
Prompt HO₂ Formation Following the Reaction of OH with Aromatic Compounds under Atmospheric Conditions

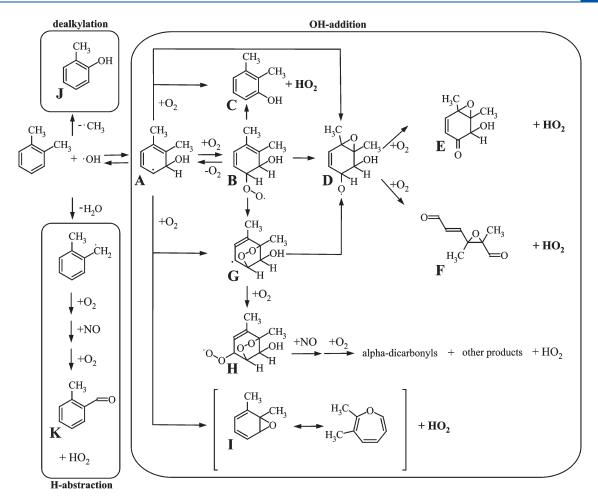
Sascha Nehr, Birger Bohn,* and Andreas Wahner

Institut für Energie- und Klimaforschung IEK-8, Troposphäre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

ABSTRACT: The secondary formation of HO₂ radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO_x (=OH + HO₂) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO₂ yields (HO₂ formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of

monocyclic aromatic hydrocarbons. The measured HO₂ formation yields are as follows: toluene, 0.42 ± 0.11 ; ethylbenzene, 0.53 ± 0.10 ; *o*-xylene, 0.41 ± 0.08 ; *m*-xylene, 0.27 ± 0.06 ; *p*-xylene, 0.40 ± 0.09 ; 1,2,3-trimethylbenzene, 0.31 ± 0.06 ; 1,2,4-trimethylbenzene, 0.37 ± 0.09 ; 1,3,5-trimethylbenzene, 0.29 ± 0.08 ; hexamethylbenzene, 0.32 ± 0.08 ; phenol, 0.89 ± 0.29 ; *o*-cresol, 0.87 ± 0.29 ; 2,5-dimethylphenol, 0.72 ± 0.12 ; 2,4,6-trimethylphenol, 0.45 ± 0.13 . For the alkylbenzenes HO₂ is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O₂. In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO₂ yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤ 0.3) for all investigated alkylbenzenes except *m*-xylene. For the hydroxybenzenes the currently proposed HO₂ coproducts are dihydroxybenzenes. For phenol and *o*-cresol the determined HO₂ yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO₂ forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.

INTRODUCTION


Aromatic hydrocarbons, such as benzene,¹ alkylbenzenes,^{2–5} and hydroxybenzenes,^{6,7} comprise a significant fraction of volatile organic compounds observed in urban areas. The emission of aromatics is mostly linked to anthropogenic activities like incomplete combustion of fossil fuels, evaporation from industrial production plants, and residential wood burning.^{1,8} During the daytime, the atmospheric degradation of aromatic hydrocarbons is almost exclusively initiated by the reaction with OH radicals⁹ and leads to the formation of ozone and secondary organic aerosol.^{10,11} Because of their atmospheric lifetimes of up to several days,¹² aromatics impact air quality on a local as well as on a regional scale.¹³

The current understanding of the OH-initiated atmospheric oxidation of alkylbenzenes is depicted in Figure 1 using the example of *o*-xylene. From kinetic experiments and product studies it is known that the OH + alkylbenzene reaction proceeds via (i) reversible OH-addition to the ring, (ii) H-atom abstraction from the C-H bonds (preferentially from substituent alkyl groups), and (iii) dealkylation. The bulk of the reaction (\geq 90%)⁹ proceeds via addition forming an aromatic-OH adduct (in the following briefly referred to as adduct) (Figure 1, A). The H-atom abstraction channel finally yielding benzaldehydes (Figure 1, K, NO reaction step required) and the dealkylation pathway^{14,15} (J) are of minor importance. The subsequent reactions of the adduct have

been widely studied experimentally.¹⁶⁻²³ Under atmospheric conditions the adduct predominantly reacts with O2 via both reversible addition to give a peroxy radical (adduct-O₂, Figure 1, B) and irreversible reaction pathways. Proposed major products are phenols (C), $^{14,24-27}$ epoxides (E, F), $^{27-31}$ oxepins (I), 32 and a bicyclic peroxy radical (H).³¹ The bicyclic peroxy radical can undergo reactions with NO and subsequently with O₂, finally yielding ring fragmentation products (e.g., α -dicarbonyls) and HO₂.³ ³ Recent research showed that organic nitrate formation in the bicyclic peroxy radical + NO reaction is a minor channel (<10%).³⁴ Phenols, epoxides, and oxepins are considered to be the coproducts of prompt HO2; i.e., HO2 formed without the preceding reaction of peroxy radicals with NO. Formation of phenols $^{14,24-27}$ and epoxides $^{27-31}$ was experimentally confirmed, whereas the oxepin pathway was shown to be inoperative at least for the OH + benzene reaction.³⁵ There is no experimental evidence for oxepin formation from alkylbenzenes but quantum chemical computations support this pathway.³² Among the currently proposed prompt HO₂ coproducts, only phenols

Special Issue: A. R. Ravishankara Festschrift

Received:	November 14, 2011
Revised:	December 22, 2011
Published:	December 23, 2011

Figure 1. Postulated reaction pathways of the OH-initiated oxidation of o-xylene.^{14,61,66} For convenience, different resonance structures and possible isomers are not shown. HO₂ formed without preceding NO reaction steps is indicated in boldface.

were quantified for most of the investigated alkylbenzenes.^{14,26} In these cases the measurement of prompt HO₂ yields can help set an upper limit to the combined yield of the epoxides and oxepins.

The OH-initiated atmospheric oxidation of hydroxybenzenes is displayed in Figure 2 using the example of o-cresol. Reactions proceed via (i) reversible OH-addition to the ring and (ii) H-atom abstraction from the substituent hydroxyl group (H-atom abstraction from the alkyl substituent is negligible). Comparable to the OH + alkylbenzene reaction, the addition pathway is predominant (\geq 90%) and the H-atom abstraction channel finally yielding nitrophenols (Figure 2, IX, NO₂ reaction step required) is of minor importance.³⁷ Under atmospheric conditions, the subsequent fate of the aromatic-OH adduct is also governed by the reaction with O_2 . However, the adduct + O_2 chemistry is different for hydroxybenzenes and to date no experimental evidence is available for intermediately formed peroxy radicals. Several pathways were proposed for the adduct + O2 reaction depending on the OH-addition site with respect to the existing hydroxyl substituent.³⁶ Major confirmed products are dihydroxybenzenes (II) most likely stemming from ortho-OH-addition followed by direct H-displacement and 1,4-benzoquinones (VI).³⁶ Formation of 1,4-benzoquinones was assigned to *ipso*-OH-addition, yielding a monocyclic peroxy radical (IV) upon reaction with O₂. The peroxy radical can undergo further reactions with NO and subsequently with O₂, finally yielding 1,4benzoquinones. A product study by Olariu et al.³⁶ suggests that the bulk of the OH + hydroxybenzene reaction (>0.6) proceeds via *ortho*-OH-addition whereas *ipso*-OH-addition is of minor (<0.1) importance. No experimental evidence was reported for *meta-* and/or *para*-OH-addition. Thus, prompt HO₂ is proposed to result exclusively from *ortho*-OH-addition. The measurement of prompt HO₂ yields can help to experimentally confirm the HO₂ forming reaction channels by matching the previously reported³⁶ formation yield of dihydroxybenzenes.

EXPERIMENTAL METHODS

The instrument used in this work was originally developed to measure total OH reactivities k_{OH} in ambient air by recording artificial OH decay curves.^{38,39} In a recent study performed in our lab,⁴⁰ we described modifications of the experimental setup that facilitate the alternating measurement of OH and HO_x (=OH + HO₂) decay curves after pulsed formation of OH in the presence of selected reactants. In brief, the apparatus consists of the reaction volume under laminar flow conditions and the OH-detection cell based on the laser-induced fluorescence (LIF) technique. The tube-shaped reaction volume (length = 80 cm, diameter = 4 cm) was operated at atmospheric pressure and 298 K. Highly purified synthetic air entered the reaction volume at a typical flow rate of 20 L min⁻¹. Traces of O₃ ($\approx 2 \times 10^{12}$ cm⁻³, produced by O₂ photolysis) and H₂O ($\approx 3 \times 10^{17}$ cm⁻³) were added. A fourth harmonic Nd:YAG laser (Big Sky, CFR200),

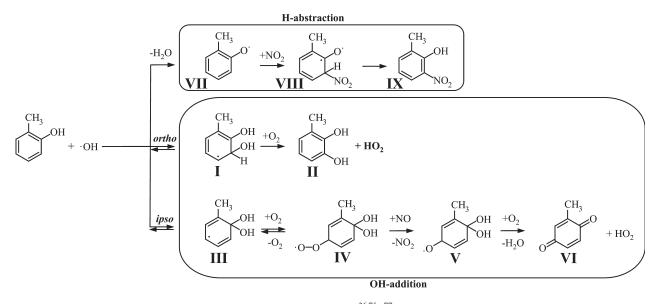


Figure 2. Postulated reaction pathways of the OH-initiated oxidation of o-cresol.^{36,75-77} For convenience, different resonance structures and possible isomers are not shown. HO₂ formed without preceding NO reaction steps is indicated in boldface.

longitudinally directed through the reaction volume, with a pulse duration of 10 ns and a fluence of 1.5 mJ cm⁻² was used for the pulsed photolysis of O₃ at 266 nm. Intermediately formed O(¹D) reacted with water vapor to give OH starting concentrations of $\leq 8 \times 10^9$ cm⁻³ formed virtually instantaneously after the 266 nm flash. The photolysis laser beam was expanded to about 3 cm to maximize the irradiated reaction volume. Within the time between two photolysis laser shots (2.5 s), the content of the reaction volume was completely exchanged. Thus, photolysis of reaction products can be excluded as a potential radical source.

