrometer. Chemical shifts 

were reported in ppm from tetramethylsilane with the solvent resonance. The following abbreviations 

were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = 

heptet, m = multiplet, br = broad. 
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All reactions were run in an atmosphere of N2 except noted. Anhydrous CH2ClCH2Cl (DCE) and 

CH3CN were prepared by first distillation over P2O5 and then from CaH2. Toluene and THF were 

prepared by distillation over sodium-benzophenone ketyl prior to use. Anhydrous EtOAc and iPrOAc 

were prepared by distillation over activated calcium sulfate and 5Å MS prior use. Activated molecular 

sieves powder 4Å (MS 4 Å) was dried at 150 °C in vacuum before use. Metal triflates were purchased 

from Strem Chemicals and used as it received. N-diethoxyphosphoryl spirocyclopropyl oxindoles were 

synthesized according to the literature procedures.9 (4a-l, 4o-p, 6a-b, 6d, 6f-h are reported compound, 9 

4m-n, 6c, 6e, 6i are new coupound) 

General procedure for one-pot sequential [3+3] dipolar cycloaddition with aldehyde. 

To a Schlenk tube were sequentially added aldehydes 1 (0.34 mmol), hydroxyamines 2 (0.30 mmol), 

4Å MS (100 mg), Sc(OTf)3 (9.8 mg, 0.02 mmol, 10 mol %) and K2CO3 (0.15 mmol, 20.7 mg), followed 

by the addition of anhydrous EtOAc (2.0 mL). After the resulting solution was stirred at 50 oC for 1 h, 

spirocyclopropyl oxindoles 3 (0.20 mmol) was added. The reaction was kept stirring at 50 oC till the full 

consumption of 3 by TLC analysis. Then EtOAc was removed under reduced pressure. The residue was 

dissolved in CH2Cl2, rapidly passed through a glass funnel with a thin layer (2 cm) of silica gel, washed 

with 10 mL CH2Cl2/EtOAc (5/1, v/v), and concentrated under reduced pressure. To determine the dr 

value of the products, the residue was first dissolved in CDCl3, and took a little portion to determine 

diastereoselectivity by 1H NMR analysis. Then the sample for analysis and rest crude product were 

recombined for column chromatography purification to afford product 4, using CH2Cl2/EtOAc (40/1, 

v/v) as the eluent. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4a: White solid; 97.7 mg, yield 83%; 1H NMR 

analysis revealed that the dr is 10.0:1. 1H NMR (400 MHz, CDCl3): 8.32 (s, 1H), 7.58 (d, J = 8.4 Hz, 

1H), 7.34 (d, J = 8.0 Hz, 2H), 7.29 (dd, J1 = 8.4 Hz, J2 = 2.0 Hz, 1H), 7.23-7.07 (m, 4H), 6.94 (d, J = 8.8 

Hz, 1H), 6.61 (d, J = 8.4 Hz, 1H), 5.50 (dd, J1 = 12.4 Hz, J2 = 2.4 Hz, 1H), 4.16 (s, 1H), 4.13-4.07 (m, 

1H), 3.97-3.90 (m, 1H), 3.84-3.78 (m, 1H), 3.59-3.52 (m, 1H), 2.57-2.50 (m, 1H), 2.49 (s, 3H), 2.35 (s, 
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3H), 1.89 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.25 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.18 (td, J1 = 7.2 

Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.0, 139.1 (d, J = 6.9 Hz), 138.3, 136.4, 

134.1, 134.0, 132.2 (d, J = 9.3 Hz), 131.9, 129.3, 129.1, 129.0, 128.8, 128.1, 126.9, 126.6, 115.3, 75.6, 

74.9, 64.7 (d, J = 5.7 Hz), 64.2 (d, J = 5.8 Hz), 54.4 (d, J = 5.8 Hz), 44.7, 41.1, 21.2, 15.9 (d, J = 6.9 

Hz), 15.8 (d, J = 7.4 Hz); 31P NMR (162 MHz, CDCl3): -7.32; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4b: White solid; 92.0 mg, 83% yield; 1H NMR 

analysis showed the dr value is 9.2:1. 1H NMR (400 MHz, CDCl3): 8.36 (s, 1H), 7.58 (d, J = 8.8 Hz, 

1H), 7.35 (d, J = 8.0 Hz, 2H), 7.28 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.22-7.08 (m, 5H), 7.00-6.90 (m, 

1H), 6.72-6.61 (m, 1H), 5.52 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.18 (s, 1H), 4.14-4.08 (m, 1H), 3.96-

3.92 (m, 1H), 3.76-3.70 (m, 1H), 3.51-3.45 (m, 1H), 2.60-2.51 (m, 1H), 2.50 (s, 3H), 2.35 (s, 3H), 1.89 

(dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.24 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.15 (td, J1 = 7.2 Hz, J2 = 0.8 

Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.3, 139.2 (d, J = 7.1 Hz), 138.2, 136.6, 135.6, 132.6 (d, 

J = 9.4 Hz), 130.6, 129.3, 128.9, 128.6, 128.1, 127.9, 127.7, 127.0, 126.6, 115.2, 75.6, 64.6 (d, J = 5.7 

Hz), 64.0 (d, J = 5.5 Hz), 54.4 (d, J = 5.7 Hz), 44.7, 41.3, 21.2, 16.0 (d, J = 7.0 Hz) , 15.9 (d, J = 7.8 

Hz); 31P NMR (162 MHz, CDCl3): -7.28; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4c: White solid; 90.1 mg, 79% yield; 1H NMR 

analysis revealed that the dr is 8.1:1. 1H NMR (400 MHz, CDCl3): 8.33 (s, 1H), 7.59 (d, J = 8.4 Hz, 

1H), 7.34 (d, J = 8.4 Hz, 2H), 7.29 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.25-7.14 (m, 3H), 6.90-6.80 (m, 

1H), 6.74-6.59 (m, 2H), 5.50 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.17 (s, 1H), 4.16-4.08 (m, 1H), 3.98-

3.92 (m, 1H), 3.86-3.80 (m, 1H), 3.60-3.54 (m, 1H), 2.55-2.49 (m, 1H), 2.49 (s, 3H), 2.35 (s, 3H), 1.89 

(dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.25 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.18 (td, J1 = 7.2 Hz, J2 = 0.8 

Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.2, 162.6 (d, J = 246.5 Hz), 139.1 (d, J = 7.0 Hz), 138.3, 

136.4, 132.4 (d, J = 9.5 Hz), 132.2 (d, J = 7.9 Hz), 131.4 (d, J = 3.3 Hz), 129.4, 129.3, 129.1, 128.8, 

