Tetrahedron Letters 54 (2013) 2174-2176

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Tandem aza-Michael/spiro-ring closure sequence: access to a versatile scaffold and total synthesis of (±)-coerulescine

Meral Görmen, Ronan Le Goff, Ata Martin Lawson, Adam Daïch, Sébastien Comesse*

URCOM, EA 3221, INC3M, FR-CNRS 3038, UFR des Sciences & Techniques de l'Université du Havre, BP: 540, 25 rue Philippe Lebon, F-76058 Le Havre Cedex, France

ARTICLE INFO

Article history: Received 24 December 2012 Revised 12 February 2013 Accepted 15 February 2013 Available online 24 February 2013

Keywords: Tandem reaction Total synthesis Spirooxindoles Coerulescine Alkaloids

ABSTRACT

The total synthesis of the alkaloid (\pm)-coerulescine is presented. The key step of this approach is an efficient tandem aza-Michael initiated ring closure (aza-MIRC) process between ethoxymethylene-oxindole and benzyl(2-bromoethyl)carbamate. The potency of the aza-MIRC reaction was first tested onto less challenging Michael acceptors and led in good yields to the corresponding *N*-Cbz α -alkoxy- β -gem-disubstituted pyrrolidines. The resulting *N*-acyliminium precursor obtained from ethoxymethylidene-oxindole was efficiently converted in four steps, including 2 deprotections, into the targeted (\pm)-coerulescine.

The simplest members of the spirooxindole family are coerulescine (1) and horsfiline (2) isolated respectively from the blue canary grass *Phalaris coerulescens*, and the roots of the Malaysian tree *Horsfieldia superba* (Fig. 1).¹ Another tricyclic member elacomine (3),² substituted in the 4' position, exhibits anti-tumor activity. Moreover, tetra- and pentacyclic spirooxindole alkaloids such as rhynchophylline (5)³ and spirotryprostatins A (6) and B (7)⁴ are well known for their interest as a neuroprotective agent or anticancer agents, respectively. In fact, the spiro[oxindole-3,3'-pyrrolidine] ring system is among the most interesting scaffold since it is found in many relevant biologically active compounds. For example, synthetic MI-219 (4) is a highly selective inhibitor of the MDM2–P53 interactions making it an efficient anti-cancer agent.⁵

Furthermore, the formation of the spiro junction remains a stimulating synthetic challenge for chemists. These observations explain why numerous approaches were developed over the years⁶ including our own results for the access to unprecedented spiroox-indole cores.⁷ We wish to report herein our recent findings regarding the total synthesis of (±)-coerulescine (1). The key step for this sequence is an efficient aza-MIRC (Michael initiated ring closure) process between 3-ethoxymethylene-oxindole **8**⁹ and benzyl(2-bromoethyl)carbamate **9** developed by our group.⁸

The retrosynthetic pathway envisioned for this total synthesis is presented in Scheme 1. The requisite original key substrate (\pm) -**10**¹⁰ bearing orthogonally protected nitrogen atoms would be obtained by an aza-MIRC sequence between **9** and Michael acceptor

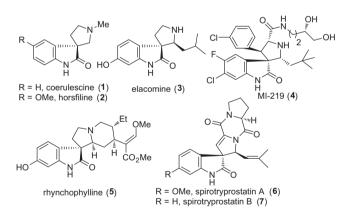
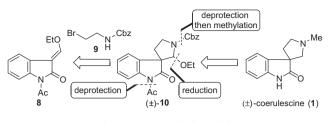


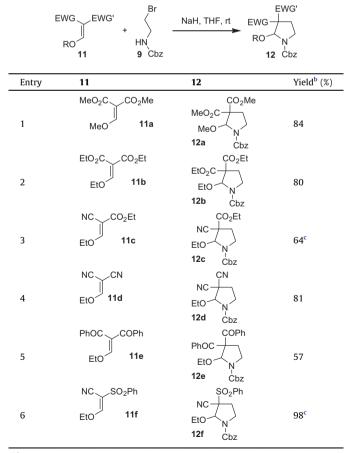
Figure 1. Representative spirooxindoles.

8. Starting from compound (\pm) -**10**, selective reduction, via *N*-acyliminium ion chemistry, deprotections, and methylation of the resulting amine should lead to the desired (\pm) -coerulescine (**1**). This retrosynthetic pathway implied to use benzyl(2-bromoethyl)carbamate **9** as a partner for the spiro-ring closure.


Indeed, the key step of the synthesis was the tandem reaction between benzyl(2-bromoethyl)carbamate **9** and an oxindole derived Michael acceptor. As mentioned above, this reaction is known with α -bromoacetamides but investigated for the first time using compound **9** as the starting material.^{7,8} The challenge of this step was the possible competitive formation of *N*-Cbz aziridine

^{*} Corresponding author. Tel.: +33 (0)2 32 74 44 03; fax: +33 (0)2 32 74 43 91. *E-mail address:* sebastien.comesse@univ-lehavre.fr (S. Comesse).