The detection of OH radicals was performed 50 cm downstream of the tube inlet by laser-induced fluorescence technique after gas expansion. The air was sampled from the center of the reaction volume through a nozzle (0.2 mm diameter) into a low pressure detection cell operated at 350 Pa. OH fluorescence was induced at 308 nm by use of a tunable frequencydoubled dye laser pumped by a second harmonic of a high repetition rate (8.5 kHz) Nd:YAG laser (Spectra physics, Navigator I). The OH fluorescence emitted from the detection zone was focused onto a gated photomultiplier (Perkin-Elmer, C 1943 P). Photon counts were recorded by a multichannel scaler over a 1 s time interval at a resolution of 5 ms. Sixty decay curves were accumulated to improve the signal-to-noise ratio. Data from the first 10 ms after the photolysis laser flash were discarded because the signal in this interval was unstable. When a small flow of pure NO is added to the expanding gas upstream of the detection zone, HO_2 can be partly converted to $OH (HO_2 +$ $NO \rightarrow OH + NO_2$) and detected as additional fluorescence signal (HO_x measurement mode). The HO₂ conversion efficiency is limited by the reaction time in the detection cell. Switching between the OH and HO_x measurement modes was possible within a few minutes. OH decay curves were recorded immediately before and after the HO_x decay curves to verify constant experimental conditions, i.e., similar OH starting concentrations and detection sensitivities.

In humidified synthetic air with traces of O₃, a background decay rate constant for OH of $k_{OH}^0 = 1.5 \pm 0.3 \text{ s}^{-1}$ was observed. The background decay rate constant for HO₂ of $k_{HO_2}^0 = 1.5 \pm 0.5 \text{ s}^{-1}$ was measured upon addition of CO. Both, k_{OH}^0 and

 $k_{HO_2}^0$ were assigned to diffusion and wall losses. The contribution of the OH + O₃ reaction to the OH background decay rate was minor ($\approx 0.1 \text{ s}^{-1}$). Radical-radical reactions were estimated unimportant on the basis of typical rate constants of HO₂ + RO₂ and the HO₂ self-reaction.⁴¹

Besides the secondary formation following reactions of OH, HO₂ can also be formed by photolysis of aromatics in the presence of O₂. H-atom formation from the 248 nm photolysis of benzene and toluene and subsequent HO₂ formation via H + O₂ has been observed in previous studies.^{42–44} We performed test experiments in the absence of the OH-precursor O₃ to check whether H-atoms (and subsequently HO₂ radicals) are formed by the 266 nm photolysis of the aromatic hydrocarbons used in this work. For the alkylbenzenes no detectable HO₂ formation was observed. In contrast, the 266 nm photolysis of the hydroxybenzenes led to instantaneous HO₂ formation. This photolytically produced HO₂ and was considered quantitatively in the evaluation of experiments with hydroxybenzenes as described below. However, no attempt was made to quantify the HO₂ formation in terms of quantum yields for the different compounds.

As reported recently,^{40,45} the LIF HO₂ detection technique features cross-sensitivity to specific organic peroxy radicals (RO₂). This cross-sensitivity is caused by the conversion of RO₂ to organic alkoxy radicals (RO) by NO in the LIF detection cell. In contrast to, for example, CH₃O, more complex RO can undergo fast decomposition into fragments rapidly forming HO₂ in the presence of O₂. This applies to α -hydroxy RO from OH + alkene reactions but also to RO from OH + aromatics reactions, e.g., the products of the bicyclic species H in Figure 1. The potential for an additional LIF signal caused by conversion of RO₂ to HO₂ decreases with decreasing NO concentration in the LIF detection cell. Therefore, the NO concentration in the detection cell was varied over a wide range to quantify and finally widely avoid any RO₂ cross-sensitivity.

MATERIALS

Synthetic air was made from highly purified (99.9999%) liquid samples of N_2 and O_2 . To premix water vapor, the gas flow passed

a saturator filled with pure water (Milli-Q). The aromatic compounds were used as purchased and had stated purities as follows: Toluene (Merck, 99.9%), ethylbenzene (Fluka, 99.0%), o-xylene (Fluka, 99.5%), m-xylene (Fluka, 99.5%), p-xylene (BDH Prolabo, 99.8%), 1,2,3-trimethylbenzene (1,2,3-TMB, LGC, 91.7%), 1,2,4-TMB (LGC, 99.7%), 1,3,5-TMB (Sigma Aldrich, 99.0%), hexamethylbenzene (HMB, Alfa Aesar, 99.0%), phenol (Merck, 99.0%), o-cresol (Sigma Aldrich, 99.0%), 2,5dimethylphenol (Merck, 98.0%), and 2,4,6-trimethylphenol (Acros Organics, 99.0%). Microliter amounts of toluene, ethylbenzene, the xylenes, the trimethylbenzenes, and o-cresol were injected into silcosteel containers and pressurized to 330 kPa with nitrogen. The gas mixture from the silcosteel container was then introduced with a mass flow controller to the main gas flow. Milligram amounts of HMB, phenol, 2,5-dimethylphenol, and 2,4,6-trimethylphenol were stored in temperature-controlled flasks that were continuously flushed by a small flow of pure nitrogen. The nitrogen flux was regulated by a mass flow controller and finally introduced to the main gas flow. The concentration of the respective aromatic was estimated from the measured OH reactivity. A 1% mixture of CO in nitrogen was used for experiments, when CO was added (Messer Griesheim, 99.997%). A 10% mixture of NO (Linde, 99.5%) in nitrogen, used for the conversion of HO₂ to OH in the detection cell, passed a cartridge filled with sodium hydroxide coated silicate (Ascerite, Sigma-Aldrich) to remove impurities.

RESULTS

Data Evaluation. We alternately measured OH and HO_x decay curves in the presence of aromatic hydrocarbons and extracted prompt HO_2 yields by comparison to CO reference experiments. The determination of HO_2 yields was done by applying analytical solutions and curve fitting procedures. This approach was recently developed in our study on the OH + benzene reaction⁴⁰ and will be reproduced here briefly and extended to account for additional photolytic HO_2 formation.

The OH + CO reaction gives CO_2 and H-atoms that are quantitatively converted to HO_2 within less than 10^{-6} s under the experimental conditions. Therefore, the following overall reaction applies:

$$OH + CO + O_2 \rightarrow HO_2 + CO_2 \tag{R1}$$

All reactants were used in excess over OH, so that pseudo-firstorder conditions hold. Thus, OH is expected to decay exponentially whereas HO₂ should exhibit a rise-and-fall type biexponential behavior:

$$[OH] = [OH]_0 \times \exp(-k_{OH}^{CO}t)$$
(1)

$$[HO_{2}] = \frac{[OH]_{0}(k_{OH}^{CO} - k_{OH}^{0})}{k_{OH}^{CO} - k_{HO_{2}}^{0}} \times \{\exp(-k_{HO_{2}}^{0}t) - \exp(-k_{OH}^{CO}t)\}$$
(2)

 k_{OH}^{CO} denotes the total OH reactivity in the presence of CO:

$$k_{\rm OH}^{\rm CO} = k_{\rm OH+CO}[\rm CO] + k_{\rm OH}^0 \tag{3}$$

 k_{OH}^0 and $k_{HO_2}^0$ are the background loss decay rate constants of OH and HO₂, respectively. Note that an HO₂ yield of unity for the OH + CO reference reaction is presumed in the time dependence of HO₂.

The OH + aromatic hydrocarbon (AH) reactions are treated accordingly.

$$OH + AH + O_2 \rightarrow HO_2 + products$$
 (R2)

This approach is justified because also the intermediates formed in the OH + AH reactions react rapidly with O_2 compared to the time scale of the experiments, i.e., within about 10^{-3} s in the case of toluene and even faster for the other compounds.²³ Consequently, we obtain similar expressions for the time dependence of OH and HO₂ for the aromatic hydrocarbon experiments, except for a factor $\phi_{HO_2}^{AH}$ that denotes the unknown yield of prompt HO₂ and a second term that accounts for a potential photolytical formation of HO₂ (see Experimental Methods).

$$[OH] = [OH]_0 \times \exp(-k_{OH}^{AH}t)$$
(4)

$$[HO_{2}] = \frac{[OH]_{0}(k_{OH}^{AH} - k_{OH}^{0})\phi_{HO_{2}}^{AH}}{k_{OH}^{AH} - k_{HO_{2}}^{0}} \times \{\exp(-k_{HO_{2}}^{0}) - \exp(-k_{OH}^{AH}t)\} + [HO_{2}]_{0} \times \exp(-k_{HO_{2}}^{0}t)$$
(5)

Again k_{OH}^{AH} is the total OH reactivity in the presence of the aromatic hydrocarbon:

$$k_{\rm OH}^{\rm AH} = k_{\rm OH+AH}[\rm AH] + k_{\rm OH}^0 \tag{6}$$

In the OH mode of the instrument, the obtained LIF signal is proportional to the OH concentration.