126.9, 126.6, 115.3, 115.0, 114.8, 114. 6, 75.6, 74.7, 64.7 (d, J = 5.6 Hz), 64.2 (d, J = 5.6 Hz), 54.4 (d, J 

= 5.6 Hz), 44.6, 41.1, 21.2, 16.0 (d, J = 6.8 Hz), 15.9 (d, J = 7.6 Hz); 31P NMR (162 MHz, CDCl3): -

.7.27; 19F NMR (282 MHz, CDCl3): -113.24; 
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Spirocyclic oxindole-tetrahydro-1,2-oxazines 4d: White solid; 97.5 mg, 77% yield; 1H NMR 

analysis revealed that the dr is 9.3:1. 1H NMR (400 MHz, CDCl3): 8.32 (s, 1H), 7.58 (d, J = 8.8 Hz, 

1H), 7.36-7.27 (m, 4H), 7.19 (d, J = 8.0 Hz, 2H), 7.15-7.01 (m, 2H), 6.55 (d, J = 7.6 Hz, 1H), 5.50 (dd, 

J1 = 12.4 Hz, J2 = 2.4 Hz, 1H), 4.15 (s, 1H), 4.14-4.07 (m, 1H), 3.98-3.88 (m, 1H), 3.84-3.76 (m, 1H), 

3.59-3.49 (m, 1H), 2.54-2.49 (m, 1H), 2.48 (s, 3H), 2.35 (s, 3H), 1.89 (dd, J1 = 12.8 Hz, J2 = 2.4 Hz, 

1H), 1.26 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.19 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 

MHz, CDCl3): 178.0, 139.1 (d, J = 7.0 Hz), 138.3, 136.3, 134.5, 132.2, 132.1, 131.1 (d, J = 5.3 Hz), 

129.3, 129.1, 128.8, 126. 9, 126.6, 122.3, 115.3, 75.6, 74.9, 64.7 (d, J = 5.5 Hz), 64.2 (d, J = 5.5 Hz), 

54.3 (d, J = 5.7 Hz), 44.7, 41.0, 21.2, 16.0 (d, J = 7.2 Hz), 15.9 (d, J = 7.8 Hz); 31P NMR (162 MHz, 

CDCl3): -7.32;  

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4e: White solid; 92.3 mg, 81% yield; 1H NMR 

analysis revealed that the dr is 8.0:1. 1H NMR (400 MHz, CDCl3): 8.35 (s, 1H), 7.59 (d, J = 8.4 Hz, 

1H), 7.34 (d, J = 8.0 Hz, 2H), 7.30-7.26 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.8 Hz, 1H), 6.95 

(d, J = 7.6 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 5.51 (dd, J1 = 12.0 Hz, J2 = 2.4 

Hz, 1H), 4.14 (s, 1H), 4.12-4.06 (m, 1H), 3.96-3.90 (m, 1H), 3.73-3.67 (m, 1H), 3.46-3.40 (m, 1H), 

2.54-2.51 (m, 1H), 2.48 (s, 3H), 2.35 (s, 3H), 2.17 (s, 3H), 1.87 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.23 

(td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.13 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, 

CDCl3): 178.3, 139.1 (d, J = 6.9 Hz), 138.1, 137.7, 136.5, 132.7 (d, J = 9.5 Hz), 132.4, 130.6, 129.2, 

128.9, 128.7, 128.5, 128.5, 127.4, 127.0, 126.6, 115.1, 75.6, 75.3, 64.6 (d, J = 5.6 Hz), 63.9 (d, J = 5.5 

Hz), 54.4 (d, J = 5.7 Hz), 44.6, 41.2, 21.2, 21.0, 16.0 (d, J = 7.0 Hz) , 15.9 (d, J = 7.9 Hz); 31P NMR 

(162 MHz, CDCl3): -7.27; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4f: White solid; 91.1 mg, 78% yield; 1H NMR 

analysis revealed that the dr is 6.5:1. 1H NMR (400 MHz, CDCl3): 8.35 (s, 1H), 7.60 (d, J = 8.8 Hz, 

1H), 7.35 (d, J = 8.0 Hz, 2H), 7.29 (dd, J1 = 8.8, J2 = 2.0, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.4 

Hz, 1H), 6.67 (d, J = 9.2 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 8.8 Hz, 1H), 5.51 (dd, J1 = 12.0 

Hz, J2 = 2.0 Hz, 1H), 4.13 (s, 1H), 4.12-4.08 (m, 1H), 3.97-3.90 (m, 1H), 3.77-3.71 (m, 1H), 3.67 (s, 
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3H), 3.52-3.46 (m, 1H), 2.54-2.51 (m, 1H), 2.48 (s, 3H), 2.35 (s, 3H), 1.88 (dd, J1 = 13.2 Hz, J2 = 2.4 

Hz, 1H), 1.24 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.15 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR 

(100 MHz, CDCl3): 178.4, 159.2, 139.2 (d, J = 7.0 Hz), 138.2, 136.6, 132.8 (d, J = 9.4 Hz), 131.9, 

129.3, 128.9, 128.6, 128.6, 127.5, 126.9, 126.6, 115.2, 113.5, 113.0, 75.6, 75.0, 64.6 (d, J = 5.7 Hz), 

64.0 (d, J = 5.5 Hz), 55.0, 54.5 (d, J = 5.7 Hz), 44.6, 41.3, 21.2, 16.0 (d, J = 6.9 Hz), 15.9 (d, J = 7.7 

Hz); 31P NMR (162 MHz, CDCl3): -7.26;  

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4g: White solid; 97.0 mg, 83% yield; 1H NMR 

analysis revealed that the dr is 8.4:1. 1H NMR (400 MHz, CDCl3): 8.38-8.32 (m, 1H), 7.64-7.58 (m, 

1H), 7.34 (d, J = 7.6 Hz, 2H), 7.29-7.26 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.05-6.62 (m, 3H), 6.25-6.20 

(m, 1H), 5.51 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.16-4.09 (m, 2H), 4.00-3.94 (m, 1H), 3.78-3.72 (m, 

2H), 3.57-3.41 (m, 3H), 2.58-2.45 (m, 1H), 2.52 (s, 3H), 2.35 (s, 3H), 1.95-1.82 (m, 1H), 1.25 (td, J1 = 

7.2 Hz, J2 = 0.8 Hz, 3H), 1.17 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 

178.2, 159.0, 139.5, 139.4, 139.2, 138.2, 136.9, 136.6, 133.0, 133.0, 129.2, 128.9, 128.7, 128.5, 126.9, 

