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Abstract 
Triple negative breast cancers (TNBC) are one of the most aggressive and complex forms of 

cancers in women. TNBCs are commonly known for their complex heterogeneity and poor 

prognosis. The present work aimed to develop a predictive 2D and 3D quantitative structure 

activity relationship (QSAR) models against metastatic TNBC cell line. The 2D-QSAR was 

based on multiple linear regression analysis and validated by Leave-One-Out (LOO) and 

external test set prediction approach. QSAR model presented regression coefficient values for 

training set (r
2
), LOO based internal regression (q

2
) and external test set regression (pred_r

2
) 

are 0.84, 0.82 and 0.75 respectively. Five properties, Epsilon4 (electronegativity), 

ChiV3cluster (valence molecular connectivity index), chi3chain (retention index for three 

membered ring), TNN5 (nitrogen atoms separated through 5 bond distance) and nitrogen 

counts were identified as important structural features responsible for anticancer activity of 

MDA-MB-231 inhibitors. Five novel derivatives of Glycyrrhetinic acid (GA) named GA-1, 

GA-2, GA-3, GA-4 and GA-5 were semi-synthesised and screened through the QSAR model. 

Further, in-vitro activities of the derivatives were analysed against human TNBC cell line, 

MDA-MB-231. The result showed GA-1 exhibit improved cytotoxic activity to that of parent 

compound (GA). Further, Atomic Property Field (APF) based 3D QSAR and scoring 

recognise C-30 carboxylic group of GA-1 as major influential factor for its anticancer 

activity. The significance of C-30 carboxylic group in GA derivatives were also confirmed by 

molecular docking study against cancer target Glyoxalase-I. Finally, the oral bioavailability 

and toxicity of GA-1 was assessed by computational ADMET studies. 

 

Keywords: QSAR, Breast cancer, Triple négative breast cancer, Glycyrrhetinic acid, MDA-

MB-231, Glyoxalase-I 
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Introduction 
Breast cancer is most frequently diagnosed cancer and second leading cause of female deaths 

worldwide. In majority of cases mortality is due to its metastatic dissemination to distant sites 

(Polyak, et al., 2011). Despite the enormous medical importance of metastasis, its molecular 

underpinning remains insufficiently understood because of its intertumor and intratumor 

heterogeneity (Ovcaricek, et al., 2011 & Bianchini, et al., 2016). Breast carcinomas, 

demarcated as triple negative breast cancers (TNBC), are highly aggressive and do not 

express progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth 

factor receptor2 (HER2) (Thike, et al., 2010). Consequently, it is resistant to hormone 

targeted therapies and only 20% of TNBC respond well to standard chemotherapy using 

anthracycline-based (doxorubicin plus cyclophosphamide) or paclitaxel chemotherapy etc. 

(Zardavas, et al., 2013). Thus, in current breast cancer research, developing improved 

treatment for metastatic TNBC is one of the highest priorities. Several researches have been 

carried out to understand metastatic TNBC cells sensitivity towards plant based different 

chemical scaffolds (Iqbal, et al., 2018). Recent prognosis work on TNBC focusing on targets 

PARP1, mTOR, TGF-β from Notch signalling, Wnt/β-catenin and Hedgehog pathways 

(Jamdade, et al., 2015; Wein, et al., 2018 & Badve, et al., 2011). 

Glycyrrhiza glabra, an Indian medicinal herb, also known as licorice, contains biologically 

active triterpenoid glycyrrhizic acid. Glycyrrhizic acid is a diglucopyranosiduronic acid of the 

glycyrrhetinic acid (GA) (Tewari, et al., 2017). Substantial research has been carried out on 

human liver metabolism of Glycyrrhizic acid. Reto Karpf in year 1994 revealed Glycyrrhizic 

acid transformed into its aglycone form GA through intestinal bacteria when orally 

administered (Krähenbühl, et al., 1994). In cancer research GA is mostly explored for its 

activity against human hepatocellular carcinoma (HCC) cells since an earlier work revealed 

the existence of GA receptor on rat and human hepatocytes surface (Negishi, et al., 1991). It 

has been reported that anti-HCC response of GA is mediated through inhibition of immune 

response by regulating T cells, cell cycle arrest, induction of cell apoptosis and autophagy 

(Cai, et al., 2017). Evidently, GA has been identified to exhibit remarkable anticancer 

activities. Therefore, over the past decade, GA has been serving as a good structural template 

for more potent anticancer agents. Many groups have studied the effects of structural 

modification in GA on the cytotoxicity of various human cancer cell lines (Xu, et al., 2017). 

Despite these capabilities, the mechanisms of action of GA in metastatic TNBC has not been 

investigated so far. 

Notably, our earlier work on GA and its novel derivatives against breast cancer MCF-7 

displayed good anticancer potency (Yadav, et al., 2014, Yadav, et al., 2013). Therefore, the 

present work was designed to combat metastatic TNBC cell lines using biological effects of 

GA and its novel derivatives. The work includes chemical feature identification of metastatic 

TNBC cell inhibitors through regression based quantitative structure activity relationship 

(QSAR) model (Yadav, et al., 2013). Further, five novel GA derivatives were semi-

synthesised and screened through the prepared QSAR model. The derivatives were further 

investigated for in-vitro activity in metastatic breast cancer cell line MDA-MB-231. 

Subsequently, atomic property field (APF) based 3D QSAR model was generated to explore 

atomic property field (APF) and structure activity relationship of synthesised derivatives. The 
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anticancer mechanism of action of GA derivatives on TNBC drug targets were explored 

through molecular docking studies. In TNBC cells enzyme Glyoxalase-I (GLO-I) inhibition 

leads to increased level of alpha-oxoaldehydes that cause increase in apoptosis, supress 

migration and invasion of metastatic breast cancer. Therefore, GLO-I is considered as one of 

the promising TNBC target. Here, molecular docking and 3D-QSAR modelling was 

performed considering Glyoxalase-I as a promising TNBC drug target. The oral 

bioavailability and possible toxicity were also assessed through computational ADMET 

(absorption, distribution, metabolism, excretion and toxicity) analysis. 

Materials and Method 

Computational 2D QSAR modelling for GA derivative designing 

Dataset collection and structure preparation 

The modelling set comprising 144 compounds, metastatic TNBC cell line, MDA-MB-231 

inhibitors (Table S1; training set and Table S2; test set compounds, Supplementary materials) 

collected from the ChEMBL database and reported literatures (Goldbrunner, et al., 1997; 

Gao, et al., 2014; He, et al., 2015; Yang, et al., 2016 & Motiwala, et al., 2013). The 

modelling set exhibits plant-product inspired scaffolds, comprises with 2-5 fused rings 

skeleton (Table S3, Supplementary materials).  

The structural drawing and geometry cleaning of the modelling set compounds were 

performed through, ChemBioOffice suite Ultra v12.0 (2015) software (CambridgeSoft Corp., 

UK). Further, each compound subjected to energy minimization to get optimized bond 

distance, bond angles and set dihedrals by applying MMFF force field. Moreover, the method 

adds additional properties to the compounds including initial potential energy, RMS gradient, 

MMFF energy and minimization criteria. 

Chemical descriptors calculation 

For QSAR model generation, the compounds were denoted by structural descriptors or 

physico-chemical properties. Computation for descriptors were done by using VLife MDS 

v4.4 (2014) software (VLife Technologies, NovaLead Pharma Pvt. Ltd. India). Software 

Vlife, calculate structural descriptors, belonging to major classes viz., (a) physicochemical 

descriptors, (b) extended topochemical descriptors and (c) alignment independent descriptors. 

QSAR model generation 

Primarily, the dataset of 144 compounds was divided into 70% as training set and 30% as 

external test set applying random selection technique using Vlife. The PIC50 (µM) value was 

assigned as dependent variable. PIC50 is a negative logarithm of IC50 value, expressed in 

molar concentration. The physicochemical properties or structural descriptors were 

considered as independent variables. Invariable descriptors with zero or equal values were 

deleted. The regression coefficient for training set (100 compounds) was calculated by using 

equation 1. Where, yi and ŷi signify the actual and predicted PIC50 of i
th

 compound 

respectively. Whereas ymean is the average/mean value of actual PIC50 of training set 

compounds. 
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      (Equation 1) 

 

QSAR model generation criteria and parameter used for feature selection 

The 2D QSAR model was developed by applying multiple linear regression (MLR) approach. 