$$S_{\rm OH} \propto [\rm OH]$$
 (7)

In the HO_x mode of the instrument the signal is given by the sum of the OH signal, the signal from HO_2 to OH conversion, and possibly a signal from RO_2 to OH conversion.

$$S_{\rm HO_x} \propto f_{\rm OH}([\rm OH] + f_{\rm HO_2}([\rm HO_2] + \alpha_{\rm RO_2}[\rm RO_2]))$$
 (8)

The lower detection sensitivity of OH in the HO_x mode of the instrument was considered by a factor f_{OH} probably caused by a loss of OH through reaction with NO. Furthermore, the detection sensitivity toward HO₂ was typically lower by a factor f_{HO_2} compared to that for OH owing to incomplete HO₂ conversion because of the limited reaction time. The last term in eq 8 considers any contribution of interfering RO₂ radicals. α_{RO_2} is the ratio of the detection sensitivities of RO₂ to HO₂ that depends on the NO concentration in the LIF detection cell. The time dependencies for HO₂ and RO₂ are assumed to be similar because radical—radical reactions are negligible under the employed experimental conditions and background losses are also considered similar. Thus, the RO₂ concentration can be replaced by the ratio of RO₂ and HO₂ yields; i.e., the interference can be accounted for by a simple factor $F_{RO_2} \ge 1$:⁴⁰

$$S_{\text{HO}_{x}} \simeq f_{\text{OH}}([\text{OH}] + f_{\text{HO}_{2}}[\text{HO}_{2}](1 + \alpha_{\text{RO}_{2}}\phi_{\text{RO}_{2}}^{\text{AH}}/\phi_{\text{HO}_{2}}^{\text{AH}}))$$

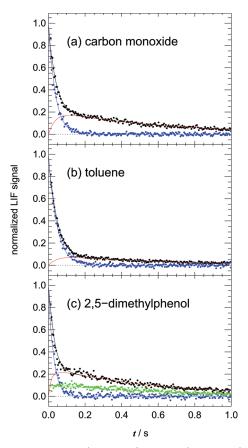
= $f_{\text{OH}}([\text{OH}] + f_{\text{HO}_{2}}[\text{HO}_{2}]F_{\text{RO}_{2}})$ (9)

When the NO concentration was decreased in the LIF detection cell, the RO₂ to OH conversion was effectively suppressed and α_{RO_2} ideally approached zero whereas F_{RO_2} approached unity.

 $\alpha_{\rm RO_2}$ ideally approached zero whereas $F_{\rm RO_2}$ approached unity. The product $F_{\rm RO_2} \times \phi_{\rm HO_2}^{\rm AH} = \Phi^{\rm AH}$ was the experimental observable that was finally determined by fitting eqs 1, 2, 4, and 5 simultaneously to the respective $S_{\rm OH}$ and $S_{\rm HO_x}$ decay curves obtained in the presence of CO and the aromatic hydrocarbon. The fits were performed using a Levenberg–Marquardt least-squares fitting procedure⁴⁶ where only $k_{\rm OH}^0 = 1.5$ s⁻¹ Table 1. Fit Results of f_{OH} , f_{HO_2} , k_{OH}^{AH} , and Φ^{AH} from Combined CO/Alkylbenzene Experiments in Synthetic Air at Different NO Concentrations [NO]_D in the LIF Detection Cell^{*a*}

reactant	$[NO]_D/10^{14} \text{ cm}^{-3}$	fон	$f_{\rm HO_2}$	$k_{ m OH}^{ m AH}/ m s^{-1}$	$\Phi^{\rm AH} = \phi^{\rm AH}_{\rm HO_2} F_{\rm RO_2}$	χ^2/DOF
toluene	0.12	0.84	0.22	22.3	0.42 ± 0.07	1.20
	0.12	0.89	0.20	72.2	0.40 ± 0.13	1.23
	1.2	0.85	0.63	43.8	0.45 ± 0.14	1.16
					0.42 ± 0.11^b	
	3.9	0.87	0.94	20.1	0.56 ± 0.11	1.17
	9.7	0.89	1.30	17.0	0.62 ± 0.10	1.21
	15.0	0.81	1.46	17.9	0.77 ± 0.13	1.27
ethylbenzene	0.12	0.86	0.14	17.9	0.53 ± 0.10	1.17
o-xylene	0.12	0.97	0.15	56.4	0.41 ± 0.08	1.28
<i>m</i> -xylene	0.12	0.95	0.18	74.5	0.27 ± 0.06	1.23
p-xylene	0.12	0.87	0.22	25.9	0.43 ± 0.06	1.20
	0.12	0.85	0.19	74.1	0.42 ± 0.15	1.28
	1.2	1.00	0.67	25.8	0.36 ± 0.06	1.18
					0.40 ± 0.09^{b}	
	3.9	0.94	1.01	25.9	0.44 ± 0.09	1.15
	9.7	0.91	1.34	25.0	0.58 ± 0.11	1.28
	15.	0.83	1.43	25.7	0.67 ± 0.16	1.31
1,2,3-TMB	0.12	0.97	0.18	38.7	0.31 ± 0.06	1.28
1,2,4-TMB	0.12	0.95	0.17	53.3	0.37 ± 0.09	1.33
1,3,5-TMB	0.12	0.83	0.19	64.3	0.34 ± 0.10	1.17
	0.12	0.93	0.21	18.2	0.37 ± 0.06	1.14
	0.24	0.89	0.27	50.4	0.25 ± 0.06	1.31
	1.2	0.82	0.69	65.2	0.21 ± 0.08	1.19
					0.29 ± 0.08^{b}	
	2.7	0.85	1.19	42.7	0.31 ± 0.07	2.07
	3.9	0.81	1.06	50.8	0.34 ± 0.12	1.19
	9.7	0.90	1.31	48.4	0.52 ± 0.19	1.38
	15.0	0.85	1.46	28.5	0.67 ± 0.15	1.28
HMB	0.12	0.88	0.14	30.0	0.32 ± 0.08	1.35
	0.12	0.94	0.15	17.2	0.32 ± 0.09	1.24
	0.39	0.99	0.21	18.7	0.33 ± 0.06	1.25
					0.32 ± 0.08^b	

^{*a*} Results were obtained by fitting eq 1, 2, 4, and 5 to the S_{OH} and S_{HO_2} decay curves. Numbers in bold indicate the prompt HO₂ yields at $F_{RO_2} \approx 1$. ^{*b*} Mean values and mean errors of measurements at $[NO]_D \leq 1.2 \times 10^{14} \text{ cm}^{-3}$.


(measured separately) was held fixed as a constraint. The idea behind this procedure can be rationalized as follows: By switching quickly from OH to HO_x measurement modes and from CO to AH reactant, we presumed experimental conditions to be constant; i.e., the proportionality factors in eqs 7 and 8 are the same and thus treated as a single fit parameter for each pair of OH and HO_x decay curves. The S_{OH} and S_{HO_x} obtained in the presence of CO then determine the factors f_{OH} and f_{HO} , whereas the S_{OH} mainly determine the rate constants k_{OH}^{CO} and k_{OH}^{AH} . The S_{HO_x} in the presence of AH finally defines Φ^{AH} , i.e., the yield of prompt HO₂. However, because all the fit parameters depend on each other more or less strongly, fitting all curves simultaneously ensures that all available experimental information is considered adequately and consistently by weighting with experimental errors according to Poisson statistics (photon counting). The fit quality was assessed on the basis of the weighted sum of squared residuals χ^2 divided by the degrees of freedom (DOF). DOF corresponds to the number of data points minus the number of fitted parameters and χ^2 /DOF should ideally range around unity. The typical values of 1.3 found in this study (see

Results) are reasonably close to unity and indicate that the errors of the data points were slightly underestimated.

Error estimates for the fitted Φ^{AH} were also determined by taking into account the mutual dependencies of the fit parameters. Starting with the fitted values, Φ^{AH} was gradually increased or decreased and held fixed during the fits until the ratio χ^2/DOF increased by a factor (≈ 1.03) taken from a parametrization of values for the χ^2 -distribution for the given DOF and a probability of 0.68 ($\approx 1\sigma$ -errors). Mean errors were then calculated from lower and upper limits.

OH + **Alkylbenzenes.** Table 1 shows the fit results of combined CO/alkylbenzene experiments. Typical decay curves recorded in the presence of CO and toluene are shown in Figure 3, panels (a) and (b). As outlined above, no HO_2 formation from photolysis of alkylbenzenes at 266 nm was observed in experiments without OH. Consequently, $[HO_2]_0$ in eq 5 was set to zero.

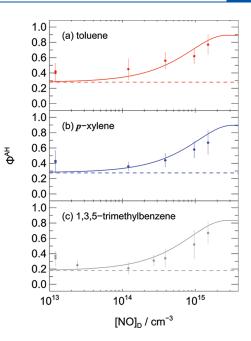

To check the influence of interfering RO₂ radicals, the NO concentration in the LIF detection cell, [NO]_D, was varied over a wide range in experiments with toluene, *p*-xylene, and 1,3,5-TMB.

Figure 3. Normalized S_{OH} (blue points) and S_{HO_x} (black points) obtained in the presence of CO, toluene, and 2,5-dimethylphenol in synthetic air in the absence of NO in the reaction volume. The NO concentration in the LIF detection cell was 0.12×10^{14} cm⁻³ in each experiment (see text). The green points in (c) represent S_{HO_x} obtained in the absence of the OH-precursor ozone. Full lines correspond to fitted decays according to equations eqs 1, 2, 4, and 5. The red lines show the fitted contributions of HO₂ to S_{HO_x} . The CO experiment in (a) is the corresponding reference experiment for (b). For (c) a similar reference experiment exists but is not shown.