126.6, 122.7, 120.1, 116.4, 116.2, 115.4, 115.2, 112.8, 111.2, 75.7, 75.6, 75.2, 64.7, 64.7, 64.1, 64.1, 

54.9, 54.3, 54.3, 44.6, 41.3, 41.2, 21.2, 16.0, 15.9, 15.8; 31P NMR (162 MHz, CDCl3): -7.29;  

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4h: White solid; 83.4 mg, 69% yield; 1H NMR 

analysis revealed that the dr is 8.0:1. 1H NMR (400 MHz, CDCl3): 8.44-8.43 (m, 1H), 7.77-7.37 (m, 

9H), 7.29-7.26 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.09-6.78 (m, 1H), 5.59-5.56 (m, 1H), 4.36-4.35 (m, 

1H), 4.06-3.89 (m, 1H), 3.84-3.67 (m, 1H), 3.48-3.00 (m, 2H), 2.62-2.56 (m, 1H), 2.53 (s, 3H), 2.36 (s, 

3H), 1.99-1.91 (m, 1H), 1.13-1.07 (m, 3H), 0.96-0.67 (m, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.2, 

139.1, 139.0, 138.3, 136.6, 133.2, 132.8, 132.7, 129.6, 129.3, 129.0, 128.7, 128.2, 127.8, 127.5, 127.4, 

127.1, 126.6, 126.4, 126.3, 124.8, 115.1, 75.8, 75.7, 75.6, 64.6, 64.5, 63.8, 63.8, 54.7, 54.6, 44.9, 44.7, 

41.2, 21.2, 15.8, 15.8, 15.4, 15.4; 31P NMR (162 MHz, CDCl3): -7.47;  

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4i: White solid; 88.0 mg, 81% yield; 1H NMR 

analysis revealed that the dr is 10.0:1. 1H NMR (400 MHz, CDCl3): 8.29 (s, 1H), 7.80 (d, J = 8.8 Hz, 

1H), 7.37-7.30 (m, 3H), 7.22-7.14 (m, 3H), 6.08 (dd, J1 = 3.2 Hz, J2 = 1.6 Hz, 1H), 5.47 (d, J = 3.6 Hz, 
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1H), 5.43 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.31 (s, 1H), 4.24-4.10 (m, 2H), 3.88-3.81 (m, 1H), 3.62-

3.56 (m, 1H), 2.53-2.39 (m, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 1.88 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 

1.29 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 1.15 (td, J1 = 7.2 Hz, J2 = 1.2 Hz, 3H); 13C{1H}NMR (100 MHz, 

CDCl3): 178.1, 149.0, 142.3, 139.4 (d, J = 7.0 Hz), 138.2, 136.4, 133.2 (d, J = 9.4 Hz), 129.3, 129.1, 

128.8, 126.9, 126.6, 115.3, 110.4, 109.5, 75.8, 68.6, 64.9 (d, J = 5.8 Hz), 64.2 (d, J = 5.6 Hz), 52.6 (d, J 

= 5.8 Hz), 44.2, 41.2, 21.2, 16.0 (d, J = 6.7 Hz), 15.8 (d, J = 7.5 Hz); 31P NMR (162 MHz, CDCl3): -

7.30;  

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4j: White solid; 90.8 mg, 81% yield; 1H NMR 

analysis revealed that the dr is 11.3:1. 1H NMR (400 MHz, CDCl3): 8.34 (s, 1H), 7.74 (d, J = 8.8 Hz, 

1H), 7.36 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.33 (d, J = 8.0 Hz , 2H), 7.18 (d, J = 7.6 Hz , 2H), 7.07 (d, 

J = 5.2 Hz, 1H), 6.83 (s, br, 1H), 6.77-6.76 (m, 1H), 5.49 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.48 (s, 

1H), 4.20-4.12 (m, 1H), 4.08-3.98 (m, 1H), 3.73-3.63 (m, 1H), 3.39-3.29 (m, 1H), 2.53-2.46 (m, 1H), 

2.44 (s, 3H), 2.34 (s, 3H), 1.93 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.26 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 

3H), 1.09 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.0, 139.9 (d, J = 7.0 

Hz), 138.3, 136.4, 136.3, 132.6 (d, J = 9.4 Hz), 129.3, 129.2, 129.1, 128.7, 127.3, 127.2, 126.6, 125.5, 

115.3, 75.6, 71.4, 64.8 (d, J = 5.8 Hz), 64.8 (d, J = 5.5 Hz), 53.9 (d, J = 5.8 Hz), 44.4, 41.0, 21.2, 16.0 

(d, J = 6.9 Hz), 15.8 (d, J = 7.8 Hz); 31P NMR (162 MHz, CDCl3): -7.31; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4k: Colorless oil; 89.5 mg, 86% yield; 1H NMR 

analysis revealed that the dr is 8.6:1. 1H NMR (400 MHz, CDCl3): 8.14 (s, 1H), 7.87 (d, J = 8.4 Hz, 

1H), 7.31 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.24 (dd, 

J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.37-4.08 (m, 4H), 3.16 (d, J = 3.2 Hz, 1H), 2.76 (s, 3H), 2.32-2.31 (m, 

4H), 1.84-1.74 (m, 1H), 1.60 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.36 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 

1.31 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H), 0.69 (dd, J1 = 13.2 Hz, J2 = 6.8 Hz, 6H); 13C{1H}NMR (100 

MHz, CDCl3): 179.8, 138.7 (d, J = 7.2 Hz), 138.0, 136.6, 134.0 (d, J = 9.6 Hz), 129.2, 129.0, 128.3, 

127.5, 126.5, 115.5, 75.1, 73.2, 65.1 (d, J = 6.1 Hz), 64.7 (d, J = 5.9 Hz), 52.3 (d, J = 5.5 Hz), 45.1, 
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44.2, 29.9, 21.3, 21.1, 19.3, 16.1 (d, J = 5.4 Hz), 16.0 (d, J = 5.1 Hz); 31P NMR (162 MHz, CDCl3): -

6.72; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4l: White solid; 96.5 mg, 86% yield; 1H NMR 

analysis revealed that the dr is 10.9:1. 1H NMR (400 MHz, CDCl3): 8.13 (s, 1H), 7.89 (d, J = 8.4 Hz, 

1H), 7.32 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.23 (dd, 

J1 = 12.0 Hz, J2 = 2.0 Hz, 1H), 4.37-4.10 (m, 4H), 3.16 (d, J = 3.2 Hz, 1H), 2.77 (s, 3H), 2.37-2.25 (m, 

