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Visible light photoredox catalysis has emerged in recent years as a pow-
erful technique in organic synthesis. This class of catalysis makes use of 
transition metal polypyridyl complexes that, upon excitation by visible 
light, engage in single-electron transfer (SET) with common functional 
groups, activating organic molecules toward a diverse array of valuable 
transformations (1–5). Much of the utility of photoredox catalysis hinges 
on its capacity to generate non-traditional sites of reactivity on common 
substrates via low-barrier, open–shell processes, thereby fostering the 
use of abundant and inexpensive starting materials. 

Over the past century, transition metal-catalyzed cross-coupling re-
actions have evolved to be amongst the most utilized C–C and C–
heteroatom bond-forming reactions in chemical synthesis. In particular, 
nickel catalysis has provided numerous avenues to forge carbon–carbon 
bonds via a variety of well-known coupling protocols (Negishi, Suzuki–
Miyaura, Stille, Kumada, and Hiyama couplings among others) (6, 7). 
The broad functional group tolerance of these reactions enables a highly 
modular building block approach to molecule construction. Organome-
tallic cross-coupling methods are traditionally predicated upon the use of 
aryl or vinyl boronic acids, zinc halides, stannanes or Grignard frag-
ments that undergo addition to a corresponding aryl or vinyl halide part-
ner. 

We recently questioned if visible light photoredox and nickel transi-
tion metal catalysis might be successfully combined to create a dual 
catalysis platform for modular C–C bond formation (Fig. 1) (8–14). 
Through a synergistic merger of these two activation modes, we hoped 
to deliver a mechanism by which feedstock chemicals that contain com-

mon yet non-traditional leaving groups ( 3sp
C –CO2H or 3sp

C –H bonds) 

could serve as useful coupling partners. Among many advantages, this 
multi-catalysis strategy would enable a modular approach to sp3–sp2 or 
sp3–sp3 bond formations that is not currently possible using either photo-
redox or transition metal catalysis alone. We sought to develop a general 
method that would exploit naturally abundant, inexpensive, and orthog-
onal functional handles (e.g., C–CO2H, C–H with C–Br, C–I). 

We proposed that two interwoven catalytic cycles might be engi-
neered to simultaneously generate (i) an organometallic nickel(II) spe-

cies via the oxidative addition of a 
Ni(0) catalyst to an aryl, alkenyl, or 
alkyl halide coupling partner, and (ii) a 
carbon-centered radical generated 
through a photo-mediated oxidation 
event (Fig. 2). Given that organic radi-
cals are known to rapidly combine with 
Ni(II) complexes (15, 16), we hoped 
that this dual catalysis mechanism 
would successfully converge in the 
form of Ni(III)(Ar)(Alkyl), that upon 
reductive elimination would deliver our 
desired C–C fragment coupling prod-
uct. One of our laboratories has demon-
strated that photoredox catalysis affords 
access to α-amino radicals by two dis-
tinct methods: via decarboxylation of a 
carboxylic acid, or by an oxidation, 
deprotonation sequence with N-aryl or 
trialkyl amines (17, 18). The other la-
boratory has explored Ni-catalyzed 
cross-coupling reactions with iminium 
ions that proceed via a putative α-
aminonickel intermediate (19–21). 
Given our respective research areas, we 
sought to jointly explore the capacity of 
a nickel(II) aryl species to intercept a 
photoredox-generated α-amino radical, 

thereby setting the stage for the fragment coupling. We recognized that 
the sum of these two catalytic processes could potentially overcome a 
series of limitations that exist for each of these catalysis methods in their 
own right. 

A detailed description of our proposed mechanistic cycle for the de-
carboxylative coupling is outlined in Fig. 2. We presumed that initial 
irradiation of heteroleptic iridium(III) photocatalyst 
Ir[dF(CF3)ppy]2(dtbbpy)PF6 [dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-
(trifluoromethyl)pyridine, dtbbpy = 4,4´-di-tert-butyl-2,2´-bipyridine] 
(1) would produce the long-lived photoexcited *IrIII state 2 (τ = 2.3 μs) 
(22). Deprotonation of the α-amino acid substrate 3 with base and oxida-
tion by the excited-state *IrIII complex (E1/2