As shown in Figure 4, $\Phi^{
m AH}$ was found to increase with increasing $[NO]_{D}$, indicating that RO_2 radicals contribute significantly to the LIF signal in the HO_x mode at increased $[NO]_D$. Characterization experiments have already been performed for the instrument used in this study⁴⁰ and it has been shown that RO₂ interferences are sufficiently suppressed using low [NO]_D. We performed numerical simulations by taking into account the reactions in the LIF detection cell to reproduce the NO dependencies of the different Φ^{AH} . The full lines in Figure 4 show calculated OH concentrations normalized to a reference case where only HO₂ radicals are entering the LIF detection cell. Rate constants and experimental conditions used for the numerical simulations are listed in Table 2. The model was initialized with current recommendations from literature regarding the yields of prompt HO₂ and RO₂: $\phi_{RO_2}^{AH}/\phi_{HO_2}^{AH} = 0.72/0.28$ for toluene and *p*-xylene and $\phi_{RO_2}^{AH}/\phi_{HO_2}^{AH} = 0.82/0.18$ for 1,3,5-TMB.^{47,48} The dotted lines in Figure 4 indicate the recommended prompt HO₂ yields and the calculated Φ^{AH} expectedly approach these limits at decreasing $[NO]_D$, confirming the vanishing influence from peroxy radicals, i.e., $\Phi^{AH} \approx \phi^{AH}_{HO_2}$ at low $[NO]_D$.

The model calculations are in good agreement with the experimental Φ^{AH} that within experimental uncertainties already leveled out at $[NO]_D \approx 1-2 \times 10^{14} \text{ cm}^{-3}$. For toluene, *p*-xylene,

Figure 4. Dependence of fitted Φ^{AH} on $[NO]_D$, the NO concentration in the LIF detection cell. Symbols show results of combined CO/ alkylbenzene experiments. The solid lines show the simulated $[NO]_D$ dependence of Φ^{AH} based on the reactions in Table 2. The dashed lines indicate the presumed contribution of ϕ^{AH}_{HO} to Φ^{AH} following the OH + alkylbenzene reaction based on MCM^{47,48} recommendations.

Table 2. Parameters and Rate Constants Used in the Numerical Model to Simulate OH Formation from HO_2 and RO_2 Radicals in the LIF Detection Cell

	reaction time	$250 \mu s^a$
	total pressure	350 Pa
	temperature	298 K
	$k_{\rm HO_2+NO \rightarrow OH+NO_2}$	$8.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1 b}$
	$k_{\text{OH+NO} \rightarrow \text{HNO}_2}$	$5.7 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1 b}$
	$k_{\text{OH+NO}_2} \rightarrow \text{HNO}_3$	$1.4 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1 b}$
	$k_{\rm RO_2+NO \rightarrow RO+NO_2}$	$7.7\times10^{-12}~{\rm cm}^3~{\rm s}^{-1c}$
	$k_{\rm RO_2+NO \rightarrow RNO_3}$	$1.3\times10^{-12}~{\rm cm}^3~{\rm s}^{-1c}$
	$k_{\rm RO \rightarrow fragments}$	$1\times 10^6~\text{s}^{-1~\text{c}}$
	$k_{\text{fragments+O}_2 \rightarrow \text{HO}_2}$	$9.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1 \text{ b,d}}$
а	Calculated by fitting the increase of f_{HO_2} , commendation. ⁷⁴ ^c MCM recommendation.	with [NO] _D . ⁴⁰ ^b NASA
r	ecommendation. ⁷⁴ ^c MCM recommendation.	^{47,48} ^d Rate constant as-

sumed similar to $CH_2OH + O_2 \rightarrow HCHO + HO_2$.⁷⁴

and 1,3,5-TMB, the final prompt HO₂ yields were therefore determined by averaging the results obtained at $[NO]_D \leq 1.2 \times 10^{14} \text{ cm}^{-3}$ (boldface in Table 1). For the other alkylbenzenes, the full dependence of Φ^{AH} on $[NO]_D$ was not investigated and most experiments were performed at $[NO]_D = 0.12 \times 10^{14} \text{ cm}^{-3}$. However, it should be noted that a small, residual RO₂ interference $(\alpha_{RO_2} \leq 0.1)$ cannot be excluded even at the lowest possible $[NO]_D$ concentrations because of an incomplete understanding of transport processes within the LIF detection cell (e.g., turbulence induced by the gas-expansion and NO mixing effects).^{40,45} The prompt HO₂ yields determined in this work should therefore be considered upper rather than lower limits.

OH + **Hydroxybenzenes.** The fit results of combined CO/ hydroxybenzene experiments are given in Table 3. The experiments

Table 3. Fit Results of f_{OH} , f_{HO} , k_{OH}^{AH} and Φ^{AF}	¹ from Combined CO/Hydroxybenzene Experiments in Synthetic Air at $[NO]_D =$
$0.12 \times 10^{14} \text{ cm}^{-3 a}$	

reactant	[HO ₂] ₀ /[OH] ₀	<i>f</i> он	f _{HO2}	$k_{\rm OH}^{\rm AH}/{ m s}^{-1}$	$\Phi^{\rm AH}\approx\phi^{\rm AH}_{{\rm HO}_2}$	χ^2/DOF
phenol	0.33	0.88	0.33	7.9	0.89 ± 0.29	1.36
	0.83	0.81	0.32	18.4		
o-cresol	0.37	0.80	0.20	9.2	0.87 ± 0.29	1.48
	0.81	0.98	0.23	17.4		
2,5-dimethylphenol	0.20	0.90	0.20	15.8	0.72 ± 0.12	1.23
	0.55	1.02	0.20	38.6		
2,4,6-trimethylphenol	0.01	0.93	0.19	15.8	0.45 ± 0.13	1.28
	0.03	0.93	0.23	81.6		

^{*a*} Results were obtained by fitting sets of eqs 1, 2, 4, and 5 to S_{OH} and S_{HO_x} decay curves in the presence of CO and AH. The simultaneous fits cover experiments with two AH concentrations and in the absence of the OH precursor O_3 to eliminate the effect of photolytical HO₂ formation. Prompt HO₂ yields correspond to the measured Φ^{AH} .

revealed that, except for 2,4,6-trimethylphenol, the yields of promptly formed HO_2 are much greater than for the alkylbenzenes.

. . .

. . .

In experiments without the OH-precursor ozone, an instantaneous photolytical HO₂ formation was observed as shown in Figure 3c for the example 2,5-dimethylphenol. The same figure also shows S_{OH} and $S_{HO_{u}}$ curves recorded in the presence of ozone where S_{HO_x} is expected to contain an underlying contribution from photolytically produced HO₂. The latter, [HO₂]₀ in eq 5, is assumed to depend linearly on the concentration of the aromatic hydrocarbon. In a first approach, measurements were therefore performed at two different AH concentrations and two S_{OH} and S_{HO} decay curves each were recorded. Two sets of eqs 1, 2, 4, and 5 were then fitted simultaneously by assuming $[HO_2]_0 \propto [AH]$ treating the proportionality factor as an additional fit parameter. Although this fitting strategy worked technically, the obtained error limits were significantly greater than in the case of the alkylbenzenes and approached 100%. Obviously, the distinction of photolytically and secondarily formed HO₂ is difficult, which results in a large mutual dependence of the respective contributions and increased error limits. Therefore, an extended evaluation procedure was adopted where also the decay curves $S_{HO_{u}}$ obtained in the absence of the OH-precursor ozone were implemented in the fits by setting $[OH]_0 = 0$ in eq 5. This led to similar results with improved error limits as listed in Table 3.

 $[NO]_D$ concentrations were always kept low during the experiments with hydroxybenzenes. We therefore again assume $\Phi^{AH} \approx \phi^{AH}_{HO_2}$. Because prompt HO₂ yields were greater compared to those of the alkylbenzenes, any residual contribution of RO₂ interferences is expected to be even smaller and negligible.

