Inorganica Chimica Acta 391 (2012) 171-178

Contents lists available at SciVerse ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Synthesis, crystal structure and luminescence properties of lanthanide complexes with a new semirigid bridging furfurylsalicylamide ligand

Xue-Qin Song^{a,*}, Li Wang^a, Qing-Fang Zheng^a, Wei-Sheng Liu^{b,*}

^a School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
^b College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

ARTICLE INFO

Article history: Received 4 February 2012 Received in revised form 3 April 2012 Accepted 3 April 2012 Available online 23 April 2012

Keywords: Salicylamide ligand Lanthanide coordination polymer Crystal structure Luminescence properties

1. Introduction

Materials incorporating lanthanide ions are of great interest for a wide range of optical applications, such as biomedical analysis and material science [1,2]. Trivalent lanthanide ions are fascinating in luminescence sources for their high color purity and relatively long lifetimes of the excited states. Among the luminescent lanthanide complexes, EuIII and TbIII compounds show strong luminescence in the visible region, making them to be good candidates for fluoroimmunoassays and structural probes. Lanthanide ions exhibit, however, low luminescence intensity due to the fact that the $4f \rightarrow 4f$ transitions are parity forbidden. One of the most useful strategies that has been employed to overcome this drawback is to combine the lanthanide ions through the coordination with organic ligands acting as sensitizers, which is the so-called "antenna effect" [3,4]. The ligands absorb UV or visible light and efficiently transfer the energy to the central lanthanide ion (intramolecular energy transfer), ultimately resulting in sensitized Ln(III) ion emission. Among the various organic ligands [5-10] used for constructing lanthanide coordination complexes, salicylamide derivatives provide a fascinating prospect in preparing lanthanide coordination polymers possessing strong luminescence properties [11] which prompts us to synthesize and investigate analogs of the extensive series of these ligands. Therefore we synthesis the new member of salicylamide derivatives namely, 3,6-bis{[(2'-

ABSTRACT

We present here new lanthanide coordination polymers based on a semirigid bridging furfurylsalicylamide ligand which were synthesized and characterized by elemental analysis, X-ray powder diffraction and IR measurements. The coordination polymer $[Pr_2L_3(NO_3)_6]_{\infty}$ displays a two-dimensional honeycomb-like framework, which can be regarded as a (6,3) topological network with praseodymium atoms acting as "three-connected" centers. The photoluminescence analysis indicates that there is an efficient ligand-to-LnIII energy transfer in TbIII complex and the ligand is an efficient "antenna" for TbIII. From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarges the arsenal for developing excellent luminescent lanthanide complexes of salicylamide derivatives.

© 2012 Published by Elsevier B.V.

furfurylaminoformyl)phenoxyl]methyl}-1,2,4,5-tetramethylbenzene (L) (Scheme 1) and the resulting lanthanide complexes to extend our systematic research .

As a result, the reaction of **L** with trivalent lanthanide ions afforded a novel two-dimensional honeycomb-like framework, which can be regarded as a (6,3) topological network with praseodymium atoms acting as "three-connected" centers. Under the excitation of UV light, SmIII, EuIII, TbIII and DyIII complexes exhibit characteristic emissions of corresponding lanthanide ions. The lowest triplet state energy levels of the ligand was calculated from the phosphorescence spectra of the GdIII complex at 77 K. The results presented herein indicated that the new semirigid bridging ligand exhibited a good antennae effect with respect to the TbIII ion due to efficient intersystem crossing and ligand to metal energy transfer.

2. Experimental

2.1. Materials and instrumentation

Furfurylamine was obtained from Alfa Aesar Co. Other commercially available chemicals were of analytical grade and were used without further purification. The lanthanide nitrates [12] were prepared according to the literature method.

The metal ions were determined by EDTA titration using xylenol orange as indicator. Carbon, nitrogen and hydrogen analyses were performed using an EL elemental analyzer. Melting points were determined on a Kofler apparatus. Powder X-ray diffraction patterns (PXRD) were determined with Rigaku-D/Max-II X-ray diffractometer with graphite-monochromatized Cu Kα radiation.

^{*} Corresponding authors. Tel.: +86 931 8843385; fax: +86 931 4938755 (X.-Q. Song), tel./fax: +86 931 8915151 (W.-S. Liu).

E-mail addresses: songxq@mail.lzjtu.cn (X.-Q. Song), liuws@lzu.edu.cn (W.-S. Liu).

^{0020-1693/\$ -} see front matter @ 2012 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.ica.2012.04.007

Scheme 1. The synthetic route of the ligand L.

