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ABSTRACT

A new keto reductase (ArQR), identified from Agrobacterium radiobacter ECU2556, can efficiently reduce 3-quinuclidinone in excellent
enantioselectivity and high space�time yield for the synthesis of (R)-3-quinuclidinol, a chiral building block of many antimuscarinic agents.
This is the first time that a high yield of (R)-3-quinuclidinol up to 916 g L�1 d�1 using a bioreduction approach is reported.

Biocatalysis has been growing rapidly as a practical and
environmentally friendly alternative to traditional chemical
synthesis to access secondary alcohols,1 which are intermedi-
ates of many pharmaceuticals. For example, optically pure
(R)-3-quinuclidinol is an important chiral building block of
many antimuscarinic agents for the treatment of COPD
(chronic obstructive pulmonary disease),2 such as talsacli-
dine, revatropate, solifenacin, and aclidinium bromide.3

Therearevariousmethods to synthesize (R)-3-quinuclidinol,
including chemical synthesis, enzymatic kinetic resolution, and
asymmetricbioreduction.Chemical synthesis isoneof themost

efficient routes to produce (R)-3-quinculidinol. For exam-
ple, asymmetric hydrogenation of 3-quinuclidinone with
RuBr2[(S,S)-xylskewphos](pica) in a base containing etha-
nol has afforded (R)-3-quinuclidinol in 88�90% ee.4 A
combined catalyst system of RuCl2[(S)-binap][(R)-iphan]
and t-C4H9OK in 2-propanol afforded the chiral alcohol in
97�98% ee,5 but the trace metal contamination in the
product and the incredible fluctuation in the price of rare
metals over the past decade quite rightly make a cause for
concern in the pharmaceutical industry. Enzymatic resolu-
tion of the racemic quinuclidinol ester is a reliable proce-
dure to obtain (R)-3-quinuclidinol in high optical purity.
Aspergillus melleus protease was used for hydrolyzing
(()-3-(butyryloxy)quinuclidinium butyrate, giving (R)-3-
quinuclidinol in 96%ee and 42%overall yield,6 despite the
necessary modification of the substrate prior to enzymatic
reaction and the unsatisfactory e50% yield, which limits
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the potential of the enzyme. In recent years, more research-
ers have beenpaying attention to the bioreduction approach
of producing (R)-3-quinuclidinol, since biocatalyzed asym-
metric reductions canoffer highly selective reactions, environ-
mentally benign processes, and energy-effective operations.7

RrQR from Rhodotorula rubra,8 QNR and BacC from
Microbacterium luteolum JCM 9174,9 and Nocardia sp.
WY120210 can convert 3-quinuclidinone stereospecifically
to (R)-3-quinuclidinol, but the common disadvantages of
all these reductaseswere their poor substrate tolerance and
low volumetric productivity, which limits their industrial
application.
Herein, a new reductaseArQR (GenBank accession no.:

YP_002542435.1) was identified from Agrobacterium
radiobacter ECU2556 through the screening of various
microorganisms stocked in our labratory. After heter-
ologous expression in E. coli, it can efficiently convert
3-quinuclidinone to (R)-3-quinuclidinol with high activity
and excellent enantioselectivity.
To construct the cofactor regeneration system,ArQR and

BmGDH(glucose dehydrogenase fromBacillusmegaterium)
were coexpressed in E. coli in a tandem mode. Considering
that the reduction of 3-quinuclidinone was a rate-limiting
step comparing with the oxidation step of glucose, E. coli
BL21 (DE3) (pET28a-ArQR-BmGDH), rather than E. coli
BL21 (DE3) (pET28a-BmGDH-ArQR), was chosen for
further research. The lyophilized cells were employed
as the biocatalyst to perform the reductive reaction of
3-quinuclidinone.
To optimze the reaction conditions, the biocatalyst

dosage, substrate loading, and external NADþ concentra-
tion have to be assessed. Because both the substrate and
product are water-miscible, all the reactions were per-
formed in aqueous solution. Initial experiments were
performed in10mLofpotassiumphosphatebuffer (200mM.
pH 7.0) with 5mmol of substrate (81 g/L), 1 μmol ofNADþ,
7.5 mmol of glucose, and 0.1 g of lyophilized cells of E. coli
(pET28a-ArQR-BmGDH), and the pH of the reaction mix-
ture was controlled at 7.0 by titrating 2 M NaOH. Surpris-
ingly, the substratewas completely transformed to the desired
product within merely 0.5 h (Table 1, entry 1). Clearly it was
possible to transformmore substrate, so the substrate loading
was raised to 162 g L�1 without changing the other condi-
tions, and the reaction was completed easily within 1.5 h
(Table 1, entry2). Ina stepwisemanner, a further attemptwas
made to convert 162 g L�1 substrate without external supple-
mentofNADþ. Itwas found that the conversionalso reached
100% in less than 4 h (Table 1, entry 3). When the substrate
was further increased up to 242 g L�1, without any external
NADþ, only 44% substrate was converted to product even if
the reaction timewas extended to 20 h (Table 1, entry 4). The

internal cofactor of the E. coli cells could probably not meet
the need of high substrate loading.
Further reactionwas tried using 242 g L�1 substrate and

0.1 mM of external NADþ. As expected, the substrate
conversion reached 99% in 4.5 h (Table 1, entry 5), and the
space�timeyieldof (R)-3-quinuclidinol reached916gL�1d�1.
Considering the internal content (ca. 9.7 μmol/g dry cell) of
NAD(H/þ) inE.coli cells,11 the total turnovernumber (TTN)
was estimated tobearound7500,which represents thehighest
among all the 3-quinuclidinone reductases reported to
date. The time course of bioreduction showed that increasing
the amount of NADþ gave faster bioreduction (Figure 1).