1H), 2.32 (s, 3H), 1.58-1.47 (m, 7H), 1.38 (td, J1 = 6.8 Hz, J2 = 0.8 Hz, 3H), 1.32 (td, J1 = 7.2 Hz, J2 = 

0.8 Hz, 3H), 0.98-0.79 (m, 4H), 0.50-0.44(m, 1H); 13C{1H}NMR (100 MHz, CDCl3): 179.7, 138.4 (d, J 

= 7.2 Hz), 138.0, 136.6, 134.4 (d, J = 9.7 Hz), 129.2, 128.9, 128.3, 127.4, 126.5, 115.4, 75.1, 73.4, 65.0 

(d, J = 6.0 Hz), 64.6 (d, J = 6.0 Hz), 51.9 (d, J = 5.6 Hz), 44.9, 44.6, 41.9, 31.0, 30.6, 27.4, 27.4, 26.4, 

21.2, 16.1 (d, J = 7.1 Hz), 16.0 (d, J = 6.7 Hz); 31P NMR (162 MHz, CDCl3): -6.64; 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4m: White solid; 104.6 mg, 90% yield; m.p. 69-70 

oC; 1H NMR analysis revealed that the dr is 14.0:1. 1H NMR (400 MHz, CDCl3): 8.20 (s, 1H), 7.36 (dd, 

J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 7.31 (d, J = 8.0 Hz , 1H), 7.21-7.16 (m, 5H), 7.07-7.05 (m, 2H), 5.61 (d, J 

= 12.0 Hz, 1H), 5.39 (dd, J1 = 12.0 Hz, J2 = 9.6 Hz, 1H), 5.35 (d, J = 9.6 Hz, 1H), 4.20-4.13 (m, 1H), 

4.07-4.01 (m, 1H), 3.85-3.79 (m, 1H), 3.73 (d, J = 9.6 Hz, 1H), 3.67-3.61 (m, 1H), 2.65 (s, 3H), 2.42 

(dd, J1 = 13.2 Hz, J2 = 12.0 Hz, 1H), 2.34 (s, 3H), 1.82 (dd, J1 = 13.2 Hz, J2 = 2.4 Hz, 1H), 1.22 (td, J1 = 

6.8 Hz, J2 = 1.2 Hz, 3H), 0.90 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 

178.6, 139.2 (d, J = 7.0 Hz), 138.2, 136.6, 135.6, 135.3, 132.8 (d, J = 9.5 Hz), 129.3, 129.2, 128.7, 

128.6, 128.3, 126.5, 126.5, 126.4, 123.5, 115.3, 75.8, 73.5, 64.8 (d, J = 5.6 Hz), 64.3 (d, J = 5.5 Hz), 

53.8 (d, J = 5.6 Hz), 44.8, 40.6, 21.2, 16.0 (d, J = 6.8 Hz), 15.6 (d, J = 7.4 Hz); 31P NMR (162 MHz, 

CDCl3): -7.00; IR (ATR): 2915, 1743, 1464, 1308, 1286, 1149, 1022 cm-1; MS (EI): 580 (M+, 4), 419 

(58), 162 (36), 144 (100), 115 (30), 91 (35), 77 (21), 43 (23); HRMS (EI-TOF): Exact mass calcd for 

C31H34N2O5P35Cl [M]+: 580.1894, Found: 580.1891. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4n: White solid; 109.8 mg, 87% yield; m.p. 180-181 

oC; 1H NMR analysis revealed that the dr is 18.1:1. 1H NMR (400 MHz, CDCl3): 8.38 (s, 1H), 7.59 (d, J 
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= 8.8 Hz , 1H), 7.29-7.26 (m, 5H), 7.20-7.18 (m, 5H), 7.13-7.11 (m, 3H), 6.98-6.94 (m, 1H), 6.78 (d, J = 

8.0 Hz , 1H), 5.47 (dd, J1 = 2.4 Hz, J2 = 2.4 Hz, 1H), 4.43 (s, 1H), 4.15-4.07 (m, 1H), 4.00-3.92 (m, 2H), 

3.79-3.73 (m, 1H), 3.62 (d, J = 14.8 Hz , 1H), 3.54-3.48 (m, 1H), 2.51(t, J = 12.4 Hz, 1H), 2.32 (s, 3H), 

1.96 (dd, J1 = 2.4 Hz, J2 = 2.4 Hz, 1H), 1.25 (td, J1 = 7.2 Hz, J2 = 6.8 Hz, 3H), 1.17 (td, J1 = 7.2 Hz, J2 = 

6.4 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.3, 139.2 (d, J = 7.1 Hz), 137.8, 137.6, 136.6, 135.4, 

132.7 (d, J = 9.5 Hz ) 130.7, 129.1, 128.9, 128.8, 128.6, 128.2, 128.0, 127.8, 127.0, 126.9, 126.2, 115.2, 

77.4, 77.0, 76.7, 75.0, 73.3, 64.7 (d, J = 5.9 Hz), 64.1 (d, J = 5.5 Hz), 59.3, 54.7 (d, J = 5.7 Hz), 41.0, 

21.2, 16.0 (d, J = 6.5 Hz), 15.9 (d, J = 7.2 Hz); 31P NMR (162 MHz, CDCl3): -7.28; IR (ATR): 2995, 

1737, 1602, 1465, 1298, 1127, 1026 cm-1; MS (EI): 630 (M+, 2), 419 (35), 212 (20), 195 (12), 194 (12), 

91 (100), 65 (13), 44 (14); HRMS (EI-TOF): Exact mass calcd for C35H36N2O5P35Cl [M]+: 630.2050, 

Found: 630.2045. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4o: White solid; 89.3 mg, 83% yield; 1H NMR 

analysis revealed that the dr is 11.6:1. 1H NMR (400 MHz, CDCl3): 8.13-8.10 (m, 1H), 7.60 (dd, J1 = 

9.2 Hz, J2 = 4.8 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.21-7.07 (m, 5H), 6.99 (td, J1 = 9.2 Hz, J2 = 2.8 Hz, 

2H), 6.93 (s, 1H), 6.70-6.68 (m, 1H), 5.52 (dd, J1 = 12.0 Hz, J2 = 2.4 Hz, 1H), 4.19 (s, 1H), 4.14-4.06 

(m, 1H), 3.99-3.91 (m, 1H), 3.76-3.70 (m, 1H), 3.52-3.45 (m, 1H), 2.53 (t, J = 13.2 Hz ,1H), 2.50 (s, 