Infrared spectra (4000–400 cm^{-1}) were obtained with KBr discs on a Therrno Mattson FTIR spectrometer. ¹H NMR spectra were recorded on a Bruker DRX 300 spectrometer in CDCl₃ solution with TMS as internal standard. Fluorescence measurements of the well grinded thick solid samples were made on a Hitachi F-4500 spectrophotometer equipped with a xenon lamp as the excitation source (front-face mode). Samples were placed between two quartz cover slips and the excitation and emission slit of 2.5 nm were used. The 77 K solution-state phosphorescence spectra of the Gd(III) complex was recorded with solution samples (a 1:1 ethyl acetate-MeOH (v/v) mixture) loaded in a quartz tube inside a quartz-walled optical Dewar flask filled with liquid nitrogen in the phosphorescence mode [13]. Quantum yields were determined by an absolute method [14] using an integrating sphere on FLS920 of Edinburgh Instrument. The luminescence decays were recorded using a pumped dye laser (Lambda Physics model FL2002) as the excitation source. The nominal pulse width and the line width of the dye-laser output were 10 ns and 0.18 cm^{-1} , respectively. The emission of the sample was collected by two lenses in a monochromator (WDG30), detected by a photomultiplier and processed by a Boxcar Average (EGG model 162) in line with a microcomputer. Reported quantum yields and luminescence lifetimes are averages of at least three independent determinations. The estimated errors for quantum yields and luminescence lifetimes are 10%.

2.2. Synthesis of the ligand

The synthetic route for the ligand (**L**) is shown in Scheme 1. 2-furfurylsalicylamide was prepared according to the literature procedure with minor modifications [15] and 1,4-bis(bromo-methyl)-2,3,5,6-tetramethylbenzene [16] were prepared according to the literature.

Table	1
-------	---

Crystal data and structure refinement parameters for Pr(III) complex.

Empirical formula Crystal system, space group Unit cell dimensions	C ₁₀₈ H ₁₀₈ N ₁₂ O ₃₆ Pr ₂ Triclinic, <i>P</i> -1
a (Å)	11.729(6)
b (Å)	17.716(9)
c (Å)	20.360(10)
$ \begin{array}{l} \alpha \left(\circ \right) \\ \beta \left(\circ \right) \\ \gamma \left(\circ \right) \\ V \left(\dot{\mathbf{A}}^{3} \right) \end{array} $	69.109(6) 89.186(6) 89.739(7) 3952(3)
Z, Calculated density (kg/m ³) Absorption coefficient (mm ⁻¹) F(000)	1, 1.021 0.671 1244
Crystal size (mm)	$0.46\times0.45\times0.31$
Theta range for data collect (°) Limiting indices	2.03–25.01 $-13 \le h \le 13, -21 \le k \le 16,$ $-24 \le l \le 24$
Reflections collected/unique Completeness to theta = 25.01 (%) Data/restraints/parameters Goodness-of-fit on F^2 Final <i>R</i> indices [<i>I</i> > $2\sigma(I)$] <i>R</i> indices (all data)	20017/13537 [$R(int) = 0.0631$] 97.2 13537/2/712 1.000 $R_1 = 0.0751, wR_2 = 0.1580$ $R_1 = 0.1405, wR_2 = 0.1685$

To a solution of 2-furfurylsalicylamide (2.28 g, 10.5 mmol) in dry acetone was added 1.52 g (11 mmol) dried K₂CO₃, and the mixture was stirred for 30 min at room temperature, 1.59 g (5 mmol) 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzenezene in 20 ml of dry acetone was added dropwise in 30 min and the resulting solution stirred and heated to reflux for 24 h. After cooling down, inorganic salts were separated by filtration and the solvent removed from the filtrate under reduced pressure. The crude product was recrystallized with ethyl acetate to give a white solid. 2.55 g, Yield 86%. M.p. 151-152 °C. Anal. Calc. for C₃₆H₃₆N₂O₆: C, 72.95; H, 6.12; N, 4.73. Found: C, 72.67; H, 6.14; N, 4.76%. IR (KBr, v, cm⁻¹): 3375 (s), 2912 (m), 2886 (w), 1645 (s, C=0), 1597 (m), 1532 (s), 1481 (m), 1293 (s),1226 (s, Ar–O), 752 (s). ¹H NMR (CDCl₃, 300 MHz): δ : 2.25 (s, 12H, CH₃), 4.41 (d, 4H, NHCH₂, I = 3.6 Hz, 5.25 (s, 4H, OCH₂), 5.80 (d, 2H, furan d, I = 2.7 Hz), 6.13 (m, 2H, furan d, J = 2.1 Hz), 7.09–7.54 (m, 6H, ArH), 7.53 (t, 2H, Ar, J = 5.4 Hz), 8.11 (t, 2H, NH), 8.31 (d, 2H, Ar, J = 6.9 Hz).