Otherwise, to be a good catalyst to render a chemical munu-
facturing process feasible, it needs tomeet the requirement of
g100 g L�1 substrate loading,e5 g L�1 biocatalyst loading,
e24 h reaction time, g98% conversion, and g99% ee.13

Table 1. Asymmetric Reduction of 3-Quinuclidinone HCl with
Coexpressed Cells of E. coli (pET28a-ArQR-BmGDH)a

entry

substrate

(g/L)

cell

(g/L)

NADþ
(mM)

time

(h) convc (%)

eec

(%)

1 81 10 0.1 0.5 100 >99

2 162 10 0.1 1.5 100 >99

3 162 10 0 4.0 100 >99

4 242 10 0 20 54 >99

5 242 10 0.1 4.5 100 (90)b >99

6 242 5 0.1 10 >99 (90)b >99

aReaction conditions: 3-quinuclidinoneHCl (0.8�2.4 g), dry cells of
E. coliBL21 harboring pET28a-ArQR-BmGDH(0.05�0.1 g), D-glucose
(1.5 equivalent), NADþ (0�1 μmol), 10 mL phosphate buffer (200 mM,
pH 7.0), 30 �C. pH was kept at 7.0 with 2 M NaOH. b Isolated yield of
(R)-3-quinuclidinol. cDetermined by GC analysis.

Figure 1. Reduction of 3-quinuclidinone-HCl by E. coli trans-
formats harboring pET28a-ArQR-BmGDH: (() 162 g/L sub-
strate, 0.1 mMNADþwas added; (9) 162 g/L substrate without
addition of NADþ; (2) 242 g/L substrate, 0.1 mM NADþ

added.
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Satisfactorily, the substrate was completely reduced to give
>99% conversion and>99% ee within 10 h even if the cell
dosage was cut down to 5 g L�1 (Table 1, entry 6). In the
practical case, the space time yield of (R)-3-quinuclidinol still
reached408 gL�1 d�1, indicating the great potential ofArQR
for industrial usage.
To investigate its intrinsic properties, the recombinant

reductase ArQR with an N-terminal His-tag was purified
to electrophoretic homogeneity by nickel affinity chroma-
tography. The specific activity of the crude cell-free extract
was 78Umg�1 powder, and it reached 198Umg�1 protein
with an increase of 2.5 folds after purification. Kinetic
parameters were measured using varied concentrations of
3-quinuclidinone andNADH. TheKmmeasured ofArQR
for 3-quinuclidinone was about 0.4 mM, which is one to 2
orders of magnitudes lower than those of all the quinucli-
dinone reductases ever reported. It indicates that the
enzyme has excellent affinity to substrate 3-quinuclidi-
none, implying that the reaction velocity will be high even
with a low substrate concentration, while for the enzymes
with high Km, such as RrQR, only 46% of the maximum
velocity was exhibited when the concentration of substrate
was 120 mM. The catalytic efficiency (kcat/Km) ofArQR is

290 s�1 mM�1, as listed in Table 2, which is also out-
standing as compared to other quinuclidinone reductases,
explaining the higher reaction velocity and shorter reaction
time of ArQR than the others.
To make the biocatalysis-based processes scalable, one

has to fulfill a certain requirement for throughput (volume
efficiency) which is industrially acceptable.14 Among all
the enzymes or cells that can reduce 3-quinuclidinone for
the synthesis of (R)-3-quinuclidinol (Table 2),ArQR is the
only one that can reduce >200 g L�1 substrate in a space
time yield as high as 916 g L�1 d�1, demonstrating its great
potential in industrial manufacturing.
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Table 2. Comparison of ArQR with Other Reductase Biocatalysts

biocatalyst coenzyme Km (mM)

kcat/Km

(s�1 mM �1)

substrate

(g/L)

% conversion

(time/h) % ee (config)

space�time yield

(g L�1 d�1) ref

RrQRa NADPH 145 n.d.g 100 100 (21) >99.9 (R) 90h Uzura et al.8

DnTR1b NADPH 8.713 0.0032 n.d.g n.d.g n.d.g n.d.g Chen et al12

WY1202 cellc n.d.g n.d.g n.d.g 16 95.3 (48) >99 (R) 6h Wang et al10

WY1406 celld n.d.g n.d.g n.d.g 10 95 (48) >99 (S) 4h Wang et al10

QNRe NADH 6.5 5.6h 51 100 (12) >99.9 (R) 80h Isotani et al9

BacCe NADH 13.8 0.083h 51 94 (12) >99.9 (R) 75h Isotani et al9

ArQRf NADH 0.4 290 242 100 (4.5) >99.9 (R) 916 This work

aQuinuclidinone reductase from Rhodotorula rubra. bTropinone reductase from Dendrobium nobile Lindl. cNocardia sp. WY1202 cell. d R.
erythropolisWY1406 cell. eQuinuclidinone reductase fromMicrobacterium luteolum JCM9174. fLyophilized cells ofE. coli (pET28a-ArQR-BmGDH).
g n.d. = not determined. hCalculated according to the references.
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