A stepwise forward-backward selection criterion was applied for feature/descriptor 

extraction. Continuous multiple variable based MLR model was generated, step by step 

depending on Fischer coefficient values (F values). The F test gives the statistical 

significance of the descriptor. The Ftest in and Ftest out values were set at 4 and 3. The 

predictor descriptors were identified by these stepping criteria. The search is terminated when 

addition of additional variables is no longer needed. Before model development, inter-

correlated descriptors (Correlation >0.70) were discarded. 

2D QSAR model validation 

To scrutinise the predictability of developed model, leave-one-out (q
2
, LOO), external set 

predictions (r
2

pred) and r
2

m matrix were calculated (Cramer III, et al., 1988; Golbraikh, et al., 

2002 & Ojha, et al., 2011).  A LOO based cross-validated regression coefficient (q
2
) was 

calculated based on equation 2 (Shen et al., 2002). Where yi and ŷi signify the actual and 

predicted PIC50 value for i
th

 compound. Whereas ymean is the average/mean value of actual 

PIC50 of training set compounds. 

      

(Equation 2)

 

         

 

The regression for external test set (r
2

pred) was calculated by using equation 3 (Kier, et al., 

1977& Golbraikh, et al., 2002). r
2

pred validate the model predictability for external 

compounds and verify the model predicted result’s reliability. 

 

(Equation 3) 

 

Randomization test 

The robustness of generated model was also assessed by calculating Z score values using 

equation 4. Where h, µ and σ signifies r
2
 of original dataset, average values of r

2
s for random 

datasets and standard deviation for random dataset. The calculated Z score should be higher 
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than the tabulated value Zc as reported by Zheng et al., (2000). The higher Z score indicate 

the null hypothesis is rejected and the model generated from actual dataset is statistically 

significant. 

         (Equation 4) 

r2m matrix for QSAR model validation 

The external predictability of developed model was also checked by using   
 
 matrix method 

calculating  
 
,   

  
,   

 
,   

  
,   

 ̅̅ ̅
 and   

 
 (Ojha, et al., 2011). The   

 
 matrix is measured by 

using  
 
 and  

 
. Where,  

 
 and   

 
signify correlation between observed and predicted values 

with and without intercept for the regression line. Statistical parameters  
 
,   

  
,   

 
,   

  
,   

 ̅̅ ̅
 

were computed as mentioned by Roy, et al., 2018. The equation used for   
 
 parameter 

calculation is given in equation 5. 

  
     (  |√  

    |)       (Equation 5) 

Applicability domain (AD) assessment of 2D-QSAR model 

A statistically validated model predicted results are considered to be reliable only when the 

query set compound falls within its applicability domain (AD). Here, three most important 

criteria were adopted to check the AD of developed model viz., (i) the biological space cover 

of whole dataset, (ii) the chemical space cover by training set and test set, (iii) distance-based 

distribution of training and test set in structure and activity space (Jaworska, et al., 2005). A 

3D principal component analysis (PCA) was applied to compute projection of chemical space 

of test set within training set (Adhikari, et al., 2017 & Amin, et al., 2018). A structure 

similarity based hierarchical cluster analysis was done to assess structure relatedness of 

training, test and query set compounds (Figure S1, Supplementary material). 

Atomic property field (APF) based 3D-QSAR modelling study 

An APF based 3D-QSAR was also performed on congeneric series of 42 GA derivatives. An 

APF based 3D-QSAR thoroughly describe, the spatial arrangement of structural features that 

bestow specific activity to the molecule. Since, a 3D-QSAR model reliability is highly 

depend upon the structural filed alignment. Therefore, for 3D-QSAR studies a congeneric 

series of 42 GA derivatives were taken instead of using total 144 compounds so as to get 

more homogenous structure space. 

A series of 42 GA derivatives with known inhibition activity against MDA-MB-231 were 

collected from 2D QSAR dataset and reported literatures (Yang, et al., 2016, Yadav, et al., 

2014 & Gao, et al., 2014). Their structures were drawn and converted to 3D ICM object 

using ICM-Chemist v3.8-6a 2018, (Molsoft L.L.C, San Diego, USA) software (Abagyan 

2018, http://www.molsoft.com/icm-chemist-pro.html, Totrov, 2008, 2011). The set of 42 GA 

derivatives were randomly split into 37 training and 5 test set using DS v3.5. The crystal 

structure of enzyme Glyoxalase-I (GLO-I) bound with GA (2.3 resolution) was retrieved 

from protein database (PDB: 4PV5). The GLO-I bound conformation of GA was taken as 

rigid templet structure to which training set structures were aligned based on their APF 

Acc
ep

te
d 

M
an

us
cr

ipt

http://www.molsoft.com/icm-chemist-pro.html


7 

 

energy fields. The APF fields of co-crystallised GA is depicted in figure S5 under 

supplementary materials. Afterward, for each molecule a 3D based continuous atomic 

potentials were generated and approximated based on regular space grid. These, continuous 

potentials represent seven physicochemical properties viz., hydrogen bond donor (blue blob) 

and acceptors (red blob), sp
2
 hybridised carbon atoms, molecules lipophilicity (yellow blobs), 

charge, molecule size and electronegativity or positivity. 

Therefore, the training set of 37 compounds can be represented by 259 descriptors. The 

training and test set molecules were aligned on generated APF fields of co-crystallised GA. 

For quantitative prediction of novel compound, a partial least square (PLS) based optimal 

weight distribution was assigned to each molecule based on their APF components. The 

optimal number of latent vectors for PLS was established by LOO cross-validation on the 

training set. Then the weighted contributions of each APF components were added together. 

For external validation randomly selected five compounds were assigned predicted binding 

values by calculating their fit within the combined QSAR-APF score. The model further 

utilised to design and screen novel GA derivatives GA-1, GA-2, GA-3, GA-4 and GA-5 

based on their APF alignment. 

Chemistry 

Extraction and chemical synthesis 

Five novel 18β-glycyrrhetinic acid derivatives were designed and synthesised modifying C-3 

and C-30 positions. Figure 4a represents compound preparation scheme-1 i.e., Synthesis of 3-

O-acyl derivatives of GA and 5b). Figure 4b compound preparation scheme-2 i.e., Synthesis 

of amide derivatives of 3-O-acetyl GA. 

Isolation of 3β-Hydroxy-11-oxoolean-12-en-29-oic acid (Glycyrrhetinic acid) from 

Glycyrrhiza glabra: 

Extraction and fractionation of Glycyrrhiza glabra roots 

The roots of Glycyrrhiza glabra were air dried under shade and then powdered. This 

powdered material (2.04 Kg) was extracted with methanol (4 X 5L) at room temperature. The 

combined methanol extract was subjected for complete solvent removal at 40
o
C under 

vacuum. This dried methanolic extract was dissolved in distilled water (2L) and successively 

extracted with dichloromethane, ethyl acetate and n-butanol (4 x 400 ml). The combined 

dichloromethane, ethyl acetate and n-butanol extracts were separately subjected under 

vacuum distillation at 40
o
C to yield dichloromethane (99.0g), ethyl acetate (100.0g) extracts 

and n-butanol (56.0g) as given in Figure 1.  

                                                                  

Isolation of Glycyrrhizic acid from n-BuOH Extract of Glycyrrhiza glabra by Flash 

chromatography 

A glass flash column with internal diameter 3 cm and length 23 cm was used. The Flash 

column was packed with silica gel-H of TLC grade (without binder). The column was tightly 

packed using vacuum followed by elution of the column with a non-polar solvent (hexane) to 

make sure nice packing of column. Before loading the extract, glass column was completely 
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dried and then 1.00 gm of BuOH extract of Glycyrrhiza glabra was dissolved in small 

amount of methanol and with the help of a pipette it was spread onto the glass column 

without using vacuum, to form a uniform band. The above step was followed by complete 

drying of the glass column under vacuum. Gradient elution of flash was carried out with a 

mixture of CHCl3: MeOH in increasing order (up to 50 % MeOH). Fractions of 50ml each 

were collected. A total of 149 fractions were collected and pooled based on their TLC profile. 

Excellent separation was achieved due to fine particle size (average size 10 µm) of silica gel-

H. The pooled fractions 42-58 (650mg) eluted with CHCl3: MeOH (85:15) was homogeneous 

and characterized as glycyrrhizic acid (GL) based on its 
1
H and 

13
C NMR spectroscopic data 

(Figure 2). 