2.3. Synthesis of the complexes

To a clear solution of L (0.086 g, 0.1 mmol) in CHCl₃ (2 ml) was added Ln(NO₃)₃·5H₂O (0.15 mmol) in 10 ml of ethyl acetate. The resulting solution was left stirring overnight at room temperature to afford a pale white solid which was filtered off, washed three times with ethyl acetate and CHCl₃ respectively, and dried over CaCl₂ for 3 days to give the product in 70–80% yield. The single crystals of PrIII complex were obtained as follows: 10 ml of ethyl acetate was added to a clear solution of L (0.086 g, 0.1 mmol) in CHCl₃ (2 ml) in 30 ml test tube. The resulting solution was left standing for about 30 min, then Pr(NO₃)₃·5H₂O (0.15 mmol) in 10 ml of ethyl acetate was added carefully and sealed for crystallization at room temperature. After about two weeks pale green crystals suitable for analysis were obtained.

2.4. X-ray single-crystal diffraction analysis

Structure diffraction intensities for PrIII complex were carried out on a Bruker SMART Apex CCD area detector diffractometer (Mo K α , λ = 0.71073 Å) at 293 K. Lorentz-polarization and absorption corrections were applied for the compound. The structure was solved with direct methods and refined with full-matrix

Table 2
Selected bond lengths (Å) and angles (°) for Pr(III) complex.

_								
	Pr(1)-O(8)	2.393(6)	Pr(1)-O(5)	2.396(5)	Pr(1)-O(2)	2.422(5)	Pr(1)-O(11)	2.535(7)
	Pr(1)-O(17)	2.541(6)	Pr(1)-O(16)	2.544(6)	Pr(1)-O(13)	2.546(6))	Pr(1)-O(10)	2.551(6)
	Pr(1)-O(14)	2.555(8)						
	O(8) - Pr(1) - O(5)		77.0(2)	O(8) - Pr(1) - O(2)		87.8(2)	O(5) - Pr(1) - O(2)	82.60(19)
	O(8) - Pr(1) - O(11)		82.7(3) 77.8(8)	O(5) - Pr(1) - O(11)		146.3(3)	O(2) - Pr(1) - O(11)	123.5(2)
	O(8) - Pr(1) - O(17)		81.8(2) 118.7(6)	O(5) - Pr(1) - O(17)		78.9(2)	O(2) - Pr(1) - O(17)	160.40(18)
	O(11)-Pr(1)-O(17)		71.8(3)	O(8) - Pr(1) - O(16)		128.4(2)	O(5) - Pr(1) - O(16)	101.8(2)
	O(2) - Pr(1) - O(16)		143.7(2)	O(11) - Pr(1) - O(16)		70.6(3)	O(17) - Pr(1) - O(16)	48.5(2)
	O(8) - Pr(1) - O(13)		153.2(2)	O(5) - Pr(1) - O(13)		123.2(3)	O(2) - Pr(1) - O(13)	78.6(2)
	O(11)-Pr(1)-O(13)		85.6(3)	O(17)-Pr(1)-O(13)		117.2(2)	O(16)-Pr(1)-O(13)	68.8(2)
	O(8) - Pr(1) - O(10)		78.3(2)	O(5) - Pr(1) - O(10)		147.2(2)	O(2) - Pr(1) - O(10)	75.3(2)
	O(11)-Pr(1)-O(10)		48.3(2)	O(17)-Pr(1)-O(10)		118.4(2)	O(16) - Pr(1) - O(10)	110.4(2)
	O(13)-Pr(1)-O(10)		76.0(3)	O(8) - Pr(1) - O(14)		149.5(2)	O(5) - Pr(1) - O(14)	74.3(2)
	O(2) - Pr(1) - O(14)		78.7(2) 130.23(11)	O(11) - Pr(1) - O(14)		127.4(3)	O(17) - Pr(1) - O(14)	102.1(2)
	O(16)-Pr(1)-O(14)		68.2(2)	O(13)-Pr(1)-O(14)		49.7(2)	O(10)-Pr(1)-O(14)	123.2(2)

least squares on F^2 using the SHELXL-97 program package [17]. All non-hydrogen atoms were subjected to anisotropic refinement, and all hydrogen atoms were added in idealized positions and refined isotropically. Crystal data and details of the refinement are summarized in Table 1, representative bond lengths (Å) and angles (°) are presented in Table 2. CCDC reference numbers 863911.