DISCUSSION

In the experiments outlined above, we determined HO₂ yields upon the OH + aromatic hydrocarbon reaction in synthetic air in the absence of NO. These yields are helpful to reduce budget uncertainties regarding the primary oxidation steps because the extracted ϕ_{HO_2} should match the combined yields of currently proposed HO₂ coproducts. From OH + alkylbenzenes these coproducts are phenols, epoxides, and oxepins (Figure 1):

$$\phi_{HO_2}^{alkylbenzene} = \phi_{phenol} + \phi_{epoxide} + \phi_{oxepin}$$
(10)

From OH + hydroxybenzenes the coproducts are dihydoxybenzenes (Figure 2):

$$\phi^{hydroxybenzene}_{HO_2} = \phi_{dihydoxybenzene} \tag{11}$$

On the other hand, the remainder $(1 - \phi_{HO_2})$ should match the combined yields of reaction channels not associated with prompt HO₂ formation. From OH + alkylbenzenes, these are the bicyclic peroxy radical channel leading to α -dicarbonyls, the H-atom abstraction finally forming benzaldehydes, and the dealkylation (Figure 1):

$$1-\varphi_{HO_2}^{alkylbenzene} = \varphi_{dicarbonyl} + \varphi_{benzaldehyde} + \varphi_{dealkylation} \quad (12)$$

For OH + hydroxybenzenes $(1 - \phi_{HO_2})$ should match the yield of nitrophenols from the H-atom abstraction channel plus the yield of 1,4-benzoquinones formed following the proposed *ipso*-OH-addition (Figure 2):

$$1-\varphi_{HO_2}^{hydroxybenzene} = \varphi_{nitrophenol} + \varphi_{quinone} \tag{13}$$

OH + Toluene and Ethylbenzene. For the OH + toluene reaction we determined $\phi_{HO_2}^{toluene} = 0.42 \pm 0.11$. This yield is significantly greater than the ϕ_{phenol} (i.e., cresol) yield of 0.18–0.28 reported in most product studies^{14,25,27,31,49,50} (Table 4). Exceptions are considerably greater and smaller values from two studies^{51,52} that are supposed not to be representative for atmospheric conditions because of potential influence of heterogeneous reactions⁵¹ or due to losses of primary oxidation products upon reaction with OH.52 The result of our study is consistent with the currently proposed toluene degradation mechanism where the coproducts of prompt HO₂ are cresols and an epoxide. By comparison of $\phi_{HO_2}^{toluene}$ to the reported cresol yields, formation of 0.14-0.24 of other HO₂ coproducts is possible. Flowtube studies by Baltaretu et al.²⁷ and Birdsall et al.³¹ indeed reported experimental evidence for the epoxide pathway. The combined yield of cresol and epoxide of 0.35 \pm 0.07^{27} is similar to $\phi_{HO_2}^{toluene}$ determined in this work. Bloss et al.⁴⁸ estimated a combined yield of 0.28 for cresol and epoxide based on the data by Volkamer et al.³³ to close the budget for the OHinitiated degradation of toluene. This value is somewhat lower than the result of our study. Owing to the uncertainties of the primary product yields, it cannot be ruled out that there are further reaction channels yielding prompt HO_2 like the oxepin pathway proposed by Klotz et al.^{53–55} This reaction channel has so far only been excluded for OH + benzene.³⁵

The remainder $(1 - \phi_{HO_2}^{toluene}) = 0.58 \pm 0.11$ is also somewhat greater than the combined yields $\phi_{dicarbonyl} + \phi_{benzaldehyde}$ determined in product studies: 0.47 ± 0.03 ,²⁵ 0.39 ± 0.10 ,³³ and 0.35 ± 0.10 .²⁷ This discrepancy can be attributed to the great

	prompt HO ₂ re	eaction channels	reaction char	reaction channels not associated with prompt HO_2		
reference	φ _{phenol} ^a	$\phi_{epoxide}^{b}$	ф _{dicarbonyl}	∲benzaldehyde	$\phi_{dealkylation}$	experimental conditions
			OH + Toluene			
Atkinson et al. ⁴⁹	0.25 ± 0.03			0.07 ± 0.01		\approx 15 ppm NO _x
Seuwen et al. ⁵¹	0.53 ± 0.08^d		0.10 ± 0.02^{e}	0.05 ± 0.01		NO_x -free
Smith et al. ²⁵	0.18 ± 0.01		0.41 ± 0.03^{e}	0.06 ± 0.01		<1 ppm NO _x
Klotz et al. ⁵⁰	0.18 ± 0.03			0.06 ± 0.01		3–300 ppb NO _{<i>x</i>}
Moschonas et al. ⁵²	0.09 ± 0.03			0.08 ± 0.01		NO _x -free
Volkamer et al. ³³			$0.39\pm0.10^{\it f}$			<1 ppm NO _x
Noda et al. ¹⁴	0.18 ± 0.02				0.05 ± 0.01	0.01–0.1 ppm NO _x
Baltaretu et al. ²⁷	0.28 ± 0.06	0.07 ± 0.03	$0.30\pm0.10^{e,g}$	0.05 ± 0.02		NO _x -free
Birdsall et al. ³¹	$pprox 0.22^h$	$pprox$ 0.05 h		$pprox 0.07^h$	$pprox 0.07^h$	NO _x -free
Nishino et al. ⁶⁷			0.48 ± 0.03^{e}			0.08–4 ppm NO _x
this study	$\phi_{\rm HO_2} = 0.4$	12 ± 0.11	($(1 - \phi_{HO_2}) = 0.58 \pm 0.11$	1	NO _x -free
^{<i>a</i>} Sum of <i>o-, m-,</i> and <i>p</i>	o-cresol. ^b 2-Methyl-	2,3-epoxy-6-oxo-4-h	exenal, ^{<i>c</i>} Phenol. ^{<i>d</i>} Su	um of o- and p-cresol.	^e Sum of glyoxal ar	nd methylglyoxal. ^f Glyoxal.

Table 4. Product Yields of	the OH-Initiated Oxi	dation of Toluene in t	he Presence of O ₂	from Literature
----------------------------	----------------------	------------------------	-------------------------------	-----------------

^g Prediction for α -dicarbonyl formation upon a second OH attack. ^h Relative product yield.

uncertainty of $\phi_{dicarbonyl}$ and to missing minor $(<0.10)^{14,31}$ reaction channels like the dealkylation pathway that was experimentally confirmed in flowtube studies by Noda et al.¹⁴ and Birdsall et al.³¹

For the OH + ethylbenzene reaction we determined $\phi_{HO_2}^{ethylbenzene} = 0.53 \pm 0.10$. Only a few experimental studies on the photo-oxidation of ethylbenzene are available in literature.^{56–59} These studies focused on the formation of secondary organic aerosol and no quantitative information about gaseous oxidation products was reported. However, the HO₂ coproduct ethylphenol was found to be a major oxidation product.^{56,59} Owing to the lack of absolute product yields, we are not able to draw further conclusions concerning other reaction channels yielding prompt HO₂.

OH + Isomeric Xylenes. In the case of *o*-xylene and *p*-xylene we obtained prompt HO₂ yields of 0.41 \pm 0.08 and 0.40 \pm 0.09, respectively. The formation yields of the corresponding dimethylphenols were reported to be 0.10–0.16^{14,60,61} and 0.12–0.19, ^{14,26,61–63} respectively (Table 5). Again, our results suggest that non-phenol reaction pathways, e.g., epoxide formation, contribute significantly (<0.30) to the prompt HO₂ formation, which is consistent with the current understanding of the xylene degradation mechanism. For OH + *o*-xylene our result is in line with the estimation by Bloss et al.⁴⁸ for ($\phi_{phenol} + \phi_{epoxide}$) = 0.40. For OH + *p*-xylene the estimation is somewhat lower: ($\phi_{phenol} + \phi_{epoxide}$) = 0.28.⁴⁸ To date, there is no quantitative information on the formation of epoxide compounds from *o*- and *p*-xylene but species with corresponding molecular weights have been observed.^{28,29,64}

The remainders of $(1 - \phi_{HO_2}^{o-xylene}) = 0.59 \pm 0.08$ and $(1 - \phi_{HO_2}^{p-xylene}) = 0.60 \pm 0.09$ determined in this work are in reasonable agreement with $\phi_{dicarbonyl} + \phi_{benzaldehyde}$ reported in several studies: $0.40 - 0.60^{65-67}$ for *o*-xylene and $0.40 - 0.70^{26,62,63,65-67}$ for *p*-xylene (Table 5). The uncertainties of the reported product yields leave some scope for additional minor reaction pathways like the dealkylation postulated by Noda et al.: $\phi_{dealkylation} = 0.04 - 0.05.^{14}$

For *m*-xylene the situation is different because the gap between $\phi_{HO_2}^{m\text{-xylene}} = 0.27 \pm 0.06$ and ϕ_{phenol} (i.e., dimethylphenol) from product studies of $0.11 - 0.21^{14,26,30,60,61}$ is smaller than for *o*- and *p*-xylene. Moreover, in a recent study by Zhao et al.³⁰ the

formation of epoxides from *m*-xylene with a yield of \approx 0.02 was reported for the first time. The combined yield of $(\phi_{phenol} +$ ϕ_{epoxide} = 0.19 ± 0.03³⁰ corresponds quite well to the prompt HO₂ yield determined in this work. Accordingly, HO₂ formation via the epoxide reaction channel is considered to be of minor importance for *m*-xylene. Most of the previous product studies on *m*-xylene reported combined formation yields of $\phi_{dicarbonyl} + \phi_{benzaldehyde}$ ranging between 0.40 and 0.60.^{26,65–67} Zhao et al. reported a considerably lower value of 0.21.30 The authors attributed this discrepancy mainly to their very low yield of methylglyoxal (0.15) obtained in a fast turbulent flow reactor. When the remainder of $(1 - \phi_{HO_2}^{m-xylene}) = 0.73 \pm 0.06$ is compared to these literature values of $\phi_{dicarbonyl} + \phi_{benzaldehyde}$, it becomes obvious that the carbon balance is not closed. Taking into account the data by Bandow et al.,⁶⁵ Smith et al.,²⁶ Arey et al.,⁶⁶ and Nishino et al., 67 0.10–0.30 of the primary oxidation products not associated with prompt HO₂ are not identified so far. This gap can at least partly be closed by the dealkylation pathway yielding cresol reported by Noda et al.:¹⁴ $\phi_{\text{dealkylation}} = 0.11 \pm$ 0.04. Contradictory results were reported by Aschmann et al.¹⁵ who determined a cresol yield of <0.02 for m-xylene and suggested that the ion peaks observed by Noda et al.¹⁴ could correspond to the sum of cresol and methyloxepin (both resulting from dealkylation and having the same mass-tocharge-ratio). A corresponding dealkylation mechanism yielding methyloxepin following the OH + m-xylene reaction was postulated.^{14,15}

OH + **Isomeric Trimethylbenzenes.** The HO₂ yields of the OH + TMB reactions were determined to be 0.31 ± 0.06 (1,2,3-TMB), 0.37 ± 0.09 (1,2,4-TMB), and 0.29 ± 0.08 (1,3,5-TMB). Only a few product studies^{26,63,68,69} reported the formation of phenols from TMB photo-oxidation. Quantitative information was only given by Smith et al.²⁶ and Volkamer⁶³ (phenol yields ≤ 0.07, see Table 6). Formation of epoxide compounds has not yet been observed. Nevertheless, Bloss et al.⁴⁸ assigned epoxide yields of 0.21 (1,2,3-TMB), 0.30 (1,2,4-TMB), and 0.14 (1,3,5-TMB) to close the carbon balance. Our result support the recommendations given by Bloss et al.⁴⁸ However, we merely conclude that non-phenol reaction channels contribute significantly to prompt HO₂ formation (<0.30).