 

Acidic hydrolysis of Glycyrrhizic acid (GL) to glycyrrhetinic acid (GA) 

Glycyrrhizic acid (650.0 mg obtained from from Flash chromatographic fractions 42-58) was 

dissolved in 25 ml of 10% H2SO4 solution in MeOH and reaction mixture was refluxed for 3-

4 hrs, which was further diluted with water and neutralized with 10% NaOH solution and 

then it was extracted thrice with CHCl3. The combined CHCl3 extract was dried under 

vacuum, which afforded aglycone (450mg). This aglycone was purified over flash using 

Silica gel H. A total of 148 fractions were collected and pooled based on their TLC profile. 

The fractions 29-46 eluted with CHCl3 MeOH (99:1) afforded homogeneous product (GA, 

250mg) characterized as glycyrrhetinic acid (GA) on the basis of its 
1
H and 

13
C NMR 

spectroscopic data.18β-glycyrrhetinic acid (Figure 3).  

 

Semi-Synthesis of Glycyrrhetinic Acid (GA) derivatives 

The chemical reactions for the synthesis of 3-O-acyl derivatives and 3-O-acetyl amide 

derivatives are depicted in schemes-1&2 respectively. All the acyl derivatives were 

synthesized by taking GA and corresponding acyl chloride (2 equivalent) and a catalytic 

amount of 4-(N, N-dimethyl) aminopyridine (DMAP) into dry pyridine as solvent and 

refluxing the reaction mixture for 8 hours up to 80
o
C (Figure 4a). Reaction mixture was then 

neutralised with 5% HCl solution and extracted thrice with ethyl acetate. The combined ethyl 

acetate fraction was washed with water, dried over anhydrous Na2SO4 and solvent removed 

under vacuum to yield the crude product. Further, the crude product was purified by column 

chromatography which afforded the desired products.      

All the 3-O-acetyl amide derivatives were semi-synthesized by treating 3-O-acetyl GA with 

oxalyl chloride (2equiv) in dry dichloromethane (DCM) for three hours followed by adding 

corresponding amines (1.5 equivalent) and triethylamine under nitrogen atmosphere (Figure 

4b). The reaction mixture was stirred for four hours at room temperature. The reaction was 

quenched with H2O (10 mL), and the organic phase was separated. The aqueous phase was 

extracted with CH2Cl2 (3x30 mL). The combined organic phase was dried over Na2SO4, 

filtered, and evaporated under vacuum to give the crude product. The products were purified 

by column chromatography, which afforded the desired derivatives. All the GA derivatives 

were characterized on the basis of their 
1
H and 

13
C NMR spectroscopic data. 
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Characterization of GL, GA and GA derivatives (GA1–GA5) 

All the GA derivatives were characterized on the basis of their  
1
H and 

13
C NMR 

spectroscopic data as given below. 

GL:  

1
H NMR (300 MHz, C5H5N ): δ 0.76 – 1.32 (3H each all s, 7 x tert.CH3), 2.32 (s, 1 H; 9H), 

1.97 (3H, s, C-32), 4.2 (1H, dd, J= 6.8 & 8.7 Hz, 3 α-H), 5.56 (1H, s, H-12), 5.20 (1H,d, H-

1’), 3.23 (1H, m, H-2’), 3.62 (1H, m, H   3’ & H-4’), 4.45 (1H, d, H-5’), 12.22 (1H, s, H-6’), 

4.86 (1H,d, H-1”), 3.53 (1H, m, H-2”, H-3” & H-4”), 4.5 (1H, d, H-5”), 12.3 (1H, s, H-6”) 

13
C NMR (C5H5N, 75MHz): 39.9 (C-1), 27.0 (C-2), 88.7 (C-3), 37.8 (C-4), 55.5 (C-5), 18.1 

(C-6), 33.2 (C-7), 43.7 (C-8), 62.4 (C-9), 37.6 (C-10), 199.9 (C-11), 128.9 (C-12), 169.9 (C-

13), 45.8 (C-14), 28.3 (C-15), 26.8 (C-16), 32.4 (C-17), 48.9 (C-18), 41.9 (C-19), 44.3 (C-

20), 31.8 (C-21), 38.6 (C-22), 28.0 (C-23), 16.8 (C-24), 17.0 (C-25), 19.0 (C-26), 23.7 (C-

27), 28.7 (C-28), 28.9 (C-29), 179.4 (C-30), 104.1 (C-1’), 83.1 (C-2’), 75.8 (C-3’), 71.7  (C-

4’),  76.5  (C-5’),  170.5  (C-6’),  105.2  (C-1”),  75.4  (C-2”),  76.9  (C-3”),  71.8  (C-4”),  

75.9  (C-5”), 170.6 (C-6”). 

GA: 

1
H NMR (300 MHz, CDCl3): δ 0.76 – 1.32 (3H each all s, 7 x tert.CH3) 2.32 (s, 1 H, 9H), 

3.36 (1H, dd, J= 6.8 & 8.5 Hz, 3 α-H) 5.62 (1H, m, H-12). 

13
C NMR: 39.9 (C-1), 27.0 (C-2), 78.1 (C-3), 37.8 (C-4), 55.5 (C-5), 18.1 (C-6), 33.2 (C-7), 

43.7 (C-8), 62.4 (C-9), 37.5 (C-10), 199.1 (C-11), 128.9 (C-12), 169.9 (C-13), 45.8 (C-14), 

28.3 (C-15), 26.8 (C-16), 32.4 (C-17), 48.9 (C-18), 41.9 (C-19), 44.3 (C-20), 31.8 (C-21), 

37.5 (C-22), 27.8 (C-23), 16.8 (C-24), 17.0 (C-25), 19.0 (C-26), 23.7 (C-27), 28.8 (C-28), 

28.9 (C-29), 179.4 (C-30). 

GA-1: 

1
H NMR (CDCl3, 300 MHz): δ 0.86-1.35 (3H each, all s, 7 x tert CH3), 4.32 (1H, m, H-3), 

5.61 (1H, s, H-12), 2.04 (3H, s, H-2’). 

13
C NMR (CDCl3, 75MHz): δC 39.2 (C-1), 26.8 (C-2), 81.6 (C-3), 38.5 (C-4), 55.4 (C-5), 

17.8 (C-6), 33.1 (C-7), 43.6 (C-8), 62.1 (C-9), 37.3 (C-10), 200.8 (C-11), 128.8 (C-12), 169.9 

(C-13), 45.9 (C-14), 28.4 (C-15), 26.8 (C-16), 32.3 (C-17), 48.6 (C-18), 41.2 (C-19), 44.2 (C-

20), 31.6 (C-21), 38.1 (C-22), 28.9 (C-23), 16.8 (C-24), 17.1 (C-25), 19.1 (C-26), 23.7 (C-

27), 28.9 (C-28), 29.8 (C-29), 182.2 (C-30), 171.5 (C-1’), 21.7 (C-2’). 

GA-2:  

1
H NMR (CDCl3, 300 MHz): δ 0.83-1.34 (3H each, all s, 7 x tert CH3), 4.48 (1H, m, H-3), 

5.60 (1H, s, H-12), 2.00 (3H, s, H-2’), 3.24 (2H, m, H-1”), 0.86 (3H, t, J = 7.5 Hz, H-3”).  

13
C NMR (CDCl3, 75MHz): δ 39.2 (C-1), 26.9 (C-2), 81.0 (C-3), 37.9 (C-4), 55.4 (C-5), 17.8 

(C-6), 33.1 (C-7), 43.6 (C-8), 62.1 (C-9), 37.3 (C-10), 200.3 (C-11), 128.8 (C-12), 169.7 (C-

13), 45.8 (C-14), 28.4 (C-15), 26.9 (C-16), 32.3 (C-17), 48.6 (C-18), 41.6 (C-19), 43.9 (C-

Acc
ep

te
d 

M
an

us
cr

ipt



10 

 

20), 31.9 (C-21), 38.4 (C-22), 28.9 (C-23), 16.7 (C-24), 17.0 (C-25), 19.1 (C-26), 23.7 (C-

27), 28.9 (C-28), 30.0 (C-29), 176.0 (C-30), 171.3 (C-1’), 21.6 (C-2’), 42.3 (C-1”), 23.9 (C-

2”), 11.8 (C-3”). 

GA-3: 

1
H NMR (CDCl3, 300 MHz): δC 0.85-1.37 (3H each, all s, 7 x tert CH3), 4.46 (1H, m, H-3), 

5.62 (1H, s, H-12), 2.02 (3H, s, H-2’), 3.29 (2H, m, H-1”), 0.85 (3H, t, J = 7.5 Hz, H-4”).  