3. Results and discussion

3.1. Physical measurements

Analytical data for the newly synthesized complexes, listed in Table 3, conforms to a 2:3 metal-to-L stoichiometry for nitrate complexes. All complexes are soluble in DMF, DMSO, ethanol, methanol and slightly soluble in ethyl acetate. The molar conductance of the complexes in methanol (see Table 3) indicate that all complexes act as non-electrolytes.

As shown in Table 4 and Fig. 1, the characteristic band of carbonyl group of free ligand **L** is shown at 1645 cm^{-1} . The absence of the band round 1645 cm^{-1} which is instead of a new band at ca 1611 cm^{-1} of the complex compared to the free ligand indicates

the complete coordination of the ligand. Weak absorptions observed in the range of 2900–2950 cm⁻¹ can be attributed to the v_{CH2} of the ligand. The absorption bands assigned to the coordinated nitrates were observed as two group bands at about 1484 cm⁻¹ (v_1) and 1295 cm⁻¹ (v_4) for the complexes. The differences between the strongest absorption band v_1 and v_4 of nitrate group lie in ca 180 cm⁻¹, indicating that coordinated nitrate groups in the complexes are bidentate ligands [18], the v_3 of free nitrate group disappears in the spectra of the complexes which is in agreement with the results of the conductivity experiment, implying that three nitrate groups are all in coordination sphere. The room temperature PXRD patterns of the PrIII, SmIII, EuIII, GdIII, TbIII, DyIII complexes with the ligand L as well as that of simulation for PrIII complex single crystal are unfolded from 5° to 40° as shown in Fig. 2. According to the elemental analysis, IR and PXRD, complexes of the ligand have similar coordination structure with PrIII complex.

3.2. Crystal structure descriptions

The structure comprises of a covalently bonded two-dimensional (2D) honeycomb of composition $[Pr_2(NO_3)_6L_3]_{\infty}$ crystallized

Table 3

Analytical and molar conductance data for the complexes (calculated values in parentheses).

Complex	Elemental Analysis (%	$\Lambda m(\Omega^{-1} \cdot cm^2 \cdot mol^{-1})$			
	С	Н	Ν	Ln	
$Pr_2L_3(NO_3)_6$	53.18 (53.34)	4.46 (4.48)	6.94 (6.91)	11.54 (11.59)	68.4
$Sm_2L_3(NO_3)_6$	53.11 (53.19)	4.45 (4.46)	6.86 (6.89)	11.79 (11.83)	73.9
$Eu_2L_3(NO_3)_6$	52.74 (52.86)	4.42 (4.44)	6.88 (6.85)	12.44 (12.38)	65.8
$Gd_2L_3(NO_3)_6$	52.54 (52.63)	4.43 (4.42)	6.79 (6.82)	12.69 (12.76)	72.3
$Tb_2L_3(NO_3)_6$	52.67 (52.56)	4.40 (4.41)	6.80 (6.81)	12.83 (12.88)	75.5
$Dy_2L_3(NO_3)_6$	52.26 (52.41)	4.38(4.40)	6.76 (6.79)	13.05 (13.13)	74.8

^a Data in parentheses are calculated values.

Table 4

Tuble 1			
The most important IR	bands for the	lanthanide nitrate	$complexes(cm^{-1}).$

ν (C=0)	v (C-O-C)	$v_1(NO_3^-)(NO_3^-)(NO_3^-)$	$v_4 (NO_3^-)$	$v_2 (NO_3^-)$	$v_3(NO_3^-)$	$ v_1 - v_4 $
1645	1226	_	-	-	_	
1611	1224	1484	1295	1029	816	189
1610	1221	1485	1303	1028	815	182
1611	1224	1479	1300	1029	817	179
1611	1222	1482	1303	1028	817	179
1611	1223	1484	1300	1033	816	184
1612	1222	1484	1302	1020	815	182
	v (C=O) 1645 1611 1610 1611 1611 1611 1611 1612	v (C=0) v (C-O-C) 1645 1226 1611 1224 1610 1221 1611 1224 1611 1224 1611 1222 1611 1222 1611 1222 1611 1223 1612 1222	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fig. 1. IR Spectra of ligand L (solid line) and it's Tb(III) complex in solid state.

Fig. 2. Powder x-ray diffraction patterns of complexes.

in the triclinic $P\bar{1}$ space group which is quite different from the structure of PrIII complex reported recently [11g]. As shown in Fig. 3, each Pr(III) node lies in a distorted monocapped square antiprism coordination sphere, which is defined by three carbonyl oxygen and six nitrate oxygen donors with Pr–O distances range from 2.393(5) to 2.555(7) Å. The two carbonyl oxygens of the same ligand are coordinated to the two different PrIII ion in a trans configuration. Each praseodymium center, shown as green large spheres in Fig. 4, connects three ligands, While, each ligand molecule is connected to two praseodymium atoms. The combination of bridging **L** and nona-coordinated praseodymium atoms build up a two-dimensional honeycomb-like framework in the ab plane, which can be regarded as a (6,3) topological network with praseodymium atoms acting as "three-connected" centers (Fig. 4).