red [*IrIII/IrII] = +1.21 V vs. 
saturated calomel electrode (SCE) in CH3CN) (22) via a single-electron 
transfer event (SET) would then generate a carboxyl radical, which upon 
rapid loss of CO2 would deliver the α-amino radical 4 and the corre-
sponding IrII species 5. Given the established oxidation potential of pro-
totypical amino acid carboxylate salts, we expected this process to be 
thermodynamically favorable (Boc-Pro-OCs, E1/2

red = +0.95 V vs. SCE 
in CH3CN) (17). Concurrently with this photoredox cycle, we hoped that 
oxidative addition of the Ni(0) species 6 into an aryl halide would pro-
duce the Ni(II) intermediate 7. We anticipated that this Ni(II)-aryl spe-
cies would rapidly intercept the α-amino radical 4, forming the 
organometallic Ni(III) adduct 8. Subsequent reductive elimination would 
forge the requisite C–C bond, while delivering the desired α-amino ary-
lation product 10 and expelling the Ni(I) intermediate 9. Finally, single-
electron transfer between the IrII species 5 and the Ni complex 9 would 
accomplish the exergonic reduction of Ni(I) to Ni(0) (based on the estab-
lished two electron reduction potential of Ni(II) to Ni(0), we presume 
that reduction of Ni(I) to Ni(0) should be thermodynamically favorable, 
E1/2

red [NiII/Ni0] = –1.2 V vs. SCE in DMF) by the IrII species 5 (E1/2
red 

[IrIII/IrII] = –1.37 V vs. SCE in CH3CN) (22, 23), thereby completing 
both the photoredox and nickel catalytic cycles simultaneously. 

With this mechanistic hypothesis in hand, we first examined the pro-
posed coupling using N-Boc proline, para-iodotoluene, and a wide range 
of photoredox and ligated nickel catalysts. To our delight, we found that 
the combination of Ir[dF(CF3)ppy]2(dtbbpy)PF6 and NiCl2•glyme, 
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dtbbpy, in the presence of 1.5 equivalents of Cs2CO3 base and white 
light from a 26 W compact fluorescent bulb, achieved the desired frag-
ment coupling in 78% yield.. During our optimization studies, we found 
that use of a bench-stable Ni(II) source, such as NiCl2•glyme, was suffi-
cient to generate the arylation product with comparable efficiency to a 
Ni(0) source. We attribute this result to in situ photocatalytic reduction 
of Ni(II) to Ni(0) via two discrete single electron transfer events, with 
excess amino acid likely serving as the sacrificial reductant to access the 
active Ni-catalyst (E1/2

red [NiII/Ni0] = –1.2 V vs. SCE in DMF) (23). We 
believe it is unlikely that the Ni(II)(Ar)X intermediate 7 undergoes a 
SET event to form Ni(I)Ar, given the poorly matched reduction poten-
tials of the species involved (cf. E1/2

red [NiIIArX/NiIAr] = –1.7 V vs. SCE 
in CH3CN and E1/2

red [IrIII/IrII] = –1.37 V vs. SCE in CH3CN) (22, 24). 
We do, however, recognize that an alternative pathway could be opera-
ble wherein the oxidative addition step occurs from the Ni(I) complex to 
form a Ni(III) aryl halide adduct. In this pathway, photocatalyst-
mediated reduction of the aryl-Ni(III) salt to the corresponding Ni(II) 
species followed by the α-amino radical addition step would then form 
the same productive Ni(III) adduct 8 as shown in Fig. 2. Given that (i) 
Ni(0) complexes undergo oxidative addition more readily than Ni(I) 
complexes with aryl halides (25), and (ii) Ni(II) complexes are believed 
to rapidly engage with sp3 carbon-centered radicals to form Ni(III) spe-
cies (enabling sp3–sp2 and sp3–sp3 C–C bond formations) (15, 16), we 
favor the dual catalysis mechanism outlined in Fig. 2. 