3H), 2.34 (s, 3H), 1.88 (dd, J1 = 12.8 Hz, J2 = 2.0 Hz, 1H), 1.24 (td, J1 = 7.6 Hz, J2 = 1.2 Hz, 3H), 1.15 

(td, J1 = 6.8 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.6, 159.2 (d, J = 240.2 Hz), 

138.2, 136.6, 136.5 (dd, J1 = 7.0 Hz, J2 = 2.3 Hz), 135.6, 132.5 (t, J = 8.9 Hz), 130.6, 129.3, 128.0, 

127.9, 127.7, 126.6, 115.1 (d, J = 8.9 Hz), 114.9 (d, J = 6.1 Hz), 114.6 (d, J = 25.0 Hz), 75.6, 75.6, 64.6 

(d, J = 5.7 Hz), 63.9 (d, J = 5.6 Hz), 54.5 (dd, J1 = 5.9 Hz, J2 = 1.8 Hz), 44.6, 41.4, 21.2, 16.0 (d, J = 7.0 

Hz), 15.9 (d, J = 7.8 Hz); 31P NMR (162 MHz, CDCl3): -7.09; 19F NMR (282 MHz, CDCl3): -118.66. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 4p: White solid; 100.2 mg, 85% yield; 1H NMR 

(400 MHz, CDCl3): 8.42 (s, 1H), 7.91 (s, 1H), 7.88-7.82 (m, 3H), 7.61-7.57 (m, 2H), 7.50-7.47 (m, 2H), 

7.29 (dd, J1 = 8.4 Hz, J2 = 2.0 Hz, 1H), 7.26-7.09 (m, 3H), 6.97 (s, br, 1H), 6.70 (s, br, 1H), 5.73 (dd, J1 

= 12.0 Hz, J2 = 2.4 Hz, 1H), 4.25 (s, 1H), 4.14-4.06 (m, 1H), 4.00-3.90 (m, 1H), 3.77-3.69 (m, 1H), 
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3.54-3.44 (m, 1H), 2.62 (dd, J1 = 12.8 Hz, J2 = 12.0 Hz, 1H), 2.56 (s, 3H), 2.01 (dd, J1 = 13.2 Hz, J2 = 

2.8 Hz, 1H), 1.24 (td, J1 = 6.8 Hz, J2 = 0.8 Hz, 3H), 1.16 (td, J1 = 6.8 Hz, J2 = 1.2 Hz, 3H); 

13C{1H}NMR (100 MHz, CDCl3): 178.3, 139.2 (d, J = 7.0 Hz), 137.0, 135.5, 133.3, 133.3, 132.7 (d, J = 

9.4 Hz), 130.6, 129.0, 128.7, 128.4, 128.2, 128.1, 128.0, 127. 8, 127.7, 127.0, 126.3, 126.2, 125.6, 

124.4, 115.2, 75.8, 75.6, 64.7 (d, J = 5.7 Hz), 64.1 (d, J = 5.6 Hz), 54.5 (d, J = 5.8 Hz), 44.8, 41.4, 16.0 

(d, J = 6.5 Hz), 15.9 (d, J = 7.3 Hz); 31P NMR (162 MHz, CDCl3): -7.28. 

General procedure for one-pot sequential [3+3] dipolar cycloaddition with ketone 

To a Schlenk tube was sequentially added 5 (0.34 mmol), 2a (0.30 mmol, 25.2 mg), 4 Å MS (100 

mg) and K2CO3 (0.15 mmol, 20.7 mg), followed by the addition of anhydrous EtOH (1.0 mL), and the 

resulting solution was stirred at 50 oC for 4 h. After the complete formation of nitrone, EtOH was 

removed under reduced pressure. The residua was kept under vacuum for 1 h to remove EtOH 

thoroughly. Then Sc(OTf)3 (9.8 mg, 0.02 mmol), spirocyclopropyl oxindole 3 (0.20 mmol) and iPrOAc 

were added. The reaction was kept stirring at 50 oC for 24 h. Then iPrOAc was removed under reduced 

pressure. The following work-up procedure to obtain product 6 was the same as mentioned for product 

4. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6a: White solid; 58.5 mg, 50% yield; 1H NMR 

analysis showed the dr value is 3.9:1. 1H NMR (400 MHz, CDCl3): 8.53 (s, 1H), 7.41 (d, J = 8.8 Hz, 

1H), 7.36 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.12 (dd, J1 = 8.4 Hz, J2 = 2.0 Hz, 1H), 7.09 (s, 

br, 2H), 6.98 (s, 3H), 5.53 (dd, J1 = 12.4 Hz, J2 = 2.8 Hz, 1H), 4.10-3.98 (m, 2H), 3.96-3.94 (m, 2H), 

2.66 (dd, J1 = 13.6 Hz, J2 = 12.4 Hz, 1H), 2.61 (s, 3H), 2.35 (s, 3H), 2.12 (s, 3H), 1.66 (dd, J1 = 13.2 Hz, 

J2 = 2.8 Hz, 1H), 1.35 (td, J1 = 6.8 Hz, J2 = 0.8 Hz, 3H), 1.24 (td, J1 = 7.2 Hz, J2 = 1.2 Hz, 3H); 

13C{1H}NMR (100 MHz, CDCl3): 178.3, 140.7, 138.3 (d, J = 6.9 Hz), 138.2, 136.9, 133.9 (d, J = 9.6 

Hz), 129.3, 128.6, 128.2, 128.0, 127.8, 126.9, 126.8, 126.6, 114.4, 74.8, 67.8, 64.5, 64.4, 56.7 (d, J = 5.5 

Hz), 38.7, 38.0, 21.2, 16.1 (d, J = 7.2 Hz), 15.9 (d, J = 6.8 Hz), 10.0; 31P NMR (162 MHz, CDCl3): -

6.85. 
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Spirocyclic oxindole-tetrahydro-1,2-oxazines 6b: White solid; 55.9 mg, 48% yield; 1H NMR 

analysis showed the dr value is 4.2:1. 1H NMR (400 MHz, CDCl3): 8.54 (s, 1H), 7.42 (d, J = 8.8 Hz, 

1H), 7.36 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.14 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 6.97 (d, J 

= 7.6 Hz, 2H), 6.78 (d, J = 7.6 Hz, 2H), 5.53 (dd, J1 = 12.4 Hz, J2 = 2.8 Hz, 1H), 4.15-4.03 (m, 2H), 