3.3. Luminescence properties

Upon UV irradiation, the free ligand emits a strong blue luminescence (λ_{max} at *ca.* 455 nm) that can be easily detected with naked eyes. However, upon complexation with trivalent lanthanide this emission is replaced by the typical luminescent color arising from LnIII cation. The luminescence characteristics of the ligand and lanthanide complexes in solid state were measured at room temperature under identical experimental conditions, and the luminescence data in solid state are listed in Table 5.

For the SmIII complex of **L**, the emission intensity is the weakest, but two characteristic bands can still be observed. They were attributed to ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2) transitions (Fig. 5). The solid state excitation and emission spectrum of europium complex of **L**

Fig. 3. ORTEP plot of Pr(III) complex showing the local coordination environment with thermal ellipsoids at 30% probability (hydrogen atoms are omitted for clarity).

Fig. 4. 2D honeycomb coordination polymer of $[Pr_2L_3(NO_3)_6]_{\infty}$ (hydrogen atoms are omitted for clarity).

	Slit (nm)	λ_{ex} (nm)	$\lambda_{\rm em} ({\rm nm})$	RFI	Assignment	$\tau (ms)^{a}$	$\Phi\%^{a}$
$Sm_2L_3(NO_3)_6$	2.5	319	563 598	56.77 74.7	${}^4G_{5/2} \rightarrow {}^6H_{5/2} \\ {}^4G_{5/2} \rightarrow {}^6H_{7/2}$	0.043	-
$Eu_2L_3(NO_3)_6$	2.5	397	580 593 618	12.55 76.59 187.5		0.314	0.49
$Tb_2L_3(NO_3)_6$	2.5	320	492 546 583	376.4 1325 87.5		0.926	2.4
$Dy_2L_3(NO_3)_6$	2.5	320	457 482 573	4.53 128.5 125.7	$\label{eq:15} \begin{array}{l} {}^{4}I_{15/2} \rightarrow {}^{6}H_{15/2} \\ {}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2} \\ {}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2} \end{array}$	0.069	-

^a Luminescence lifetimes and quantum yield values are reported here with an error of ±10%.

at room temperature is shown in Fig. 6 and Fig. 7 respectively. The excitation spectrum of europium complex of **L** exhibited a series of sharp lines characteristic of the EuIII energy-level structure and assigned to transitions between the $^{7}F_{0,1}$ and $^{5}L_{6}$, $^{5}D_{2}$ levels [19],

Table 5

which indicates that the EuIII luminescence is not efficiently sensitized by the ligand which is similar to those reported previously [11]. There were four characteristic peaks of EuIII shown in the emission spectra, which were attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ (580 nm),

Fig. 5. Room-temperature emission spectra for samarium complex of ligand L (λ_{ex} = 319 nm, excitation and emission passes = 2.5 nm) in the solid state.

Fig. 6. Room-temperature excitation spectra for europium complex of ligand **L** with emission monitored at approximately 619 nm (excitation and emission passes = 2.5 nm) in the solid state.

 ${}^5D_0 \rightarrow {}^7F_1$ (593 nm), ${}^5D_0 \rightarrow {}^7F_2$ (619 nm) and ${}^5D_0 \rightarrow {}^7F_4$ (689 nm). The sharpness of the nondegenerate transition (${}^5D_0 \rightarrow {}^7F_0$) indicates that all the EuIII coordinated in the sample have essentially identical ligand coordination and structural environments. The intensity of the ${}^5D_0 \rightarrow {}^7F_2$ transition (electric dipole) is stronger than that of the ${}^5D_0 \rightarrow {}^7F_1$ transition (magnetic dipole), indicating that the coordination environment of the EuIII ion is asymmetric [20]. For TbIII complex, the emission intensity is stronger than that of the other three complex in the same experimental conditions. Four characteristic peaks are shown in Fig. 8, assigned to the ${}^5D_4 \rightarrow {}^7F_J$ (J = 3, 4, 5, 6) transitions. For DyIII complex, three characteristic bands can be seen in the emission spectra (Fig. 9), which are attributed to transitions of 456 nm (${}^4I_{15/2} \rightarrow {}^6H_{15/2}$) 484 nm (${}^4F_{9/2} \rightarrow {}^6H_{15/2}$) and 574 nm (${}^4F_{9/2} \rightarrow {}^6H_{13/2}$). Compared with the emission spectra of the four complexes (Table 5), the relative transition intensity changes in the order of TbIII > EuIII > DyIII > SmIII.