Table 5. Product Yields of the OH-Initiated Oxidation of the Isomeric Xylenes in the Presence of O₂ from Literature

	prompt HO ₂ r	D ₂ reaction channels not associated with prompt HO ₂				
reference	φ _{phenol} ^a	$\phi_{epoxide}^{b}$	Ødicarbonyl	¢benzaldehyde	$\phi_{\text{dealkylation}}^d$	experimental conditions
			OH + <i>o</i> -Xylene			
Bandow et al. ⁶⁵			0.41 ± 0.04^{e}	0.05 ± 0.01		2 ppm NO_x
Gery et al. ⁶⁰	0.10 ± 0.04			0.17 ± 0.07		\approx 8 ppm NO _x
Atkinson et al. ⁶¹	0.16 ± 0.02			0.05 ± 0.01		1-13 ppm NO ₂
Arey et al. ⁶⁶			0.61 ^e			<1 ppm NO _x
Noda et al. ¹⁴	0.11 ± 0.05				0.05 ± 0.03	0.01–0.1 ppm NO _x
Nishino et al. ⁶⁷			$0.46\pm0.06^{\rm f}$			0.08–4 ppm NO _x
this study	$\phi_{\rm HO_2} = 0.4$	41 ± 0.08	($1 - \phi_{HO_2}) = 0.59 \pm 0.08$	3	NO _x -free
			OH + <i>m</i> -Xylene	2		
Bandow et al. ⁶⁵			0.55 ± 0.07^{f}	0.04 ± 0.01		2 ppm NO_x
Gery et al. ⁶⁰	0.18 ± 0.07			0.13 ± 0.06		$\approx 8 \text{ ppm NO}_x$
Atkinson et al. ⁶¹	0.21 ± 0.03^{j}			0.03 ± 0.01		$0-10 \text{ ppm NO}_2$
Smith et al. ²⁶	0.11 ± 0.01		0.48 ± 0.02^{f}	0.05 ± 0.01		<1 ppm NO _x
Zhao et al. ³⁰	0.17 ± 0.03^{j}	0.02 ± 0.01	0.15 ± 0.04^{g}	0.06 ± 0.01		$\approx 0.3 \text{ ppm NO}_x$
Arey et al. ⁶⁶			0.46 ^f			<1 ppm NO _x
Noda et al. ¹⁴	0.14 ± 0.03				0.11 ± 0.04	0.01–0.1 ppm NO _x
Aschmann et al. ¹⁵					<0.02	<20 ppm NO _x
Nishino et al. ⁶⁷			0.63 ± 0.09^{f}			0.08–4 ppm NO _{<i>x</i>}
this study	$\phi_{\rm HO_2} = 0.2$	27 ± 0.06	($1 - \phi_{\mathrm{HO}_2}) = 0.73 \pm 0.06$	5	NO _x -free
			OH + <i>p</i> -Xylene			
Bandow et al. ⁶⁵			0.36 ± 0.03^{f}	0.08 ± 0.01		2 ppm NO_x
Atkinson et al. ⁶¹	0.19 ± 0.04			0.07 ± 0.01		1–10 ppm NO ₂
Smith et al. ²⁶	0.13 ± 0.02		0.61 ± 0.11^{f}	0.10 ± 0.02		<1 ppm NO _x
Bethel et al. ⁶²	0.14 ± 0.02		(0.32^{i})	0.07 ± 0.01		0.8–3.3 ppm NO _x
Volkamer et al. ³³			0.40 ± 0.11^h			<1 ppm NO _x
Volkamer et al. ⁶³	0.12 ± 0.03			0.08 ± 0.02		<1 ppm NO _x
Arey et al. ⁶⁶			0.49 ^f			<1 ppm NO _x
Noda et al. ¹⁴	0.13 ± 0.03				0.04 ± 0.03	0.01–0.1 ppm NO _x
Nishino et al. ⁶⁷			0.58 ± 0.05^{f}			0.08–4 ppm NO _x
this study	$\phi_{\rm HO_2} = 0.4$	40 ± 0.09	($1 - \phi_{\rm HO_2}) = 0.60 \pm 0.09$)	NO _x -free
^{<i>a</i>} Primary phenol pr	oducts: from o-xvl	ene. (2.3 + 3.4)-di	methylphenol: from	m-xylene. (2.4 + 2.6	5 + 3.5)-dimethylpl	henol; from <i>p</i> -xylene, 2,5

^{*a*} Primary phenol products: from *o*-xylene, (2,3 + 3,4)-dimethylphenol; from *m*-xylene, (2,4 + 2,6 + 3,5)-dimethylphenol; from *p*-xylene, 2,5dimethylphenol. ^{*b*} Sum of 2,4-dimethyl-2,3-epoxy-6-oxo-4-hexenal, 2,6-dimethyl-2,3-epoxy-6-oxo-4-hexenal, and 3,5-dimethyl-2-hydroxyl-3,4-epoxy-5hexenal. ^{*c*} Primary substituted benzaldehyde products: from *o*-xylene, 2-methylbenzaldehyde; from *m*-xylene, 3-methylbenzaldehyde; from *p*-xylene, 4-methylbenzaldehyde. ^{*d*} Cresol. ^{*c*} Sum of glyoxal, methylglyoxal, and dimethylglyoxal. ^{*f*} Sum of glyoxal and methylglyoxal. ^{*g*} Methylglyoxal. ^{*k*} Glyoxal. ^{*i*} 3-Hexene-2,5-dione; extrapolated to NO_x-free conditions. ^{*j*} Sum of 2,4- and 2,6-dimethylphenol.

For the reaction channels not associated with prompt HO₂ we derived $(1 - \phi_{HO_2}) = 0.69 \pm 0.06 (1,2,3-TMB)$, $0.63 \pm 0.09 (1,2,4-TMB)$, and $0.71 \pm 0.08 (1,3,5-TMB)$. These results are similar to $(\phi_{dicarbonyl} + \phi_{benzaldehyde}) = 0.40 - 0.70$ determined in previous studies.^{26,62,66,67,70} Lower values for $\phi_{dicarbonyl}$ of $0.20 \pm 0.03 (1,2,3-TMB)$ and $0.36 \pm 0.08 (1,2,4-TMB)$ were determined by Nishino et al.⁶⁷ because dimethylglyoxal was not measured. A single exception is the work by Smith et al.²⁶ who obtained ($\phi_{dicarbonyl} + \phi_{benzaldehyde}$) = 0.93 ± 0.25 for the OH + 1,3,5-TMB reaction. This is somewhat greater than $1 - \phi_{HO_2}^{1,3,5-TMB}$ determined in our study but still in agreement within the combined errors. The dealkylation pathway may be operative for the OH + TMB reaction but is probably of minor (<0.10) importance.

OH + **Hexamethylbenzene.** The OH + HMB reaction gave $\phi_{HO_2}^{HMB} = 0.32 \pm 0.08$. No product studies on the photo-oxidation of HMB are available. Only a single flowtube study by Berndt and Böge⁷¹ performed at 295 K and 25 mbar in He reported the

formation of hexamethyl-2,4-cyclohexadienone following the OH + HMB reaction in the presence of NO₂. Assuming a similar HMB oxidation mechanism in the presence of O₂, hexamethyl-2,4-cyclohexadienone could be the coproduct of prompt HO₂. However, no experimental evidence for this reaction is available so far.

OH + Hydroxybenzenes. The prompt HO₂ yields extracted from the OH + hydroxybenzene experiments, $\phi_{HO_2}^{phenol} = 0.89 \pm 0.29$, $\phi_{HO_2}^{o-cresol} = 0.87 \pm 0.29$, and $\phi_{HO_2}^{2,5\text{-dimethylphenol}} = 0.72 \pm 0.12$, are considerably greater compared to those from alkylbenzenes with the exception of $\phi_{HO_2}^{2,4,6\text{-trimethylphenol}} = 0.45 \pm 0.13$. Our results are consistent with previous product studies reporting high dihydroxybenzene yields of $0.7-0.8^{36,72,73}$ from OH + phenol and OH + o-cresol (Table 7). This confirms that HO₂ is formed as coproduct of dihydoxybenzenes.