13
C NMR (CDCl3, 75MHz): δC 39.2 (C-1), 26.8 (C-2), 81.0 (C-3), 37.9 (C-4), 55.4 (C-5), 

17.8 (C-6), 33.1 (C-7), 43.6 (C-8), 62.1 (C-9), 37.3 (C-10), 200.4 (C-11), 128.8 (C-12), 169.8 

(C-13), 45.8 (C-14), 28.4 (C-15), 26.8 (C-16), 32.3 (C-17), 48.6 (C-18), 42.3 (C-19), 43.9 (C-

20), 31.9 (C-21), 38.4 (C-22), 28.9 (C-23), 16.8 (C-24), 17.0 (C-25), 19.1 (C-26), 23.7 (C-

27), 28.9 (C-28), 30.0 (C-29), 176.0 (C-30), 171.4 (C-1’), 21.7 (C-2’), 39.8 (C-1”), 33.1 (C-

2”), 20.4 (C-3”), 14.0 (C-4”). 

GA-4:  

1
H NMR (CDCl3, 300 MHz): δ 0.84-1.40 (3H each, all s, 7 x tert CH3), 4.79 (1H, dd, J = 6.3 

& 8.9 Hz, H-3), 5.74 (1H, s, H-12), 7.47-8.13 (5H, m, Ar-H). 

13
C NMR (CDCl3, 75MHz): δC 39.2 (C-1), 26.8 (C-2), 81.7 (C-3), 38.2 (C-4), 55.5 (C-5), 

17.8 (C-6), 32.3 (C-7), 43.6 (C-8), 62.2 (C-9), 37.4 (C-10), 200.6 (C-11), 128.9 (C-12), 172.5 

(C-13), 45.9 (C-14), 28.6 (C-15), 26.8 (C-16), 31.3 (C-17), 48.6 (C-18), 38.9 (C-19), 45.9 (C-

20), 30.1 (C-21), 37.4 (C-22), 28.9 (C-23), 16.8 (C-24), 17.4 (C-25), 19.1 (C-26), 23.8 (C-

27), 28.9 (C-28), 29.8 (C-29), 176.0 (C-30), 172.5 (C-1’), 130.0 (C-2’), 130.6 (C-3’& C-7’), 

128.9 (C-4’&C-6’), 133.1 (C-5’). 

GA-5: 

1
H NMR (CDCl3, 300 MHz): δ 0.99-1.35 (3H each, all s, 7 x tert CH3), 4.48 (1H, m, H-3), 

5.67 (1H, s, H-12), 2.04 (3H, s, H-2’), 3.82 (2H, t, J = 6.6 Hz, H-1”), 2.95 (2H, t, J = 6.6 Hz, 

H-2”).  

 

13
C NMR (CDCl3, 75MHz): δC 39.2 (C-1), 26.8 (C-2), 80.6 (C-3), 38.0 (C-4), 55.4 (C-5), 

17.8 (C-6), 33.1 (C-7), 43.7 (C-8), 62.2 (C-9), 37.4 (C-10), 201.0 (C-11), 128.7 (C-12), 171.4 

(C-13), 45.9 (C-14), 28.4 (C-15), 26.8 (C-16), 32.2 (C-17), 48.6 (C-18), 41.9 (C-19), 44.1 (C-

20), 30.1 (C-21), 38.4 (C-22), 29.0 (C-23), 16.8 (C-24), 17.1 (C-25), 19.1 (C-26), 23.7 (C-

27), 28.4 (C-28), 29.9 (C-29), 177.0 (C-30), 171.4 (C-1’), 21.7 (C-2’), 45.9 (C-1”), 41.9 (C-

2”). 

In-vitro cytotoxicity evaluation 

Preparation of test sample solutions 

The test samples 18β-glycyrrhetinic acid and its derivatives GA-1, GA-2, GA-3, GA-4 and 

GA-5 were weighed in micro centrifuge tubes and stock solutions of 20mM were made by 

dissolving the samples in DMSO. Stocks are stored at -20ºC. A working solution of 12.5, 25, 

50, 100 and 200µM concentration was made by diluting the stock solution in culture medium. 
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Cell Culture  

The MDA-MB-231 (Organism: Homo sapiens, Tissue/site: breast metastatic, Cell type: 

epithelial, TNBC) were procured from American Type Culture Collection (ATCC) and 

cultured as per manual instructions. The cells were cultured and maintained in RPMI-1640 

medium at 37 ˚C and 5% CO2/95% air in a humidified incubator and were regularly 

examined microscopically for stable phenotype. 

SRB Assay 

Addition of cells: The cells were dispensed in a flat bottom 96-well plate. To each well, 100 

µl of the cell suspension containing 10,000-15,000 ells were added. Further, the cells were 

incubated at 37 ºC in 5% CO2/95% air concentration for 24 h, prior to the addition of test 

samples. 

Test samples addition: A working solution of 100 µl of test sample was added to the cell 

monolayer to give a final concentration 200μM. A series of four dilutions 12.5μM, 25μM, 

50μM and 100μM for each derivative in three replicates were included. 

Negative (Vehicle) Controls: In every assay plate DMSO was added in 0.1% concentration as 

vehicle control. The final concentration of DMSO was 0.1% in all assay wells. Finally, the 

plates were incubated at 37 ºC in 5% CO2 concentration for 48 h. 

Addition of Sulphorhodamine B ass and colorimetric reading: Once the treatment period was 

done. After 48 h incubation, cold 50% trichloroacetic acid (TCA Sigma Aldrich, 50 µl/well) 

were added on top of the medium to fix the cells attached to substratum and incubated for one 

h at 4ºC. After that a five times gentle wash was given to the plate with slow running tap 

water to remove dead cells, culture medium and TCA. After washing, the plates were air 

dried. Further, 50 µl/well of SRB solution was added to the dried plate and left at room 

temperature for 30 min. After incubation, unbound SRB dye was removed by 4-5 times 

washing with 1 % (v/v) glacial acetic acid. Plates were allowed to air-dry at room 

temperature. Further, 150 µl of 10 mM Tris base solution was added to each well to 

solubilize the protein-bound dye, and plate is shaken for 15 min on a gyratory shaker. Finally, 

the absorbance was taken at 510 nm using a plate reader. 

Data analysis 

Percentage of cell growth inhibition in presence of the test sample is calculated as follows: 

 

Identification of therapeutic targets for GA in MDA-MB-231 

Based on recently published report, a 48 hours treatment of MDA-MB-231 cells with 20µM/l 

GA attenuate cellular glutathione (GSH) level and cause apoptosis in TNBC cancers (Cai, et 

al., 2017). The cellular GSH level is controlled by GLO-I and Topoisomerase-II as reported 

by Silva, et al., 2013 & Cameron et al., 1999. However, a web based target identification 

tools viz., Stitch-DB (http://stitch.embl.de.) and Swiss target prediction identified, 

hydroxysteroid 11-beta-dehydrogenase-1(1HSD1) as possible binding targets for GA (Figure 
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S8, Supplementary information). Therefore, an approach of molecular docking based 

screening was applied for GA and derivatives to rank possible MDA-MB-231 targets viz., 

GLO-I, TOPO-II and 11HSD1 based on their degree of binding energies.  

Molecular docking and atomic property field (APF) based scoring  

The crystal structure of GLO-I (PDB: 4PV5) bound with glycyrrhetinic acid (2.3 resolution) 

was retrieved from protein database (Zhang, et al., 2015). The GA derivatives structures were 

converted to ICM object using ICM Molsoft–chemist v3.8-6, (2018) (Molsoft LLC, San 

Diego, USA). It uses Monte Carlo minimization in the atomic property field's potentials in 

conjunction with standard MMFF94 force-field energies. The method was developed by 

Totrov, 2008, 2011 & Grigoryan et al., 2010. Protein-ligand docking tool FlexX provided by 

LeadIT software v2.1.6, 2017, (BioSolveIT GmbH, Sankt FeAugustin, Germany, 

www.biosolveit.de/LeadIT) was used to perform molecular interaction study as proposed 

procedure by Kramer, et al., 1999. The amino acids within 10 Å region from GA active site 

of enzyme GLO-I were selected to get more flexibility in interaction study. Number of pose 

generation was set at 10 and computed pose with minimum energy (RMSD) was selected for 

comparative study. 