In addition to steady-state measurements, the luminescence lifetimes of the Sm $(4G_{5/2})$, Eu $(5D_0)$, Tb $(5D_4)$ and Dy $(4F_{9/2})$ excited

Fig. 7. Room-temperature emission spectra for europium complex of ligand L (λ_{ex} = 397 nm, excitation and emission passes = 2.5 nm) in the solid state.

Fig. 8. Room-temperature emission spectra for terbium complex of ligand L ($\lambda_{ex} = 320$ nm, excitation and emission passes = 2.5 nm) in the solid state.

states and quantum yield determinations for Eu, Tb complexes were determined with the results also summarized in Table 5. The relatively long luminescence lifetimes and larger quantum yield values are an indication that the bridging ligand provides a significant level of protection from nonradiative deactivation of lanthanide cations by the solvent molecules. The longer lifetime and the larger quantum yield of TbIII than that of EuIII is most likely due to the insufficient inter-system crossing (ISC) of EuIII complexes, as further supported by the energy transfer discussed below.

To demonstrate the energy transfer process, the phosphorescence spectrum of GdIII complex of **L** was measured for the triplet energy-level data. From the phosphorescence spectra (Fig. 10), the triplet energy level ($^{3}\pi\pi^{*}$) of GdIII complex, which corresponds to its lower wavelength emission edge, is 25 126 cm⁻¹ (398 nm). Because the lowest excited state, $^{6}P_{7/2}$ ($E(^{6}P_{7/2}) = 32\,000$ cm⁻¹) of GdIII is too high to accept energy from the ligand, the data obtained from the phosphorescence spectra actually reveal the triplet

Fig. 9. Room-temperature emission spectra for dysprosium complex of ligand L (λ_{ex} = 320 nm, excitation and emission passes = 2.5 nm) in the solid state.

Fig. 10. Phosphorescence spectra of Gd(III) complex of ligand **L** in methanol–ethyl acetate solution at 77 K.

energy level of ligand in lanthanide complexes. In general, the sensitization pathway in luminescent europium complexes consists of excitation of the ligands into their excited singlet states, subsequent intersystem crossing of the ligands to their triplet states and energy transfer from the triplet state to the ${}^{5}D_{I}$ manifold of the EuIII ions, followed by internal conversion to the emitting ⁵D₀ state. Finally, the EuIII ion emits when a transition to the ground state occurs [21]. Moreover, electron transition from the higher excited states, such as ${}^{5}D_{3}$ (24800 cm⁻¹), ${}^{5}D_{2}$ (21200 cm⁻¹) and ${}^{5}D_{1}$ (19000 cm⁻¹) to ${}^{5}D_{0}$ (17500 cm⁻¹) becomes feasible by internal conversion, and most of the photophysical processes take place in this excited states. Consequently, most europium complexes give rise to typical emission bands at ca. 581, 593, 614, 654 and 702 nm, corresponding to the deactivation of the ${}^{5}D_{0}$ excited state to the ${}^{7}F_{I}$ ground states (I = 0-4). In a similar way, the 4f electrons of the TbIII ion are excited to the ⁵D₁ ion manifold from the ground state. Finally, the TbIII ion emits when the 4f electrons undergo a transition from the excited state of ${}^{5}D_{4}$ to the ${}^{7}F_{I}$ ground states (I = 6-3). Latva's empirical rule [22] states that an optimal ligand-to-metal energy transfer process for LnIII needs $\Delta E = {}^{3}\pi\pi^{*}$ - $5D_{I}$ (2500–4000 cm⁻¹ for EuIII and 2500–4500 cm⁻¹ for TbIII). The triplet energy level of the salicylamide ligand $(25\,126\,cm^{-1})$ is higher than the ${}^{5}D_{0}$ level of EuIII (17 500 cm⁻¹) and the ${}^{5}D_{4}$ level of TbIII (20400 cm⁻¹). This therefore supports the observation of stronger sensitization of the terbium complexes than the europium complexes because of the smaller overlap between the ligand triplet and europium ion excited states.

For the energy gap between the excited luminescent states and the highest *J* levels of the ground states of SmIII and DyIII is *ca*. 7500 and 7800 cm⁻¹, considerably smaller than that of EuIII and TbIII with values around 12300 and 14800 cm⁻¹ [23]. As a result the lifetime measurements for both the SmIII and DyIII complexes were found to be 43 and 69 μ s, respectively, based on a singleexponential fit of the data, which are much shorter than those observed with EuIII or TbIII due to the higher water sensitivity [24].