3.99-3.92 (m, 2H), 2.66 (dd, J1 = 13.6 Hz, J2 = 12.4 Hz, 1H), 2.59 (s, 3H), 2.35 (s, 3H), 2.14 (s, 3H), 

2.10 (s, 3H), 1.65 (dd, J1 = 13.6 Hz, J2 = 2.8 Hz, 1H), 1.34 (td, J1 = 6.8 Hz, J2 = 1.2 Hz, 3H), 1.24 (td, J1 

= 7.2 Hz, J2 = 1.2 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.3, 138.3 (d, J = 6.7 Hz), 138.1, 

137.7, 137.0, 136.3, 134.1 (d, J = 9.8 Hz), 129.3, 128.6, 128.2, 128.0, 127.7, 127.6, 126.6, 114.4, 74.8, 

67.6, 64.5 (d, J = 4.0 Hz), 64.4 (d, J = 3.8 Hz), 56.8 (d, J = 5.6 Hz), 38.7, 38.1, 21.2, 21.2, 20.8, 16.0 (d, 

J = 7.5 Hz), 16.0 (d, J = 6.8 Hz), 10.1; 31P NMR (162 MHz, CDCl3): -6.88. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6c: White solid; 59.5 mg, 51% yield; m.p. 78-79 oC; 

1H NMR analysis showed the dr value is 4.5:1. 1H NMR (400 MHz, CDCl3): 8.54 (s, 1H), 7.44 (d, J = 

8.4 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.15 (dd, J1 = 8.8 Hz, J2 = 2.4 Hz, 1H), 

7.00 (s, 2H), 6.50 (d, J = 8.4 Hz, 2H), 5.53 (dd, J1 = 12.4 Hz, J2 = 3.2 Hz, 1H), 4.11-4.05 (m, 2H), 3.99-

3.93 (m, 2H), 3.65 (s, 3H), 2.65 (dd, J1 = 13.6 Hz, J2 = 12.4 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.09 (s, 

3H), 1.65 (dd, J1 = 13.6 Hz, J2 = 3.2 Hz, 1H), 1.34 (td, J1 = 8.4 Hz, J2 = 1.2 Hz, 3H), 1.23 (td, J1 = 8.0 

Hz, J2 = 1.2 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.3, 158.0, 138.4 (d, J = 6.7 Hz), 138.2, 

136.9, 134.1 (d, J = 9.6 Hz), 132.6, 129.3, 129.0, 128.5, 128.2, 128.0, 126.6, 114.5, 112.2, 74.8, 67.3, 

64.5, 56.8 (d, J = 5.4 Hz), 55.0, 38.6, 38.0, 21.2, 16.2 (d, J = 7.3 Hz), 16.0 (d, J = 7.1 Hz), 10.2; 31P 

NMR (162 MHz, CDCl3): -6.79; IR (ATR): 2914, 1736, 1511, 1465, 1314, 1182, 1023 cm-1; MS (EI): 

598 (M+, 1), 419 (12), 163 (26), 162 (21), 148 (100), 133 (22), 105 (11), 91 (11); [M+H]+; HRMS (EI-

TOF): Exact mass calcd for C31H36N2O6P35Cl [M]+: 598.2000, Found: 598.2007. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6d: White solid; 59.5 mg, 46% yield; 1H NMR 

analysis showed the dr value is 2.3:1. 1H NMR (400 MHz, CDCl3): 8.50 (s, 1H), 7.40 (d, J = 8.8 Hz, 

1H), 7.35 (d, J = 8.0 Hz, 2H), 7.20-7.16 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 6.98 (s, 2H), 5.52 (dd, J1 = 

12.4 Hz, J2 = 2.8 Hz, 1H), 4.12-4.06 (m, 2H), 3.98-3.94 (m, 2H), 2.65 (dd, J1 = 13.6 Hz, J2 = 12.4 Hz, 
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1H), 2.56 (s, 3H), 2.35 (s, 3H), 2.10 (s, 3H), 1.66 (dd, J1 = 13.6 Hz, J2 = 2.8 Hz, 1H), 1.33 (td, J1 = 7.2 

Hz, J2 = 1.2 Hz, 3H), 1.26 (td, J1 = 7.2 Hz, J2 = 0.8 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 177.9, 

139.8, 138.3, 138.2 (d, J = 6.9 Hz), 136.7, 133.5 (d, J = 9.5 Hz), 130.0, 129.6, 129.3, 128.5, 128.8, 

128.3, 126.5, 121.0, 114.6, 74.8, 67.6, 64.6 (d, J = 5.5 Hz), 64.5 (d, J = 5.8 Hz), 56.5 (d, J = 5.7 Hz), 

38.7 (d, J = 1.9 Hz), 37.7, 21.2 (d, J = 1.8 Hz), 16.1 (d, J = 7.1 Hz), 16.0 (d, J = 7.0 Hz), 9.9; 31P NMR 

(162 MHz, CDCl3): -6.96. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6e: White solid; 49.9 mg, 42% yield; m.p. 63-64 oC; 

1H NMR analysis showed the dr value is 5.3:1. 1H NMR (400 MHz, CDCl3): 8.50 (s, 1H), 7.47 (d, J = 

8.8 Hz, 1H), 7.36 (dd, J1 = 12.8 Hz, J2 = 2.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.21-7.16 (m, 5H), 6.91 

(dd, J1 = 7.6 Hz, J2 = 3.0 Hz, 2H), 6.45 (d, J = 12.4 Hz, 1H), 5.59 (d, J = 12.4 Hz, 1H), 5.42 (dd, J1 = 

12.4 Hz, J2 = 2.8 Hz, 1H), 4.01-3.82 (m, 4H), 2.60 (dd, J1 = 13.2 Hz, J2 = 12.4 Hz, 1H), 2.56 (s, 3H), 

2.35 (s, 3H), 1.84 (s, 3H), 1.64 (dd, J1 = 13.6 Hz, J2 = 2.8 Hz, 1H), 1.20 (td, J1 = 7.2 Hz, J2 = 1.2 Hz, 

3H), 1.00 (td, J1 = 6.8 Hz, J2 = 1.2 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.0, 138.9 (d, J = 6.9 

Hz), 138.2, 136.9, 134.0 (d, J = 9.6 Hz), 131.1, 130.6, 129.3, 128.8, 128.6, 128.5, 128.0, 127.8, 126.5, 

126.3, 114.9, 75.5, 65.8 64.7 (d, J = 5.8 Hz), 64.2 (d, J = 5.5 Hz), 56.2 (d, J = 5.5 Hz), 38.8, 37.7, 21.2, 