Computational assessment for oral bioavailability and toxicity 

All the five GA derivatives were also studied for their oral bioavailability by calculating 

various pharmacokinetic parameters such as plasma protein binding, blood brain barrier 

penetration capacity, intestinal absorption, hepatotoxicity, oral bioavailability. Furthermore, 

the derivatives were evaluated for toxicity risk screening using Discovery Studio v3.5 

TOPKAT (Toxicity Prediction by Komputer Assisted Technology) tool. TOPKAT is a 

Quantitative Structure Toxicity Relationship (QSTR) based tool developed by Accelrys Inc. 

USA (http://accelrys.com) licensed to CSIR-CIMAP, Lucknow (www.cimap.res.in). The 

module utilizes highly robust and cross-validated QSTR models to predict toxicity. The 

module applies patented Optimal Predictive Space (OPS) which is a unique multivariate 

descriptor space for result interpretation (Enslein, et al., 1988, 1987). The module computes 

the toxic and environmental effects of compounds exclusively from their chemical structures. 

DS-TOPKAT module search fragments within query molecule based on molecular 

fingerprint similarity with the training set compounds. The TOPKAT toxicity prediction 

results for unknown compound are calculated based on Probability score, Bayesian scores 

and Mahalanobis distance (structure similarity) from the centre of the training set 

compounds. DS-TOPKAT gives predictions for a range of toxicological endpoints, including 

mutagenicity, developmental toxicity, rodent carcinogenicity, rat chronic Lowest Observed 

Adverse Effect Level (LOAEL), rat Maximum Tolerated Dose (MTD) and rat oral LD50 

(Table S6, Supplementary material). 

Results and Discussion 

2D-QSAR model development and validation results 

The developed quantitative structure–activity relationship model (QSAR) identifies activity 

inducing features of 144 MDA-MB-231 inhibitors selected in the model development (Table 

S1 and S2, Supplementary material). The developed QSAR model was validated through 
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various statistical approaches viz., leave-one-out (LOO), external test set prediction (r
2

pred), Z-

scores and   
  matrix calculation. The results of statistical parameters are summarized in 

Table 1. 

QSAR multiple linear regression equation 

PIC50 (µM) = 0.0016 +7.2421 (Epsilon4) +1.2894 (chiV3Cluster) -0.7603 (T_N_N_5) 

+0.1635 (Nitrogen count) +2.3425 (chi3chain)    (Equation 6) 

 

Where, N (training set, 70% of 144 MDA-MB-231 inhibitors) = 100, n (test set, 30% of 144 

MDA-MB-231 inhibitors) =44, r2 (Regression coefficient for training set) =0.8442, 

R2se=0.3063, q2 (Regression coefficient for leave one out (LOO) validation) =0.8282, q2se= 

0.3214, Fisher test = 101.6555, predicted r2 (Regression coefficient for external test set) 

=0.7532, pred r2se= 0.3659, Z score R
2
= 14.76689, Z score q

2
 = 14.61679 and Z score pred r

2
 

= 4.11170 

The QSAR model attain good correlation coefficient of 0.84 for training set of 100 inhibitors. 

The fitness plot between observed and predicted PIC50 values is presented in Figure 5. The 

high value of cross validation (LOO) regression (q
2
), 0.82 indicates training set compounds 

(blue dots) exhibit less statistical noise. Regression coefficient for random selected 44 

external test set (Pred R
2
) was found 0.75. The test set regression infers the good 

predictability of model for unknown compounds (red dots), a small measure of error (0.0016) 

indicate data comprehensiveness. Additionally, an even distribution of residual values around 

the axis line indicate good model quality (Figure S3, Supplementary material). Furthermore, 

high value for Fishers test, F= 101.65, again verified robustness of the model. Also, a high Z 

scores of 14.76689, 14.61679 and 4.11170 for r
2
, q

2
 and pred r

2
 respectively, supported the 

good model quality. The computed statistical qualities for training and test sets are 

summarized in Table 1 and Table 2 with their reported cut off values. 

Based on Ojha, et al., 2011 the r
2

pred is not a true evidence for model prediction ability. Since, 

r
2

pred depends on training set mean and therefore greatly influenced by training set and test set 

selection. However,   
  matrix shows the predictability of the model for whole dataset. For 

test set the acceptable range for parameters, r
2

pred,   
  and r

’2
m is 0.5, Δ  

  should be less than 

0.2 and r
2

mbar should be more than 0.5 (Ojha, et al., 2011). In the present case the r
2
, r

2 
(LOO), 

  
  r

’2
m, r

2
mbar and Δ  

  values for training set are 0.84, 0.82, 0.83, 0.71, 0.77 and 0.11 

respectively (Table 1). All statistical parameters for training set were found within their cut 

off limits (Table 1). For test set, r
2

pred,   
  and r

’2
m were found 0.75, 0.67 and 0.63 

respectively. The calculated values of r
2

m (bar) and Δ  
  for test set are 0.65 and 0.03 

respectively that are within their cut off limits (Table 2). The computed r
2

m matrix validate 
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the reliability and robustness of developed QSAR model for anticancer activity prediction of 

unknown compounds. Also, the model identified features help to explore the structure based 

inhibition mechanism of MDA-MB-231inhibitors.  

QSAR model identified 2D structural properties and description 

Generated equation 6 explains the model extracted out five important descriptors that 

determine the cytotoxic potential of MDA-MB-231 inhibitors are (i) Epsilon4 that signified 

measure of electronegativity count, (ii) ChiV3cluster indicate valence molecular connectivity 

index, (iii) chi3chain represents retention index for three membered ring, (iv) TNN5 stands 

for nitrogen atoms separated through 5 bond distances and (v) nitrogen counts i.e., number of 

nitrogen atoms in the molecule. 

The topochemical descriptor Epsilon4 signifies measure of electronegativity count and 

contributing 11% to the biological activity (PIC50). The descriptor chiV3Cluster, belong to 

valence molecular connectivity index of 3rd order cluster (Shen, et al., 2002). It is known that 

molecular connectivity indices are most successful among other topological properties in 

compound property estimation. Since these indices are based on contingent chemical, 

structural and mathematical ground. The important advantage of the molecular connectivity 

model comprises its flexibility, to quantify general as well as local structural properties. The 

percentage contribution for identified descriptors are presented in figure S4 under 

supplementary material. Figure S4 describes descriptor chiV3Cluster contribute 30% to 

biological activity of training set compounds. Whereas, TNN5 descriptor that define two 

nitrogen atoms separated through 5 bond distances, showed inverse relationship to the 

biological activity. However, descriptor nitrogen count is showing positive effect and 

contributing 21% to the activity (PIC50). Additionally, the equation 6 indicate nitrogen 

containing functional groups may increase the biological activity. Though chemical 

fragments containing nitrogen atoms departed by long chain (TNN5) might not be very 

favourable. Overall, the model suggests maximum contribution hail from the descriptors 

chiV3Cluster, Epsilon4 and nitrogen count (Figure S4, supplementary material). 

2D-QSAR model AD assessment results 

A PCA analysis indicates 44 test set compounds fall within the structure space of training set 

compounds. Figure 6 shows generated PCA graph for training set (blue sphere) and test set 

(yellow sphere). The figure illustrates a uniform distribution of test set within the vector 

space of training set compounds. The figure defines the test set as a true representative of 

training set. Also, a broad biological activity space of 10
-1

 to 10
1
 µM for training and test set 

indicate the data was comprehensive. A correlation matrix for PIC50 and extracted descriptor 

(Epsilon4, chiV3Cluster, T_N_N_5, Nitrogen count and chi3chain) was also generated 

(Table S4, Supplementary materials). It showed that the developed model based on the 

selected descriptors is well established.  

A UPGMA based hierarchical cluster analysis (Tanimoto structure similarity distance 0-0.7) 

of 144 dataset compounds indicate that training set, test and five GA derivatives come within 

the applicability domain of QSAR model. Also, the heat map generation for chemical 

properties viz., molecular weight, logP, polar surface area, maximum ring size, minimum ring 

Acc
ep

te
d 

M
an

us
cr

ipt



15 

 

size, maximum fused rings, and number of rotatable bonds also indicate the optimal chemical 

property range (Figure S1, Supplementary material).  