In contrast to SmIII, EuIII, TbIII and DyIII complexes of similar ligands reported previously [11], the lifetimes are shorter slightly, suggesting that one or more nonradiative pathways are assisting in the deactivation of the excited state and shortening the observed lifetimes, since the triplet energy level of the antenna only changed slightly with the backbone group, which excludes the possibility that the quenching of luminescence is due to a change in the nature of the antenna triplet state. The most probable explanation may be the bulky of the backbone which could weaken the coordination bond and thus the efficiency of the energy transfer.

4. Conclusions

We presented here a new semirigid bridging ligand featuring N-furfurylamide arms which can form stable coordination polymers with lanthanide nitrates. The coordination polymer $\{Pr_2(NO_3)_6L_3\}_{\infty}$ displays a two-dimensional honeycomb-like framework in the ab plane, which can be regarded as a (6,3) topological network with praseodymium atoms acting as "three-connected" centers. The luminescent properties of the SmIII, EuIII, TbIII and DyIII complexes were investigated in detail. It is worthy noting that the bridging ligand provides a significant level of protection from nonradiative deactivation of lanthanide cations by the solvent molecules and exhibits a good antennae effect with respect to the TbIII ion due to efficient intersystem crossing and ligand-to-metal energy transfer. Our present findings provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarges the arsenal for developing excellent luminescent lanthanide complexes of salicylamide derivatives.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21161011).

Appendix A. Supplementary material

CCDC 863911 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.ica.2012.04.007.

References

- J.-G.G. Bünzli, S. Comby, A.-S. Chauvin, C.D.B. Vandevyver, J. Rare Earth 25 (2007) 257.
- [2] (a) F.Y. Li, H. Yang, C.H. Huang, Rare Earth Coordination Chemistry (2010) 529;
 (b) J. Yu, D. Parker, R. Pal, R.A. Poole, M.J. Cann, J. Am. Chem. Soc. 128 (2006)
- [3] J.-C. Bünzli, C. Piguet, Chem. Soc. Rev. 34 (2005) 1048.

- [4] M. Fernandes, S.S. Nobre, M.C. Goncalves, A. Charas, J. Morgado, R.A.S. Ferreira, L.D. Carlos, V. de Zea Bermudez, J. Mater. Chem. 19 (2009) 733.
- [5] (a) M. Giraud, E.S. Andreiadis, A.S. Fisyuk, R. Demadrille, J. Pécaut, D. Imbert, M. Mazzanti, Inorg. Chem. 47 (2008) 3952;
 (b) E.S. Andreiadis, R. Demadrille, D. Imbert, J. Pécaut, M. Mazzanti, Chem.-Eur. J. 15 (2009) 9458.
- [6] F.-Y. Yi, Q. -P Lin, T. -H Zhou, J.-G. Mao, Cryst. Growth. Des. 10 (2010) 1788.
- [7] (a) G.F. de Sá, O.L. Malta, C. de Mello Doneg'a, A.M. Simas, R.L. Longo, P.A.
 - Santa-Cruz, E.F. da Silva Jr., Coord. Chem. Rev. 196 (2000) 165; (b) P.N. Remya, S. Biju, M.L.P. Reddy, A.H. Cowley, M. Findlater, Inorg. Chem. 47 (2008) 7396:

(c) D.B.A. Raj, B. Francis, M.L.P. Reddy, R.R. Butorac, V.M. Lynch, A.H. Cowley, Inorg. Chem. 49 (2010) 9055;

(d) S. Biju, D.B.A. Raj, M.L.P. Reddy, C.K. Jayasankar, A.H. Cowley, M. Findlater, J. Mater. Chem. 19 (2009) 1425.

- [8] (a) M. Seitz, M.D. Pluth, K.N. Raymond, Inorg. Chem. 46 (2007) 351;
 - (b) E.G. Moore, C.J. Jocher, J. Xu, E.J. Werner, K.N. Raymond, Inorg. Chem. 46 (2007) 5468;

(c) E.G. Moore, J. Xu, C.J. Jocher, I. Castro-Rodriguez, K.N. Raymond, Inorg. Chem. 47 (2008) 3105;

(d) A.P.S. Samuel, E.G. Moore, M. Melchior, J. Xu, K.N. Raymond, Inorg. Chem. 47 (2008) 7535;

- (e) A.P.S. Samuel, J. Xu, K.N. Raymond, Inorg. Chem. 48 (2009) 687.
- [9] A.J. Amoroso, M.W. Burrows, R. Haigh, M. Hatcher, M. Jones, U. Kynast, K.M.A. Malik, D. Sendor, Dalton Trans. 16 (2007) 1630.
- [10] (a) N. Chatterton, Y. Bretonnière, J. Pécaut, M. Mazzanti, Angew. Chem., Int. Ed. 44 (2005) 7595;
 - (b) G.S. Kottas, M. Mehlstäubl, R. Fröhlich, L. De Cola, Eur. J. Inorg. Chem. 22 (2007) 3465;