15.9 (d, J = 7.0 Hz), 15.8 (d, J = 9.2 Hz), 8.1; 31P NMR (162 MHz, CDCl3): -6.72; IR (ATR): 2985, 

1749, 1464, 1372, 1280, 1157, 1021 cm-1; MS (EI): 594 (M+, 2), 419 (42), 316 (38), 159 (38), 158 

(100), 144(65), 115 (33), 91 (36); [M]+; HRMS (EI-TOF): Exact mass calcd for C32H36N2O5P35Cl [M]+: 

594.2055, Found: 594.2050. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6f: White solid; 61.3 mg,  50% yield; 1H NMR 

analysis showed the dr value is 3.5:1. 1H NMR (400 MHz, CDCl3): 8.42 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 

2.0 Hz, 1H), 7.33 (d, J = 7.6 Hz, 2H), 7.29 (dd, J1 = 8.0 Hz, J2 = 1.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 

7.08 (s, 2H), 6.99 (s, 3H), 5.53 (dd, J1 = 12.0 Hz, J2 = 2.8 Hz, 1H), 4.14-4.06 (m, 2H), 4.00-3.92 (m, 

2H), 2.64 (dd, J1 = 14.0 Hz, J2 = 12.8 Hz, 1H), 2.59 (s, 3H), 2.35 (s, 3H), 2.13 (s, 3H), 1.63 (dd, J1 = 

14.0 Hz, J2 = 2.8 Hz, 1H), 1.36 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 6.8 Hz, 3H); 13C{1H}NMR (100 MHz, 

CDCl3): 178.4 140.9 (d, J = 6.4 Hz), 140.8, 138.2, 137.0, 131.2 (d, J = 9.5 Hz), 129.8, 129.3, 127.8, 
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126.9, 126.5, 125.7, 122.0, 116.7, 74.9, 67.7, 64.5 (d, J = 3.4 Hz), 64.5 (d, J = 3.2 Hz), 56.4 (d, J = 5.4 

Hz), 38.7 (d, J = 2.0 Hz), 38.2, 21.2 (d, J = 2.2 Hz), 16.0 (d, J = 7.4 Hz), 16.0 (d, J = 6.9 Hz), 10.1; 31P 

NMR (162 MHz, CDCl3): -6.89. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6g: White solid; 55.7 mg,  49% yield; 1H NMR 

analysis showed the dr value is 3.0:1. 1H NMR (400 MHz, CDCl3): 8.53 (s, 1H), 7.47 (d, J = 7.2 Hz, 

2H), 7.43-7.37 (m, 3H), 7.34-7.31 (m, 1H), 7.13 (d, J = 8.8 Hz, 1H), 7.09 (s, br, 2H), 6.98 (s, 3H), 5.57 

(dd, J1 = 12.4 Hz, J2 = 2.8 Hz, 1H), 4.14-4.07 (m, 2H), 3.99-3.95 (m, 2H), 2.69-2.66 (m, 1H), 2.63 (s, 

3H), 2.13 (s, 3H), 1.69 (dd, J1 = 13.6 Hz, J2 = 3.2 Hz, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 

3H); 13C{1H}NMR (100 MHz, CDCl3): 178.2, 140.6, 139.9, 138.3 (d, J = 6.9 Hz), 133.9 (d, J = 9.6 Hz), 

128.6, 128.5, 128.3, 128.2, 128.0, 127.8, 126.9, 126.8, 126.5, 114.5, 74.9, 67.8, 64.5 (d, J = 1.6 Hz), 

64.5 (d, J = 1.6 Hz), 56.7 (d, J = 5.5 Hz), 38.8 (d, J = 1.8Hz), 38.1, 16.1 (d, J = 7.4 Hz), 16.0 (d, J = 6.8 

Hz), 10.04; 31P NMR (162 MHz, CDCl3): -6.85. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6h: White solid; 66.5 mg, 55% yield; 1H NMR 

analysis showed the dr value is 3.0:1. 1H NMR (400 MHz, CDCl3): 8.60 (s, 1H), 7.90 (d, J = 9.6 Hz, 

1H), 7.87-7.84 (m, 3H), 7.61 (dd, J1 = 8.4 Hz, J2 = 1.6 Hz, 1H), 7.50-7.48 (m, 2H), 7.44 (d, J = 8.4 Hz, 

1H), 7.16-7.12 (m, 3H), 7.00 (s, 3H), 5.76 (dd, J1 = 12.4 Hz, J2 = 2.8 Hz, 1H), 4.14-4.06 (m, 2H), 4.02-

3.94 (m, 2H), 2.78 (d, J = 12.8 Hz, 1H), 2.68 (s, 3H), 2.19 (s, 3H), 1.78 (dd, J1 = 13.6 Hz, J2 = 2.8 Hz, 

1H), 1.36 (t, J = 6.8 Hz, 3H), 1.24 (t, J = 3.2 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3): 178.2, 140.6, 

138.3 (d, J = 6.9 Hz), 137.3, 133.9 (d, J = 9.6 Hz), 133.3, 133.3, 128.6, 128.4, 128.3, 128.1, 128.0, 

127.7, 126.9, 126.8, 126.3, 126.2, 125.6, 124.3, 114.5, 75.0, 67.9, 64.5, 64.5, 56.7 (d, J = 5.6 Hz), 38.8 

(d, J = 2.2 Hz), 38.1, 16.1 (d, J = 7.2 Hz), 16.0 (d, J = 6.8 Hz), 10.1; 31P NMR (162 MHz, CDCl3): -

6.85. 