Having established the optimal conditions for this photoredox-nickel 
decarboxylative arylation, we focused our attention on the scope of the 
aryl halide fragment. As shown in Fig. 3, a wide range of aryl iodides are 
amenable to this dual catalysis strategy, including both electron-rich and 
electron-deficient arenes (10 to 13, 65 to 78% yield). A variety of aryl 
bromides function effectively as well, including those that contain func-
tional groups as diverse as ketones, esters, nitriles, trifluoromethyl 
groups, and fluorides (14 to 18, 75 to 90% yield). Heteroaromatics, in 
the form of differentially substituted bromopyridines, are efficient cou-
pling partners as well (19 to 22, 60 to 85% yield). Moreover, aryl chlo-
rides are competent substrates if the arenes, such as pyridines and 
pyrimidines, are electron-deficient (23 and 24, 64 and 65% yield). Nota-
bly, only products 15 and 19 in Fig. 3 would be accessible using our 
previously reported photoredox arylation strategy. Moreover, we are 

unaware of the general use of 3sp
C -bearing carboxylic acids as reaction 

substrates in transition metal catalysis, an illustration of the tremendous 
scope expansion that is attainable using this dual catalysis technology. It 
should be noted that these reactions are typically complete in 72 hours at 
larger scale, and 48 hours on smaller scale (see supplementary text). 

Next, we investigated the nature of the carboxylic acid coupling 
partner, as highlighted in Fig. 4A. A wide variety of α-amino acids func-
tion effectively in this protocol including various N-tert-butyl carbamoyl 
(N-Boc) and N-benzyl carbamoyl (N-Cbz) protected heterocycles (25 to 
27, 61 to 93% yield). Acyclic α-amino acids, containing indole, ester, 
and thioether functionalities, are also readily tolerated (28 to 32, 72 to 
91% yield). Remarkably, α-oxy carboxylic acids can function as profi-
cient coupling partners, producing α-arylated ethers in excellent yield 
over a single step (33, 82% yield). Moreover, we have also found that 
various phenyl acetic acid substrates function in this coupling protocol 
with high efficiency (>78% yield, see supplementary text). 

To further demonstrate the utility of this dual catalysis strategy, we 

sought to demonstrate the direct functionalization of 3sp
C –H bonds 

with coupling partners derived from aryl or alkyl halides. Given that our 
decarboxylation-arylation mechanism involves the rapid addition of an 
α-amino radical to a Ni(II) salt, we sought to generate an analogous α-
nitrogen centered carbon radical via a photoredox driven N-Ph oxidation, 
α-C–H deprotonation sequence using aniline-based substrates (18). We 
presumed that this photo-mediated N-Ph oxidation mechanism would 

provide an alternative pathway to the open-shell carbon intermediate 
(corresponding to 4, Fig. 2), and should similarly intercept the putative 
Ni(II) intermediate 8. Assuming that the remaining dual catalysis mech-
anism would be analogous to that shown in Fig. 2, we expected that a 

range of direct 3sp
C –H functionalization protocols should be possible. 

Indeed, we were able to demonstrate that dimethylaniline undergoes α-
amine coupling with a variety of aryl halides in the presence of 
Ir[dF(CF3)ppy]2(dtbbpy)PF6 and NiCl2•glyme, as shown in Fig. 4B. 
Electron-deficient and electron-rich iodoarenes give good to excellent 
yields (34 to 36, 72 to 93% yield). Moreover, aryl bromides are compe-
tent coupling partners, enabling the installation of medicinally important 
heterocyclic motifs (37, 60% yield). Last, control experiments have re-
vealed that the combination of light, photoredox catalyst 1, and the 
NiCl2•dtbbpy complex is essential for product formation in all examples 
listed in Figs. 3 and 4. This reaction represents a powerful foray into 
direct C–H activation using orthogonal cross-coupling reactivity. 
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Fig. 2. Photoredox-nickel catalyzed decarboxylative arylation: proposed mechanistic pathway. Boc, tert-butyl carbamoyl; SET = 
single-electron transfer. 

Fig. 1. The merger of photoredox and nickel catalysis: access to direct sp3-sp2 cross coupling. 
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Fig. 3. Photoredox-nickel catalyzed decarboxylative cross-coupling: Aryl halide scope. 
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Fig. 4. (A) Evaluation of the amino acid coupling partner in the decarboxylative-arylation protocol. (B) The direct 3sp
C –H, C–X 

cross-coupling via photoredox-nickel catalysis. All yields listed in Figs. 3 and 4 are isolated yields. Reaction conditions for (A) 
are the same as in Fig. 3. Reaction conditions for (B): photocatalyst 1 (1 mol%); NiCl2 glyme (10 mol%), dtbbpy (15 mol%), KOH 
(3 equiv.), DMF, 23°C, 26 W light. Iodoarenes employed as aryl halide, X = I. †Bromoarene employed, X = Br. 
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