Identified 3D structural property fields through 3D-QSAR studies 

At this point, an attempt was made to generate APF based 3D-QSAR analysis to 

systematically describe the structural atomic field level of novel GA derivatives. The 3D-

QSAR analysis performed by Atom Property Fields (APF) methods was developed by 

Totrov, et al., 2008. For this purpose, a set of congeneric series of 42 GA derivatives, with in-

vitro inhibition activity against MDA-MB-231 cell line were selected. The dataset structures 

were flexibly aligned to the generated property fields of co-crystallised GA on GLO-I. The 

co-crystallised GA on GLO-I binding site is depicted in Figure 7. The generated model 

presented a good regression coefficient of 0.96 for training set compounds. Also, the external 

test set based regression reverted a good predictive regression coefficient of 0.82 (Table 3, 

Table 4). The regression plot between observed and predicted PIC50 for training and test sets 

are showed in figure 8 and figure 9. The calculated results of statistical parameters training 

and test sets are compiled in Table 3 and Table 4 respectively. All statistical properties were 

found within their cut off limit. The results indicate generated model is robust enough to give 

consistent prediction for novel GA derivatives. Henceforth, novel GA compounds namely 

GA-1, GA-2, GA-3, GA-4 and GA-5 were aligned on training and their PIC50 values were 

predicted through developed 3D-QSAR model. The model presented IC50 for GA derivatives 

ranges from 44.26 µM to 103.75 µM. Based on 3D-QSAR model predicted results it has been 

expected that designed derivatives may show moderate activity against TNBC cell line. 

 

 

Semi-synthesis and SRB based in-vitro cytotoxicity assay results for GA 

derivatives GA-1, GA-2, GA-3, GA-4 and GA-5 against metastatic TNBC cell 

line MDA-MB-231 

Our design concept for GA derivatives, GA-1, GA-2, GA-3, GA-4 and GA-5 was to 

introduce structural variations at C-3 and C-30 positions to improve the anticancer efficiency. 

The 2D QSAR model extracted descriptor Epsilon4 indicate electronegativity on GA cause 

favourable effects on biological activities. A positive correlation with electronegativity was 

also found in 3D-QSAR studies (Figure 10). 2D-QSAR descriptor ChiV3cluster suggested 

less branching at GA scaffold is favourable. Hence, small fragments viz., propyl amide, butyl 

amide and amino ethyl amide were substituted at C-30 carbon (GA-1, GA-2, GA-3 and GA-

5). The structures of prepared derivative are given in Figure 4a and Figure 4b. However, 3D 

QSAR based property fields suggest lipophilicity and electronegativity are playing governing 

role in anticancer properties of GA derivatives. Therefore, a derivative with benzoate group 

substitution at C-3 position was also prepared (GA-4). The detailed analysis of 2D and 3D 

QSAR based structure activity relationship is illustrated in Figure 10. Based on QSAR model 

studies five novel derivatives of GA named GA-1, GA-2, GA-3, GA-4 and GA-5 were semi-

synthesised with modifications at C-3 and C-30 positions and screened through the developed 

model (Figure 4a, 4b). 
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Further, a dose dependent in-vitro cytotoxicity of GA and derivatives were investigated 

against metastatic TNBC cell line MDA-MB-231. The 48 hours exposure of derivatives GA-

1, GA-3 and GA-4 inhibit MDA-MB-231 cells with IC50 76.5 µM, 91.79 µM and 116.07 µM 

respectively (Table 5). Derivative GA-1 was found most active as it showed most cytotoxic 

activity against MDA-MB-231 cells. However, GA-2 and GA-5 were found least effective as 

they indicated 35.56% and 25.63% cancer cells inhibition at maximum concentration of 

200µM. GA-3 and GA-4 showed moderate inhibition potentials of 91.79 µM and 116.07 µM 

respectively.  

2D and 3D-QSAR model results and their correlation with in-vitro activity of 

GA-1, GA-2, GA-3, GA-4 and GA-5 

In order to prospectively validate the generated 2D and 3D QSAR models the anticancer 

activities of the novel GA derivatives were calculated and compared with the in-vitro activity. 

Relevance for 2D-QSAR was based on the data homogeneity constructed using natural 

scaffold-based training set with fused rings structures (2-5 rings) (Figure S3, supplementary 

material). The GA derivatives are pentacyclic triterpene. The 2D QSAR model predicted IC50 

was in the range of 49 µM to 18 µM. No much difference in activities between GA-1, GA-2 

and GA-3 was predicted because of their high topological similarity. Hence, an Atomic 

potential field based 3D QSAR was applied to recognize biologically significant structural 

features of GA derivatives. The dataset for 3D-QSAR was based on congeneric series of GA 

derivatives. Consequently, it has been expected that APF based 3D QSAR model might 

present more specific results for derivatives. The model presented IC50 for GA derivatives 

ranges from 44.26 µM to 103.75 µM. The 3D QSAR prediction provided more variations in 

PIC50 of GA derivative. Also, a positive correlation between APF scores and in-vitro activity 

indicate correlation between atomic property fields score in negative and cytotoxic activity 

(Figure 11). 

The results of 2D and 3D QSAR models and in-vitro activities on GA derivatives indicate 3-

O-acyl derivative named GA-1 was more significant in terms of biological activity. It has 

been found that modification at C-30 carboxylic group with amide group in GA-2, GA-3, 

GA-4 and GA-5 resulted decrease in cytotoxic potential against MDA_MB-231. Moreover, 

APF 3D QSAR based predicted activities for derivatives were found comparable to their in-

vitro IC50 values. Therefore, the results indicate APF based 3D QSAR performed well in 

predicting the biological activities of studied compounds.  

Mode of action study, binding energy and APF scores of GA-1, GA-2, GA-3, 

GA-4 and GA-5 with anticancer target GLO-I 

Breast cancer majorly depends on glycolysis as energy source based on Warburg effect 

(Sullivan, et al., 2016; Fonseca-Sánchez, et al., 2012). During glycolysis a highly reactive 

compound known as methyl glyoxalases are formed. GLO-I metabolize and inactivate 

methylglyoxlase produced through glycolysis, making GLO-I inhibitors as potential anti-

tumor agents (Cai, et. al., 2016, Silva, et. al., 2013). Inhibition of GLO-I resulted in the 

accumulation of α-oxoaldehydes at cytotoxic levels and reverse multi drug resistance (MDR). 

RT-PCR, western blot analysis of metastatic breast cancer MDA-MB-231 often show high 

expression of GLO-I. Additionally, knockdown study on GLO-I enzyme supress migration, 
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invasion and promote apoptosis in metastatic breast cancer cells (Guo, et al., 2016). 

Conventional and most considered GLO-I inhibitors are coenzyme GSH analogs, which 

exhibits efficient inhibition in-vitro (Silva, et. al., 2013) and reverse MDR, thus GLO-I 

inhibitors have been proposed as efficient anti-tumor agents. However, these GSH based 

inhibitors suffer from poor pharmacokinetic properties and are difficult to use as lead 

structure for the further design of small molecule. Alternatively, non-GSH analog natural 

inhibitors include flavonoids, methylgerfelin (MGI), indomethacine, zopolrestat and 

curcumin and its derivatives showed good pharmacokinetic properties (Zhang, et al., 2015). 

Notably the carboxylic group of these molecules mimic, glycyl and γ-glutamyl residue 

moieties of GSH to form hydrogen bonds with the glycyl and glutamyl sites, respectively, in 

the GSH binding site (Figure S5, Supplementary material). Recently, Cai, et al., (2017) has 

reported MDA-MB-231 treatment with 20 µM/l of GA for 48 hour which causes apoptosis by 

inducing GSH inhibition. 

Here, a docking based screening of GA derivatives presented good binding energy with 

predicted target GLO-I in comparison to other two targets 11HSD1 and TOPO-II (Table S5, 

Supplementary material). Therefore, a non GSH based ligand namely GA-1, GA-2, GA-3, 

GA-4 and GA-5 were analysed for their binding affinity towards GLO-I enzyme.  

The mammalian GLO-I exhibit two binding sites with zinc as a cofactor at its catalytic 

binding site. One of the binding sites is glycyl site specific for GSH binding as presented in 

Figure 7. The key amino acid residues for glycyl site are LYS150A, GLY155A, LYS156A, 

and LEU160A AND PHE162A. However, glutamyl site exhibited key amino acids, 

ARG37B, ASN103B and ARG122A. While the Zn
2+

 catalytic site coordinating residues 

include GLN32, HIS126 and GLU172. As reported by Zhang, et al. (2015) for a non-GSH 

analogs GA doesn’t require metal Zn
2+

 coordination. Therefore, in the present work Zinc ion 

was excluded while docking process as GA is a pentacyclic triterpenoid. From the APF based 

alignment and scoring, it is evident that carboxylic group at C-30 position plays a critical role 

in GA-GLO-I binding. The C-30 carboxylic group hydrogen atom is highly polar and cause 

negative charge over oxygen after ionization. This leads to hydrogen bonding between C-30 -

RCOO
‾
 with polarized hydrogen atoms present in amino acid residues ARG-38 (1.8 Å) and 

ASN-104 (2.3 Å) (electrophilic centres) of GLO-I binding pocket. 

