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The total synthesis of the alkaloid (+)-coerulescine is presented. The key step of this approach is an effi-
cient tandem aza-Michael initiated ring closure (aza-MIRC) process between ethoxymethylene-oxindole
and benzyl(2-bromoethyl)carbamate. The potency of the aza-MIRC reaction was first tested onto less
challenging Michael acceptors and led in good yields to the corresponding N-Cbz a-alkoxy-B-gem-disub-
stituted pyrrolidines. The resulting N-acyliminium precursor obtained from ethoxymethylidene-oxindole
was efficiently converted in four steps, including 2 deprotections, into the targeted (+)-coerulescine.

© 2013 Elsevier Ltd. All rights reserved.

The simplest members of the spirooxindole family are coerules-
cine (1) and horsfiline (2) isolated respectively from the blue can-
ary grass Phalaris coerulescens, and the roots of the Malaysian tree
Horsfieldia superba (Fig. 1).! Another tricyclic member elacomine
(3),% substituted in the 4’ position, exhibits anti-tumor activity.
Moreover, tetra- and pentacyclic spirooxindole alkaloids such as
rhynchophylline (5)> and spirotryprostatins A (6) and B (7)* are
well known for their interest as a neuroprotective agent or anti-
cancer agents, respectively. In fact, the spiro[oxindole-3,3’-pyrroli-
dine] ring system is among the most interesting scaffold since it is
found in many relevant biologically active compounds. For exam-
ple, synthetic MI-219 (4) is a highly selective inhibitor of the
MDM2-P53 interactions making it an efficient anti-cancer agent.>

Furthermore, the formation of the spiro junction remains a
stimulating synthetic challenge for chemists. These observations
explain why numerous approaches were developed over the years®
including our own results for the access to unprecedented spiroox-
indole cores.” We wish to report herein our recent findings regard-
ing the total synthesis of (+)-coerulescine (1). The key step for this
sequence is an efficient aza-MIRC (Michael initiated ring closure)
process between 3-ethoxymethylene-oxindole 8° and benzyl(2-
bromoethyl)carbamate 9 developed by our group.®

The retrosynthetic pathway envisioned for this total synthesis is
presented in Scheme 1. The requisite original key substrate (+)-
10'° bearing orthogonally protected nitrogen atoms would be ob-
tained by an aza-MIRC sequence between 9 and Michael acceptor
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R = H, coerulescine (1)
R = OMe, horsfiline (2)

elacomine (3)

R = OMe, spirotryprostatin A (6)
R = H, spirotryprostatin B (7)

rhynchophylline (5)

Figure 1. Representative spirooxindoles.

8. Starting from compound (+)-10, selective reduction, via N-acyli-
minium ion chemistry, deprotections, and methylation of the
resulting amine should lead to the desired (*)-coerulescine (1).
This retrosynthetic pathway implied to use benzyl(2-bromoeth-
yl)carbamate 9 as a partner for the spiro-ring closure.

Indeed, the key step of the synthesis was the tandem reaction
between benzyl(2-bromoethyl)carbamate 9 and an oxindole de-
rived Michael acceptor. As mentioned above, this reaction is
known with a-bromoacetamides but investigated for the first time
using compound 9 as the starting material.”® The challenge of this
step was the possible competitive formation of N-Cbz aziridine
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Scheme 1. Retrosynthetic analysis.

resulting from the intramolecular cyclization of N-protected 2-bro-
moethanamine 9.'" For this reason, the first attempts of the tan-
dem reaction were performed with more conventional Michael
acceptors 11 in Table 1.2 Thankfully, the process proved to be
highly efficient leading in moderate to good yield to the expected
N-Cbz a-alkoxypyrrolidines 12. For instance, commercially avail-
able Michael acceptors 11a-d led to the formation of the corre-
sponding pyrrolidine systems 12a and d in good yields ranking
from 64% to 84% (Table 1, entries 1-4). Diphenylketone derived Mi-
chael acceptor 11e furnished the desired cyclic compound in an
acceptable 57% yield (Table 1, entry 5). The reaction was also effi-
cient with the acceptor 11f bearing a bulky phenylsulfone moiety,
giving a high 98% yield (Table 1, entry 6).

Next we turned our attention to the application of this tandem
process to the total synthesis of (+)-coerulescine (1). Oxindole (13)

Table 1
Tandem reaction between benzyl(2-bromoethyl)carbamate 9 and Michael acceptors
11°
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# Reaction conditions: benzyl(2-bromoethyl)carbamate 9 (0.5 mmol), Michael
acceptors 11 (0.5 mmol), NaH (0.6 mmol), THF (2.5 mL).

b Isolated yields.

¢ dr >95:5 determined by 'H NMR analysis of the crude mixture.
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Scheme 2. Access to N-Cbz spiro[oxindole-3,3’-pyrrolidine] ring system (+)-15.

was first converted into the Michael acceptor 8 by using classical
procedures (Scheme 2).!*> The tandem reaction furnished in 83%
yield the desired tricyclic spiro-product (+)-10. Reduction of the
resulting o-ethoxy-pyrrolidine was performed via N-acyliminium
ion (£)-I generated in situ upon acidic treatment (e.g., excess of
TFA in DCM at rt) using triethylsilane as the reducing agent. We
obtained a 3:1 mixture of (+)-14 together with the deacylated com-
pound (%)-15 in an overall 86% yield. This deprotection can be
rationalized by the addition of EtOH produced during the process
onto the acyl group. Product (*)-14 was easily and quantitatively
converted into (+)-15 in the presence of sodium carbonate in
methanol.!*

Interestingly, the N-Cbz-spiro-system (+)-15 was afterward iso-
lated in three steps and 71% yield starting from 8 without any
intermediate purification (Scheme 3). The carboxybenzyl group
was then quantitatively removed by hydrogenation in the presence
of a catalytic amount of Pd/C in methanol. The resulting tricyclic
product (+)-16'> was converted in 38% yield to (#)-coerulescine
(1) by methylation of the secondary amine with dimethyl sulfate
in acetonitrile. The '"H NMR spectral data are in accordance with
those reported in the literature.!® It is important to note that the
conversion of coerulescine (1) into horsfiline (2) was previously
published.!”

In summary, we have demonstrated the efficiency of benzyl(2-
bromoethyl)carbamate to access N-Cbz o-ethoxy-pyrrolidines 12
(Table 1). For the total synthesis of coerulescine (1), the key precur-
sor (+)-10, bearing orthogonally protected nitrogen atoms, was
readily obtained in good yield employing an aza-MIRC methodol-
ogy. An application to the straightforward total synthesis of (*)-
coerulescine (1) in seven steps and 8% overall yield starting from
oxindole (13) has been achieved. The reactivity of N-Cbz o-eth-
oxy-pyrrolidines 12 thus obtained by our tandem process in the
N-acyliminium ion chemistry is currently studied. Moreover, the
promising spiro-template (+)-10 is a key intermediate for the syn-
thesis of a wide library of spirooxindole derivatives by the way of
nucleophilic addition onto the N-acyliminium ion (£)-I. This reac-
tivity is also already under investigation and will be published in
due course.

PAIC, H, N (Me0),50, K,CO,
3 steps MeOH, rt CH4CN, rt
8§ —» ()15 ——> —_— ()1
71% 99% N X0 38%
H
(4)-16

Scheme 3. Synthesis of (+)-coerulescine (1).
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