Spirocyclic oxindole-tetrahydro-1,2-oxazines 6i: Nitrone preparation and cycloaddition reaction 

were conducted at 80 oC. White solid; 23.5 mg,  22% yield; m.p. 59-60 oC; 1H NMR analysis showed 

the dr value is >20:1. 1H NMR (400 MHz, CDCl3): 8.38 (s, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.31 (dd, J1 = 

8.0 Hz, J2 = 2.8 Hz, 1H), 7.25 (d, J = 6.8 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.28 (dd, J1 = 12.0 Hz, J2 = 
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2.8 Hz, 1H), 4.30-4.14 (m, 4H), 2.80 (dd, J1 = 14.8 Hz, J2 = 7.2 Hz, 1H), 2.55 (s, 3H), 2.49 (t, J = 12.8 

Hz, 1H), 2.32 (s, 3H), 2.16-2.12 (m, 1H), 1.84-1.82 (m, 1H), 1.69-1.64 (m, 1H), 1.50-1.48 (m, 3H), 

1.38-1.34 (m, 3H), 1.33-1.29 (m, 3H), 1.28-1.24 (m, 1H), 0.75-0.74 (m, 1H); 13C{1H}NMR (100 MHz, 

CDCl3): 178.8, 139.6 (d, J = 7.0 Hz), 138.0, 137.1, 134.7 (d, J = 9.9 Hz), 129.2, 128.9, 128.2, 127.5, 

126.5, 114.8, 75.4, 73.6, 64.8 (d, J = 6.1 Hz), 64.7 (d, J = 5.8 Hz), 56.6 (d, J = 5.3 Hz), 39.9, 38.0, 35.6, 

27.1, 26.0, 24.0, 21.2, 16.1 (d, J = 3.4 Hz), 16.0 (d, J = 3.2 Hz); 31P NMR (162 MHz, CDCl3): -6.50; IR 

(ATR): 2955, 2918, 2872, 1738, 1463, 1313, 1277, 1020 cm-1; MS (EI): 532 (M+, 3), 316 (100), 260 

(66), 180 (43), 119 (48), 114 (34), 91 (55), 68 (41); HRMS (EI-TOF): Exact mass calcd for 

C27H34N2O5P35Cl [H]+: 532.1894, Found: 532.1890. 

Catalytic asymmetric three-component [3+3] dipolar cycloaddition reaction 

To a Schlenk tube was sequentially added Ni(OTf)2 (10.7 mg, 0.030 mmol, 20 mol %) and 7 (11.8 

mg, 0.033 mmol, 11 mol %), followed by the addition of anhydrous THF (1.0 mL), then the resulting 

solution was stirred at room temperature for 2 h. 

To another Schlenk tube was sequentially added 1 (0.18 mmol), 2a (0.15 mmol, 12.6 mg), 4 Å MS 

(80 mg) and K2CO3 (0.075 mmol, 10.3 mg), followed by the addition of anhydrous THF (1.0 mL). After 

the resulting solution was stirred at 50 oC for 1 h, the solvent of 7/ Ni(OTf)2 complex in 1.0 mL THF 

and oxindole 3a (0.33 mmol, 138.3 mg) was added. The reaction was kept stirring at 50 oC for 24 h. 

Then THF was removed under reduced pressure. And the following work-up procedure to obtain 

enantioenriched 4 was the same as mentioned for product 4. 

Note: the chiral catalyst system is selected according to our previous report.9 

Enantioenriched spirocyclic oxindole-tetrahydro-1,2-oxazines 4a: 65.3 mg, 74% yield; 1H NMR 

analysis showed the dr value was 3.0:1. HPLC analysis (Chiralcel IC, iPrOH/hexane = 10/90, 1.0 

mL/min, 230 nm; tr (major) = 8.73 min, tr (minor) = 11.27 min) gave the isomeric composition of the 

product: 97% ee. 

Enantioenriched spirocyclic oxindole-tetrahydro-1,2-oxazines 4b: 49.9 mg, 60% yield; 1H NMR 

analysis showed the dr value was 2.0:1. HPLC analysis (Chiralcel IC, iPrOH/hexane = 10/90, 1.0 
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mL/min, 230 nm; tr (major) = 9.21 min, tr (minor) = 10.75 min) gave the isomeric composition of the 

product: 95% ee. 

Enantioenriched spirocyclic oxindole-tetrahydro-1,2-oxazines 4e: 57.1 mg, 67% yield; 1H NMR 

analysis showed the dr value was 2.2:1. HPLC analysis (Chiralcel IC, iPrOH/hexane = 10/90, 1.0 

mL/min, 230 nm; tr (major) = 9.69 min, tr (minor) = 11.10 min) gave the isomeric composition of the 

product: 96% ee. 

Enantioenriched spirocyclic oxindole-tetrahydro-1,2-oxazines 4m: 59.2 mg, 68% yield; 1H NMR 

analysis showed the dr value was 6.2:1. HPLC analysis (Chiralcel IC, iPrOH/hexane = 10/90, 1.0 

mL/min, 230 nm; tr (major) = 8.41 min, tr (minor) = 10.47 min) gave the isomeric composition of the 

product: 96% ee, [α]25
D = -49.1 (c = 1.0, CHCl3). 

General Procedure of the Biological Studies 

Cell cultures: Human prostate cancer DU145 and PC3 cell lines were purchased from the Cell Bank 

of Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). Human non-malignant 

prostate epithelial BPH1 cell line was kindly provided by Dr. Simon Hayward at the Vanderbilt 

University Medical Center, Nashville, TN, USA.17 Cells were maintained in RPMI 1640 with 10% FBS 

(Life Technologies, Carlsbad, CA) at 37 oC in a humidified air atmosphere containing 5% CO2. 

MTT assay: Cells (3,000/well) were seeded into 96-well plates overnight, followed by the treatment 

with compounds for 48 h. Afterwards, the cells were incubated with 5 mg/mL 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich, St. Louis, MO) for 2 h at 37 oC. Formazan 

was dissolved with DMSO and measured at 490 nm with a reference wavelength of 680 nm using a 

spectrophotometer. 

Luciferase assay: 6xNFκB-Luc reporter plasmid contains six NFκB-binding sites, which could be 

activated by TNFα. DU145 cells (2.5 x104/well) were seeded into 24-well plates. Afterwards, the cells 

were transfected with 200 ng/well 6xNFκB-Luc plasmid by lipofectamine 3000 (Invitrogen). As for 

TNFα treatment assay, twenty-four hours after the transfection, the cells were pretreated with 
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compounds of interest for 4 h, followed by TNFα (10 ng/mL, R&D Systems, Minneapolis, MN) addition 

for 20 h and harvested. Luciferase activity was measured with the dual luciferase assay system (E1910, 

Promega). Cells were lysed in Passive Lysis Buffer (E1941, Promega) and harvested by centrifugation at 

12,000 rpm to remove the cell debris. The protein concentration was measured with the PierceTM BCA 

protein assay kit (23225, Thermo Fisher). The luciferase activities were calculated as a rate of firefly 

luciferase activity/total protein. The relative luciferase activity of vehicle control was set as 100%. 

Statistical analysis: Each experiment was repeated three times. The mean values with standard 

deviations (SD) from the triplicates were plotted. The significant difference between control and 

experimental groups was analyzed using a Student t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 

Supporting Information Available: Copies of 1H NMR, 19F NMR, 31P NMR, 13C{1H}NMR and 

HPLC of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.  
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