In accordance with the results the most active GA derivative GA-1 (IC50 = 76.5 µM) showed 

highest APF score of -425.82 (Figure 11). For this purpose, the parent compound GA with 

APF -219.67 (IC50 = 82.29) was taken as positive control to identify structure-activity 

relationship based on their APF score. The least active derivatives GA-2 (IC50 >200 µM) and 

GA-5 (IC50 >200 µM) showed minimum APF score of -402.047 and -402.14. Likewise, 

derivative GA-3 and GA-4 with moderate IC50 of 91.79 µM and 116.07 µM accordingly 

presented a moderate APF score of -401.18 and -415.68. Consequently, the APF alignment 

score and IC50 values indicated that the carboxylic group at C-30 in GA-1 and GA-4 in some 

way play a major role in enzyme receptor binding. 

 

 

Footnote: *Atomic property field (APF) based score calculated through ICM-Chemist v3.-6a 

(Molsoft L.L.C., USA, licensed to CSIR-CIMAP, Lucknow, India) 
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Correspondingly, the FlexX based binding energy calculation of GA derivatives on GLO-I 

was also found in close agreement with APF guided structure-based screening results (Table 

6). The results of molecular docking of GA and its derivatives against GLO-I approved that 

GA-1 exhibited highest binding affinity of -16.997 kJ/mol in comparison to derivatives GA-2 

(-9.7 kJ/mol), GA-3 (-7.293 kJ/mol), GA-5 (-10.419 kJ/mol). However, GA-4 also showed 

good binding affinity (-21.232 kJ/mol). The binding pose analysis of active GA-1 showed 

amino acid residues ARG-38 and ARG-123 form hydrogen bonds with C-30 carboxylic 

group of GA-1. The proposed binding pose of GA-1 on GSH binding site of GLO-I is 

represented in figure 13. 

Oral bioavailability and toxicity risks assessment results 

Rodent (mouse/rat) carcinogenic probability based on data from National Toxicological 

programme (NTP) showed GA and its derivatives as non-carcinogen. Conversely, the US 

Food and Drug Administration (FDA) based data predicted GA and its derivatives as 

carcinogenic compounds. This contraindication was resolved by considering Weight Of 

Evidence (WOE) prediction that indicate GA and its derivatives may possess carcinogenic 

character. Many anticancer compounds often possess carcinogenic characters since they 

target proliferating cells and cause developmental toxicity in developing embryos. However, 

Ames mutagenic prediction showed derivatives as non-mutagenic. Here, GA-1, GA-2 and 

GA-3 were also found non-toxic for developmental mutagenicity. Additionally, GA-1 

showed moderate to severe skin effect and ocular irritancy. Detail compliance for 

computational toxicity analysis are provided in supplementary table S6. Lastly, the 

computational results showed that GA and its derivatives have good aerobic biodegradability, 

hence they are non-persistent and safe to the environment. 

Conclusions 
In this study the QSAR model predicted IC50 and SRB assay based biological activities of 

GA derivatives, GA-2, GA-3, and GA-4 were found comparable against triple negative breast 

cancer cell line MDA-MB-231. This indicated that the model extracted structural features 

viz., Epsilon4 (measure of electronegativity count), ChiV3cluster (valence molecular 

connectivity index), chi3chain (retention index for three membered ring), TNN5 (nitrogen 

atoms separated through 5 bond distances) and nitrogen counts had significant contribution to 

the biological activity. The results also signify that OH group substitution with acyl group at 

C-3 position increases the compound lipophilicity thereby increasing the cytotoxicity 

potential against TNBC breast cancer cell line MDA-MB-231. Conversely, substitution at C-

30 position with propyl amide, butyl amide and amino ethyl amide resulted in decreased 

cytotoxicity. However, C-30 substitution with butyl amide did not cause any significant 

difference. Whereas the cytotoxicity was decreased due to addition of benzoate group at C-3 

position. Over all the results suggested that C-30 carboxylic group is crucial for GA based 

cytotoxic activity. Therefore, an addition of 3-O-acetyl group at C-3 increases GA 

lipophilicity thereby improves the cytotoxicity.  

Additionally, APF based scoring and FlexX based binding affinity with GLO-I, a highly 

expressing enzyme in metastatic TNBC breast cancers confirmed that GA and GA-1 

exhibited maximum binding affinity. APF based flexible alignment of GA-1 with co-

crystallized GA again established the significance of C-30 carboxyl group as it serves to 
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make three hydrogen bonds with GLO-I key amino acids ARG-38, ARG-123 and ASN-104. 

Thus, it’s a novel work reporting active natural leads screened virtually using different 

molecular modelling approaches and in-vitro validation of predicted results tested on triple 

negative breast cancer cell lines. This study will be helpful in early lead discovery against 

metastatic breast cancers. 
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Glycyrrhiza glabra roots (2.04 Kg)
Extracted with MeOH

Marc MeOH extract*

Dissolved in distilled. H2O
Aqueous extract

Extracted with DCM

Aqueous extract DCM extract (99.0gm) $*

Extract with EtOAc

Aqueous extract EtOAc extract(100gm)$*

Extract with n-butanol saturated with H2O

n-Butanol extract(56.0gm)#

$Washed with H2O and dried over anhydrous Na2SO4. *Solvent was completely removed under vacuum 
at 60℃ on Buchi Rota Vapour. # Solvent removed under vacuum by making azeotrop with H2O. 

 

Figure 1: A schematic procedure for extraction and 
fractionation of Glycyrrhiza glabra roots  
  

Acc
ep

te
d 

M
an

us
cr

ipt



25 

 

        

O

O

HO

HO O H

H

COOH

H

O

1

3

8

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25 26

27

28

29
30

2

O

OHHO

HO

HOOC

HOOC

1'
2'

3'

4'

5'

6'

1''2''
3''

4'' 5''

6''

 

                                                    Figure 2: Structure of glycyrrhizic acid  
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    Figure 3: Structure of glycyrrhetinic acid (GA) 
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Figure 4a: Scheme-1. Synthesis of 3-O-acyl derivatives of GA. 
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Figure 4b: Scheme-2. Synthesis of amide derivatives of 3-O-acetyl GA. 
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Figure 5. Regression curve (MLR model) for actual and predicted PIC50 of 144 natural 

scaffold-based inhibitors of metastatic TNBC cell line MDA-MB-231. Training and test set 

compounds are highlighted with blue and red dots respectively. 
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Figure 6: Generated 3D Principal Component Analysis (PCA) to ascertain uniform 

distribution of test set (yellow sphere) within property vector space of training set (blue 

sphere). 
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Figure 7. The zoom in view of Glyoxalase-I bound glycyrrhetinic acid atomic property fields 

represented with CPK form. The white blob represented equipotential contour of lipophilic 

property. Red and blue blobs on carbon-3 (C-3) and carbon-30 (C-30) represented 

equipotential contour of hydrogen bond acceptor and donor respectively. 
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Figure 8. Regression plot for training set compounds for 3D QSAR model. Different 

compounds were highlighted with different color code based on APF score of training set 

compounds. 
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Figure 9. Regression plot for test set compounds for 3D QSAR model. Different compounds 

were highlighted with different color code based on their APF score. 
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Figure 10: The APFs map of equipotent contour of most active, moderately active and least 

active GA derivatives used in 2D and 3D-QSAR modelling. (a) Most active GA derivative 

with IC50: 1.37 µM, showing modification at C-3 and C-30 carbon with lipophilic branches. 