The contributions of reaction channels not associated with prompt HO₂ were determined to be $(1 - \phi_{HO_2}^{phenol}) = 0.11 \pm 0.29$

	prompt HO ₂ reaction channels	reaction channels reaction channels not associated with prompt HO ₂			
reference	φ _{phenol} ^a	\$	\$ \$\$benzaldehyde	experimental conditions	
		OH + 1,2,3-TMB			
Bandow et al. ⁷⁰		0.70 ± 0.02^{c}		2 ppm NO_x	
Bethel et al. ⁶²		0.52^{f}		0.8–3.3 ppm NO _x	
Arey et al. ⁶⁶		0.59 ^c		<1 ppm NO _x	
Nishino et al. ⁶⁷		0.20 ± 0.03^d		0.08–4 ppm NO _x	
this study	$\varphi_{\mathrm{HO}_2}=0.31\pm0.06$	$(1 - \phi_{HO_2}) =$	$= 0.69 \pm 0.06$	NO_x -free	
		OH + 1,2,4-TMB			
Bandow et al. ⁷⁰		0.56 ± 0.02^{c}		2 ppm NO _x	
Smith et al. ²⁶	0.02 ± 0.01	0.62 ± 0.07^{c}	0.04 ± 0.01	<1 ppm NO _x	
Bethel et al. ⁶²		0.41 ^g		0.8–3.3 ppm NO _x	
Arey et al. ⁶⁶		0.50 ^c		<1 ppm NO _x	
Nishino et al. ⁶⁷		0.36 ± 0.08^d		0.08–4 ppm NO _x	
this study	$\varphi_{\mathrm{HO}_2}=0.37\pm0.09$	$(1 - \phi_{HO_2}) =$	$= 0.63 \pm 0.09$	NO _x -free	
		OH + 1,3,5-TMB			
Bandow et al. ⁷⁰		0.64 ± 0.03^{e}		2 ppm NO_x	
Smith et al. ²⁶	0.04 ± 0.01	0.90 ± 0.25^e	0.03 ± 0.01	<1 ppm NO _x	
Volkamer et al. ⁶³	0.07 ± 0.01		0.03 ± 0.01	<5 ppm NO _x	
Arey et al. ⁶⁶		0.60 ^e		<1 ppm NO _x	
Nishino et al. ⁶⁷		0.58 ± 0.05^{e}		0.08–4 ppm NO _x	
this study	$\phi_{\rm HO_2} = 0.29 \pm 0.08$	$(1 - \phi_{HO_2}) =$	$= 0.71 \pm 0.08$	NO _x -free	

Table 6. Product Yields of the OH-Initiated Oxidation of the Isomeric Trimethylbenzenes in the Presence of O₂ from Literature

^{*a*} Primary phenol products: from 1,2,4-TMB, (2,3,5 + 2,3,6 + 2,4,5)-trimethylphenol; from 1,3,5-TMB, 2,4,6-trimethylphenol. ^{*b*} Primary substituted benzaldehyde products: from 1,2,4-TMB, (2,4 + 3,4 + 2,5)-dimethylbenzaldehyde; from 1,3,5-TMB, 3,5-dimethylbenzaldehyd. ^{*c*} Sum of glyoxal, methylglyoxal, and dimethylglyoxal. ^{*d*} Sum of glyoxal and methylglyoxal. ^{*c*} Methylglyoxal. ^{*f*} Dimethylglyoxal; extrapolated to NO_x-free conditions ^{*g*} Sum of dimethylglyoxal and 3-hexene-2,5-dione; extrapolated to NO_x-free conditions.

	prompt HO ₂ reaction channel	reaction channels not a				
reference	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	¢nitrophenol ^b	¢nitrophenol ^b ¢quinone ^c			
		OH + Phenol				
Olariu et al. ³⁶	0.80 ± 0.12	0.06 ± 0.01	0.04 ± 0.01	<2 ppn NO		
Berndt et al. ⁷²	0.73 ± 0.04	0.04 ± 0.02	0.01 ± 0.01	4-100 ppm NO		
This study	$\phi_{\rm HO_2}\!=\!0.89\pm 0.29$	$(1-\phi_{\rm HO_2}){=}0.11\pm0.29$		NO _x -free		
		OH + <i>o</i> -Cresol				
Olariu et al. ³⁶	0.73 ± 0.15	0.07 ± 0.02	0.07 ± 0.02	<2 ppm NO		
Coeur-Tourneur et al. ⁷³		0.05 ± 0.01	0.06 ± 0.01	1.3-1.5 ppm NO		
this study	$\varphi_{\rm HO_2}\!=\!0.87\pm 0.29$	$(1 - \phi_{HO_2}) =$	NO _x -free			
^a Primary dihydroxybenzene products: from phenol, 1,2-dihydroxybenzene; from o-cresol, 3-methyl-1,2-dihydoxybenzene. ^b Primary nitrophenol						

^a Primary dihydroxybenzene products: from phenol, 1,2-dihydroxybenzene; from *o*-cresol, 3-methyl-1,2-dihydoxybenzene. ^b Primary nitrophenol products: from phenol, 2-nitrophenol; from *o*-cresol, 6-methyl-2-nitrophenol. ^c Primary quinone products: from phenol, 1,4-benzoquinone; from *o*-cresol, methyl-1,4-benzoquinone.

and $(1-\varphi_{HO_2}^{o\text{-cresol}})=0.13\pm0.29$. Although the errors are considerable, these yields correspond well to reported $\varphi_{nitrophenol}+\varphi_{quinone}$ from phenol $(0.10\pm0.02)^{36}$ and o-cresol $(0.14\pm0.04),^{36}$ respectively. No product studies are available in literature for 2,5-dimethylphenol and 2,4,6-trimethylphenol.

CONCLUSIONS

We determined yields of promptly formed HO₂ (ϕ_{HO_2}) following the reaction of OH with selected aromatic hydrocarbons

under atmospheric conditions. This experimental approach is complementary to previous product studies and can help to reduce budget uncertainties concerning the initial reaction steps of the OH-initiated atmospheric photo-oxidation of aromatics. Our results suggest that for most of the investigated alkylbenzenes (with the exception of *m*-xylene) a significant fraction of prompt HO₂ is formed via pathways not forming phenols (e.g., formation of epoxides or oxepins). The remainder $(1 - \phi_{HO_2})$ revealed that, besides the established H-atom abstraction and bicyclic peroxy radical pathways, minor non-HO₂ forming

reaction channels (e.g., dealkylation) remain possible for all investigated alkylbenzenes. The investigated hydroxybenzenes (phenol, *o*-cresol, 2,5-dimethylphenol, 2,4,6-trimethylphenol) are also forming prompt HO₂ with high yields. In the case of OH + phenol and OH + *o*-cresol, the results are consistent with HO₂ being exclusively formed as coproduct of dihydroxybenzenes.

AUTHOR INFORMATION

Corresponding Author

*E-mail: b.bohn@fz-juelich.de.

ACKNOWLEDGMENT

We thank M. Bachner, H. Fuchs, A. Hofzumahaus, F. Holland, and S. Lou for useful discussions and technical support. S.N. thanks the Deutsche Forschungsgemeinschaft for a Ph.D. studentship under grant BO 1580/3-1.

REFERENCES

(1) Fortin, T. J.; Howard, B. J.; Parrish, D. D.; Goldan, P. D.; Kuster, W. C.; Atlas, E. L.; Harley, R. A. *Environ. Sci. Technol.* **2005**, *39*, 1403–1408.

(2) Ilgen, E.; Karfich, N.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.; Dunemann, L.; Begerow, J. *Atmos. Environ.* **2001**, 35, 1235–1252.

(3) Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H. *Atmos. Environ.* **2001**, *35*, 1253–1264.

(4) Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H. Atmos. Environ. 2001, 35, 1265–1279.

(5) Johnson, M. M.; Williams, R.; Fan, Z.; Lin, L.; Hudgens, E.; Gallagher, J.; Vette, A.; Neas, L.; Ozkaynak, H. *Atmos. Environ.* **2010**, 44, 4927–4936.

(6) Hawthorne, S.; Miller, D.; Barkley, R.; Krieger, M. *Environ. Sci. Technol.* **1988**, 22, 1191–1196.

(7) Hawthorne, S.; Miller, D.; Langenfeld, J.; Krieger, M. Environ. Sci. Technol. **1992**, 26, 2251–2262.

(8) U.S. Environmental Protection Agency, Our Nation's Air (EPA-454/R-09-002), 2010.

(9) Atkinson, R.; Arey, J. Polycyclic Aromatic Compounds 2007, 27, 15–40.

(10) Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.;Seinfeld, J. H.; Wallington, T. J.; Yarwood, G. *Mechanisms of atmospheric oxidation of aromatic hydrocarbons*; Oxford University Press: Oxford, U.K., 2002.

(11) Atkinson, R.; Arey, J. Chem. Rev. 2003, 103, 4605-4638.

(12) Ravishankara, A.; Wagner, S.; Fischer, S.; Smith, G.; Schiff, R.; Watson, R.; Tesi, G.; Davis, D. Int. J. Chem. Kinet. **1978**, 10, 783-804.

(13) Warneke, C.; et al. J. Geophys. Res.-Atmos. 2004, 109, D10309.
(14) Noda, J.; Volkamer, R.; Molina, M. J. J. Phys. Chem. A 2009,

113, 9658–9666. (15) Aschmann, S. M.; Arey, J.; Atkinson, R. Atmos. Environ. 2010,

(15) Aschmann, S. M.; Arey, J.; Akinson, K. Aimos. Environ. 2 44, 3970–3975.

(16) Wahner, A.; Zetzsch, C. J. Phys. Chem. 1983, 87, 4945–4951.

(17) Witte, F.; Urbanik, E.; Zetzsch, C. J. Phys. Chem. 1986, 90, 3251–3259.