(c) LJ. Charbonnière, S. Mameri, D. Flot, F. Waltz, C. Zandanel, R.F. Ziessel, Dalton Trans. 22 (2007) 2245;

(d) L.S. Natrajan, P.L. Timmins, M. Lunn, S.L. Heath, Inorg. Chem. 46 (2007) 10877;

(e) L. Benisvy, P. Gamez, W.T. Fu, H. Kooijman, A.L. Spek, A. Meijerink, J. Reedijk, Dalton Trans. 24 (2008) 3147;

(f) N.M. Shavaleev, F. Gumy, R. Scopelliti, J.-C.G. Bünzli, Inorg. Chem. 48 (2009) 5611;

(g) R. Feng, F.-L. Jiang, M.-Y. Wu, L. Chen, C.-F. Yan, M.-C. Hong, Cryst. Growth. Des. 10 (2010) 2306.

- [11] (a) J. Zhang, Y. Tang, N. Tang, M.-Y. Tan, W.-S. Liu, K.-B. Yu, J. Chem. Soc., Dalton Trans. 14 (2002) 832;
 - (b) Y. Tang, J. Zhang, W.-S. Liu, M.-Y. Tan, K.-B. Yu, Polyhedron 24 (2005) 1160;
 - (c) X.-Q. Song, W.-S. Liu, W. Dou, Y.-W. Wang, J.-R. Zheng, Z.-P. Zang, Eur. J. Inorg. Chem. 11 (2008) 1901;

(d) X.-Q. Song, W.-S. Liu, W. Dou, J.-R. Zheng, X.-L. Tang, H.-R. Zhang, D.-Q. Wang, Dalton Trans. 24 (2008) 3582;

(e) X.-Q. Song, W. Dou, W.-S. Liu, Y. -L. Guo, X. -L. Tang, Inorg. Chem. Commun. 10 (2007) 1058;

(f) Y.-W. Wang, Y.-L. Zhang, W. Dou, A.-J. Zhang, W.-W. Qin, W.-S. Liu, Dalton Trans. 39 (2010) 9013;

(g) Q. Wang, X. Yan, H. Zhang, W. Liu, Y. Tang, M. Tan, J. Solid State Chem. 184 (2011) 164;

- (h) X.-Q. Song, W.K. Dong, Y.J. Zhang, W.-S. Liu, Luminescence 25 (2010) 328.
 [12] K. Nakagawa, K. Amita, H. Mizuno, Y. Inoue, T. Hakushi, Bull. Chem. Soc. Jpn. 60 (1987) 2037.
- [13] F. Gutierrez, C. Tedeschi, L. Maron, J.-P. Daudey, R. Poteau, J. Azema, P. Tisnès, C. Picard, Dalton Trans. 9 (2004) 1334.
- [14] M.S. Wrighton, D.S. Ginley, D.L. Morse, J. Phys. Chem. 78 (1974) 2229.
- [15] K. Michio, Bull. Chem. Soc. Jpn. 49 (1976) 2679.
- [16] Z. Jiri, P. Magdalena, H. Petr, T. Milos, Synthesis 110 (1994) 1132.
- [17] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution and Refinement, University of Göttingen, Göttingen, Germany, 1997.
- [18] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978. p. 227.
 - [19] M. Albin, R.R. Whittle, W.D. Horrocks Jr., Inorg. Chem. 24 (1985) 4591.
 - [20] A.F. Kirby, D. Foster, F.S. Richardson, Chem. Phys. Lett. 95 (1983) 507.
 - [21] (a) R. Pavithran, N.S. Saleesh Kumar, S. Biju, M.L.P. Reddy, S. Álves Jr., R.O. Freire, Inorg. Chem. 45 (2006) 2184;
 (b) R. Pavithran, M.L.P. Reddy, S. Alves Jr., R.O. Freire, G.B. Rocha, P.P. Lima, Eur.
 - J. Inorg. Chem. 20 (2005) 4129; (c) M. Shi, F. Li, T. Yi, D. Zhang, H. Hu, C. Huang, Inorg. Chem. 44 (2005) 8929.
 - [22] M. Latva, H. Takalo, V.M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis, J.
 - Kanakare, J. Lumin. 75 (1997) 149.
 - [23] S.W. Magennis, S. Parsons, Z. Pikramenou, Chem. Eur. J. 8 (2002) 5761.
 - [24] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 80th ed., CRC Press, Boca Raton, FL, 1999.