The most active GA derivative exhibit high 2D-QSAR descriptor Chiv3cluster value; 1.163 

(b) moderately active GA derivative with IC50: 9.41 µM, showing modification at C-30 

carbon with lipophilic fragment. The molecule exhibits moderate Chiv3cluster value; 1.005 

(c) least active GA derivative with IC50: 50 µM, showing modification of C-3 carbon with 

1,2,3 thiadiazol group decreases the overall activity of molecule. Least active derivative 

showed low 2D-QSAR descriptor Chiv3cluster value 0.68. The white blob represented 

equipotential contour of lipophilic property. Red blob represented equipotential contour of 

hydrogen bond acceptor. 
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Figure 11: Figure represent a plot between in-vitro activity and APF scores of GA 

derivatives, GA-1, GA-2, GA-3, GA-4 and GA-5. The figure illustrates there is a positive 

correlation between atomic property fields and breast cancer inhibition of GA derivatives. 
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Figure 12: Atomic property field based docking model of derivative GA-1 (cyan color ball 

and stick form, IC50= 76.5 µM) bound to Glyoxalase-I GSH binding site. (a) The 

superimposition between glycyrrhetinic acid (white ball and stick form, oxygen atoms 

highlighted with red) and GA-1 illustrate, the GA-1 exhibit similar binding conformation as 

that of co-crystallised glycyrrhetinic acid.  (b) A close view of GA-1 and key amino acid 

residue binding. Orange and green balls lines represent hydrogen bonds with GA-1 C-30 

negatively charged oxygen atom (-RCOO‾) with polar hydrogens of amino acid residues 

ARG-38 (1.8 Å) and ASN-104 (2.3 Å). 

  

Acc
ep

te
d 

M
an

us
cr

ipt



37 

 

 

Figure 13. Proposed binding pose of derivatives GA-1 (with binding energy-16.997 kJ/mol) 

on GSH binding site of Glyoxalase-I. C-30 carboxylic group of GA-1 making two hydrogen 

bonds with key amino acids ARG-38 and ARG-123. 
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Table 1: The statistical parameters and their calculated values for training set of QSAR 

model. 

S.No. Statistical 

qualities 

(training 

set) 

Parameter explanation 

Value 

Reported acceptable 

range 

1.  
N  

Training set, 70% whole 

dataset 
100 

 

2.  
    

Regression coefficient for 

training set 
0.8442 

> 0.6 (Golbraikh et. 

al., 2002) 

3.  

    

Regression coefficient for 

leave one out (LOO) 

validation 

0.8282 

> 0.5 (Golbraikh et. 

al., 2002) 

4.  F-test  Fisher test 101.656 High value is good 

5.  Z score for 

r
2
 

Randomization test for r
2
  

14.767 
>1.28 at SD 0.10, 

(Zheng et. al., 2000) 

6.  Z score for 

q
2
 

Randomization test for q
2
 

14.617 
>1.28 at SD 0.10, 

(Zheng et. al., 2000) 

7.  
  
   

Correlation regression without 

intercept 
0.8439 

 

8.  

  
  

  

Reciprocal of r
2

0 i.e., taking 

predicted value in x-axis while 

calculation 

0.8219 

 

9.  

  
   

Correlation between actual and 

predicted values with intercept 

and without intercept while 

calculation 

0.8301 

>0.5 (Ojha et. al., 

2011)  

10.  
  
  

  
Reciprocal of r

2
m i.e., taking 

predicted value in x-axis 
0.7181 

>0.5 (Ojha et. al., 

2011) 

11.  
   ̅̅ ̅  

Average of r
2

m and r
/2

m 
0.7741 

>0.5 (Ojha et. al., 

2011) 

12.  
Δ  

   
Absolute difference between 

r
2

m and r
/2

m 
0.1119 

<0.2 (Ojha et. al., 

2011) 
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Table 2: The statistical parameters and their calculated values for test set of QSAR model. 

S.No. 

Statistical 

qualities 

(test set) 

Parameter explanation 

Value 

Reported acceptable 

range 

1.  n  test set, 30% of whole dataset 44  

2.       
  

regression coefficient for test 

set 
0.7532 

> 0.5 (Golbraikh et. 

al., 2002) 

3.  
Z sore for 

r
2

pred 

Randomization test for r
2
pred 4.11170 

>1.28 at SD 0.10, 

(Zheng et. al., 2000) 

4.    
  

Correlation regression 

without intercept 
0.7410 

 

5.    
  

 

Reciprocal of r
2

0 i.e., taking 

predicted value in x-axis 

while calculation 

0.7299 

 

6.    
  

Correlation between actual 

and predicted values with 

intercept and without 

intercept while calculation 

0.6702 

>0.5 (Ojha et. al., 

2011) 

7.    
  

 
Reciprocal of r

2
m i.e., taking 

predicted value in x-axis 
0.6384 

>0.5 (Ojha et. al., 

2011) 

8.     ̅̅ ̅  
average of r

2
m and r

/2
m 

0.6543 
>0.5 (Ojha et. al., 

2011) 

9.  Δ  
  

absolute difference between 

r
2

m and r
/2

m 
0.0317 

<0.2 (Ojha et. al., 

2011) 
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Table 3: The statistical parameters and their calculated values for training set of APF 3D-

QSAR model. 

S.No. Statistical 

qualities 

(training set) 

Parameter explanation 

Value 

Reported 

acceptable range 

1.  N  Training set 37  

2.  SelfMAE Mean absolute error 0.0771089  

3.  
Test_r

2
  

Regression coefficient for 

training set 
0.963138 

> 0.6 (Golbraikh et. 

al., 2002) 

4.  selfRMSE Root mean square error 0.0999803  

5.  SelfMAE Mean absolute error 0.0771089  

6.  
Self-spearman 

Spearman regression 

coefficient 
0.98056 

 

7.  
  
    

Correlation regression 

without intercept 
0.9632 

 

8.  

  
  

 

Reciprocal of r
2

0 i.e., taking 

predicted value in x-axis 

while calculation 

0.9617 

 

9.  

  
  

Correlation between actual 

and predicted values with 

intercept and without 

intercept while calculation 

0.90555 

>0.5 (Ojha et. al., 

2011)  

10.  
  
  

   
Reciprocal of r

2
m i.e., taking 

predicted value in x-axis 
0.9203 

>0.5 (Ojha et. al., 

2011) 

11.  
   ̅̅ ̅ 

Average of r
2

m and r
/2

m 
0.9129 

>0.5 (Ojha et. al., 

2011) 

12.  
Δ  

   
Absolute difference between 

r
2

m and r
/2

m 
-0.0147 

<0.2 (Ojha et. al., 

2011) 
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Table 4: The statistical parameters and their calculated values for test set of APF 3D-QSAR 

model. 

S.No. Statistical 

qualities (test 

set) 

Parameter explanation 

Value 

Reported 

acceptable range 

1.  n test set 5  

2.  SelfMAE Mean absolute error 0.2772  

3.  
   

regression coefficient for test 

set 
0.82 

> 0.5 (Golbraikh 

et. al., 2002) 

4.  

             

Regression coefficient for test 

set leave one out (LOO) 

validation 

0.6502 

> 0.6 (Golbraikh 

et. al., 2002) 

5.  testRMSE Root mean square error 0.3279  

6.  
Test Spearman 

Spearman regression 

coefficient 
0.8207 

 

7.  
  
   

Correlation regression 

without intercept 
0.8196 

 

8.  

  
  

  

Reciprocal of r
2

0 i.e., taking 

predicted value in x-axis 

while calculation 

0.7659 

 

9.  

  
   

Correlation between actual 

and predicted values with 

intercept and without 

intercept while calculation 

0.8043 

>0.5 (Ojha et. al., 

2011)  

10.  
  
  

  
Reciprocal of r

2
m i.e., taking 

predicted value in x-axis 
0.6269 

>0.5 (Ojha et. al., 

2011) 

11.  
   ̅̅ ̅  

Average of r
2

m and r
/2

m 
0.7157 

>0.5 (Ojha et. al., 

2011) 

12.  
Δ  

   
Absolute difference between 

r
2

m and r
/2

m 
0.17737 

<0.2 (Ojha et. al., 

2011) 
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Table 5: SRB based in-vitro cytotoxic activity of GA, GA-1, GA-2, GA-3, GA-4 and GA-5 

against metastatic triple negative breast cancer cell line MDA-MB-231.  

Compounds In-vitro IC50 (µM) 

Glycyrrhetinic acid 82.29 

GA-1 76.5 

GA-2 >200 

GA-3 91.79 

GA-4 116.07 

GA-5 >200 
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Table 6: Compliance of atomic property filed score and FlexX binding energy of 

Glycyrrhetinic acid, GA-1, GA-2, GA-3, GA-4 and GA-5 on Glyoxalase-I GSH binding site. 

Compounds APF* score 
FlexX binding energy 

kJ/mol 

Glycyrrhetinic acid 
(positive control) 

-419.617182 -25.561 

GA-1 -425.82269 -16.997 

GA-2 -402.04735 -9.7 

GA-3 -401.184344 -7.293 

GA-4 -415.679134 -21.232 

GA-5 -402.136577 -10.419 
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