(18) Knispel, R.; Koch, R.; Siese, M.; Zetzsch, C. Ber. Bunsen-Ges. 1990, 94, 1375–1379.

(19) Bohn, B.; Zetzsch, C. Phys. Chem. Chem. Phys. 1999, 1, 5097-5107.

(20) Bohn, B. J. Phys. Chem. A 2001, 105, 6092-6101.

(21) Grebenkin, S.; Krasnoperov, L. J. Phys. Chem. A 2004, 108, 1953–1963.

(22) Raoult, S.; Rayez, M. T.; Rayez, J. C.; Lesclaux, R. Phys. Chem. Chem. Phys. 2004, 6, 2245–2253.

(23) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057–2071.

(24) Atkinson, R.; Baulch, D.; Cox, R.; Hampson, R.; Kerr, J.; Troe, J. J. Phys. Chem. Ref. Data **1989**, *18*, 881–1097.

- (25) Smith, D.; McIver, C.; Kleindienst, T. J. Atmos. Chem. 1998, 30, 209-228.
- (26) Smith, D.; Kleindienst, T.; McIver, C. J. Atmos. Chem. 1999, 34, 339–364.
- (27) Baltaretu, C. O.; Lichtman, E. I.; Hadler, A. B.; Elrod, M. J. J. Phys. Chem. A 2009, 113, 221–230.

(28) Yu, J. Z.; Jeffries, H. E.; Sexton, K. G. Atmos. Environ. 1997, 31, 2261–2280.

(29) Yu, J. Z.; Jeffries, H. E. Atmos. Environ. 1997, 31, 2281-2287.

(30) Zhao, J.; Zhang, R.; Misawa, K.; Shibuya, K. J. Photochem. Photobiol. A-Chem. 2005, 176, 199–207.

(31) Birdsall, A. W.; Andreoni, J. F.; Elrod, M. J. J. Phys. Chem. A 2010, 114, 10655–10663.

(32) Cartas-Rosado, R.; Castro, M. J. Phys. Chem. A 2007, 111, 13088–13098.

- (33) Volkamer, R.; Platt, U.; Wirtz, K. J. Phys. Chem. A 2001, 105, 7865–7874.
- (34) Elrod, M. J. J. Phys. Chem. A 2011, 115, 8125-8130.

(35) Berndt, T.; Böge, O.; Herrmann, H. Chem. Phys. Lett. 1999, 314, 435-442.

(36) Olariu, R. I.; Klotz, B.; Barnes, I.; Becker, K.-H.; Mocanu, R. *Atmos. Environ.* **2002**, *36*, 3685–3697.

(37) Grosjean, D. Sci. Total Environ. 1991, 100, 367-414.

(38) Hofzumahaus, A.; et al. Science 2009, 324, 1702–1704.

(39) Lou, S.; et al. Atmos. Chem. Phys. 2010, 10, 11243-11260.

(40) Nehr, S.; Bohn, B.; Fuchs, H.; Hofzumahaus, A.; Wahner, A. *Phys. Chem. Chem. Phys.* **2011**, *13*, 10699–10708.

(41) Tyndall, G.; Cox, R.; Granier, C.; Lesclaux, R.; Moortgat, G.; Pilling, M.; Ravishankara, A.; Wallington, T. J. Geophys. Res. - Atmos. 2001, 106, 12157–12182.

(42) Aluculesei, A.; Tomas, A.; Schoemaecker, C.; Fittschen, C. Appl. Phys. B - Lasers Opt. 2008, 92, 379–385.

(43) Kovacs, T.; Blitz, M. A.; Seakins, P. W.; Pilling, M. J. J. Chem. Phys. 2009, 131, 204304.

(44) Jain, C.; Parker, A. E.; Schoemaecker, C.; Fittschen, C. Chem-PhysChem 2010, 11, 3867-3873.

(45) Fuchs, H.; Bohn, B.; Hofzumahaus, A.; Holland, F.; Lu, K.; Nehr, S.; Rohrer, F.; Wahner, A. *Atmos. Meas. Tech.* **2011**, *4*, 1209–1225.

(46) Craig Markwardt, IDL library, http://cow.physics.wisc.edu/ ~craigm/idl/, 2010.

(47) Jenkin, M.; Saunders, S.; Wagner, V.; Pilling, M. Atmos. Chem. Phys. 2003, 3, 181–193.

(48) Bloss, C.; Wagner, V.; Jenkin, M. E.; Volkamer, R.; Bloss, W. J.; Lee, J. D.; Heard, D. E.; Wirtz, K.; Martin-Reviejo, M.; Rea, G.; Wenger,

J. C.; Pilling, M. J. Atmos. Chem. Phys. 2005, 5, 641–664.

(49) Atkinson, R.; Aschmann, S.; Arey, J.; Carter, W. Int. J. Chem. Kinet. 1989, 21, 801–827.

(50) Klotz, B.; Sorensen, S.; Barnes, I.; Becker, K.-H.; Etzkorn, T.; Volkamer, R.; Platt, U.; Wirtz, K.; Martin-Reviejo, M. *J. Phys. Chem. A* **1998**, *102*, 10289–10299.

(51) Seuwen, R.; Warneck, P. Int. J. Chem. Kinet. 1996, 28, 315–332.

(52) Moschonas, N.; Danalatos, D.; Glavas, S. Atmos. Environ. 1999, 33. 111-116.

(53) Klotz, B.; Barnes, I.; Becker, K.-H.; Golding, B. T. J. Chem. Soc., Faraday Trans. **1997**, 93, 1507–1516.

(54) Klotz, B.; Barnes, I.; Becker, K.-H. Chem. Phys. 1998, 231, 289–301.

(55) Klotz, B.; Barnes, I.; Golding, B. T.; Becker, K.-H. Phys. Chem. Chem. Phys. 2000, 2, 227–235.

(56) Hoshino, M.; Akimoto, H.; Okuda, M. Bull. Chem. Soc. Jpn. 1978, 51, 718-724.

(57) Forstner, H.; Flagan, R.; Seinfeld, J. Environ. Sci. Technol. 1997, 31, 1345–1358.

(58) Huang, M.; Zhang, W.; Hao, L.; Wang, Z.; Zhao, W.; Gu, X.; Guo, X.; Liu, X.; Long, B.; Fang, L. J. Atmos. Chem. **2007**, 58, 237–252.

(59) Huang, M.; Zhang, W.; Hao, L.; Wang, Z.; Fang, L.; Kong, R.; Shan, X.; Liu, F.; Sheng, L. J. Environ. Sci. - China **2010**, 22, 1570–1575.

(60) Gery, M.; Fox, D.; Kamens, R.; Stockburger, L. Environ. Sci. Technol. 1987, 21, 339-348.

(61) Atkinson, R.; Aschmann, S.; Arey, J. Int. J. Chem. Kinet. 1991, 23, 77–97.

(62) Bethel, H.; Atkinson, R.; Arey, J. J. Phys. Chem. A 2000, 104, 8922-8929.

(63) Volkamer, R. A DOAS Study on the Oxidation Mechanism of AromaticHydrocarbons under Simulated Atmospheric Conditions. *Ph. D. thesis*, University of Heidelberg, 2001.

(64) Kwok, E. S. C.; Aschmann, S. M.; Atkinson, R.; Arey, J. J. Chem. Soc., Faraday Trans. **1997**, 93, 2847–2854.

(65) Bandow, H.; Washida, N. Bull. Chem. Soc. Jpn. 1985, 58, 2541-2548.

(66) Arey, J.; Obermeyer, G.; Aschmann, S. M.; Chattopadhyay, S.; Cusick, R. D.; Atkinson, R. *Environ. Sci. Technol.* **2009**, *43*, 683–689.

(67) Nishino, N.; Arey, J.; Atkinson, R. J. Phys. Chem. A 2010, 114, 10140-10147.

(68) Wyche, K. P.; Monks, P. S.; Ellis, A. M.; Cordell, R. L.; Parker, A. E.; Whyte, C.; Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A. S. H.;

Baltensperger, U.; Rickard, A. R.; Wulfert, F. Atmos. Chem. Phys. 2009, 9, 635–665.

(69) Rickard, A. R.; Wyche, K. P.; Metzger, A.; Monks, P. S.; Ellis, A. M.; Dommen, J.; Baltensperger, U.; Jenkin, M. E.; Pilling, M. J. Atmos. Environ. 2010, 44, 5423–5433.

(70) Bandow, H.; Washida, N. Bull. Chem. Soc. Jpn. 1985, 58, 2549–2555.

(71) Berndt, T.; Böge, O. Int. J. Chem. Kinet. 2001, 33, 124-129.

(72) Berndt, T.; Böge, O. Phys. Chem. Chem. Phys. 2003, 5, 342–350.

(73) Coeur-Tourneur, C.; Henry, F.; Janquin, M.-A.; Brutier, L. Int. J. Chem. Kinet. **2006**, 38, 553–562.

(74) NASA panel for data evaluation. *JPL publication 06-2, evaluation no. 15*; JPL: Pasadena, CA, 2006.

(75) Grosjean, D. Environ. Sci. Technol. 1985, 19, 968-974.

(76) Atkinson, R.; Aschmann, S.; Arey, J. Environ. Sci. Technol. 1992, 26, 1397–1403.

(77) Platz, J.; Nielsen, O.; Wallington, T.; Ball, J.; Hurley, M.; Straccia, A.; Schneider, W.; Sehested, J. J. Phys. Chem. A **1998**, 102, 7964–7974.