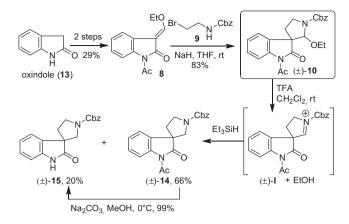
^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.02.047


Scheme 1. Retrosynthetic analysis.

resulting from the intramolecular cyclization of N-protected 2-bromoethanamine **9**.¹¹ For this reason, the first attempts of the tandem reaction were performed with more conventional Michael acceptors **11** in Table 1.¹² Thankfully, the process proved to be highly efficient leading in moderate to good yield to the expected *N*-Cbz α -alkoxypyrrolidines **12**. For instance, commercially available Michael acceptors **11a–d** led to the formation of the corresponding pyrrolidine systems **12a** and **d** in good yields ranking from 64% to 84% (Table 1, entries 1–4). Diphenylketone derived Michael acceptor **11e** furnished the desired cyclic compound in an acceptable 57% yield (Table 1, entry 5). The reaction was also efficient with the acceptor **11f** bearing a bulky phenylsulfone moiety, giving a high 98% yield (Table 1, entry 6).

Next we turned our attention to the application of this tandem process to the total synthesis of (\pm) -coerulescine (1). Oxindole (13)

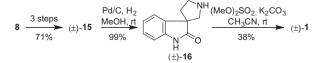
Table 1


Tandem reaction between benzyl(2-bromoethyl)carbamate ${\bf 9}$ and Michael acceptors ${\bf 11}^{\rm a}$

^a Reaction conditions: benzyl(2-bromoethyl)carbamate **9** (0.5 mmol), Michael acceptors **11** (0.5 mmol), NaH (0.6 mmol), THF (2.5 mL).

^b Isolated yields.

^c dr >95:5 determined by ¹H NMR analysis of the crude mixture.



Scheme 2. Access to N-Cbz spiro[oxindole-3,3'-pyrrolidine] ring system (±)-15.

was first converted into the Michael acceptor **8** by using classical procedures (Scheme 2).¹³ The tandem reaction furnished in 83% yield the desired tricyclic spiro-product (\pm)-**10**. Reduction of the resulting α -ethoxy-pyrrolidine was performed via *N*-acyliminium ion (\pm)-**I** generated in situ upon acidic treatment (e.g., excess of TFA in DCM at rt) using triethylsilane as the reducing agent. We obtained a 3:1 mixture of (\pm)-**14** together with the deacylated compound (\pm)-**15** in an overall 86% yield. This deprotection can be rationalized by the addition of EtOH produced during the process onto the acyl group. Product (\pm)-**14** was easily and quantitatively converted into (\pm)-**15** in the presence of sodium carbonate in methanol.¹⁴

Interestingly, the *N*-Cbz-spiro-system (±)-**15** was afterward isolated in three steps and 71% yield starting from **8** without any intermediate purification (Scheme 3). The carboxybenzyl group was then quantitatively removed by hydrogenation in the presence of a catalytic amount of Pd/C in methanol. The resulting tricyclic product (±)-**16**¹⁵ was converted in 38% yield to (±)-coerulescine (**1**) by methylation of the secondary amine with dimethyl sulfate in acetonitrile. The ¹H NMR spectral data are in accordance with those reported in the literature.¹⁶ It is important to note that the conversion of coerulescine (**1**) into horsfiline (**2**) was previously published.¹⁷

In summary, we have demonstrated the efficiency of benzyl(2bromoethyl)carbamate to access *N*-Cbz α -ethoxy-pyrrolidines **12** (Table 1). For the total synthesis of coerulescine (**1**), the key precursor (±)-**10**, bearing orthogonally protected nitrogen atoms, was readily obtained in good yield employing an aza-MIRC methodology. An application to the straightforward total synthesis of (±)coerulescine (**1**) in seven steps and 8% overall yield starting from oxindole (**13**) has been achieved. The reactivity of *N*-Cbz α -ethoxy-pyrrolidines **12** thus obtained by our tandem process in the *N*-acyliminium ion chemistry is currently studied. Moreover, the promising spiro-template (±)-**10** is a key intermediate for the synthesis of a wide library of spirooxindole derivatives by the way of nucleophilic addition onto the *N*-acyliminium ion (±)-**I**. This reactivity is also already under investigation and will be published in due course.

Scheme 3. Synthesis of (±)-coerulescine (1).

Acknowledgments

We thank the 'Fédération de Chimie': FR CNRS 3038 (INC3 M), the 'réseau CRUNCH', the 'Région Haute-Normandie' (Marie Curie Postdoctoral Fellowship for M.G.), the French 'Ministère de l'Enseignement Supérieur et de la Recherche' (Graduate Fellowship attributed to R.L.G.), ERDF funding (A-I chem channel – Interreg IV4 program) and the URCOM laboratory for their financial support.

References and notes

- (a) Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Edgar, J. A.; Flower, K.; Vit, I.; Willing, R. I. *Phytochemistry* **1998**, *48*, 437–439; (b) Jossang, A.; Jossang, P.; Hadi, H. A.; Sévenet, T.; Bodo, B. J. Org. Chem. **1991**, *56*, 6527–6530; For recent synthesis either enantioselective or racemic see: (c) Le Coff, R.; Lawson, A. M.; Daïch, A.; Comesse, S. Org. Biomol. Chem. **2013**, *11*, 1818–1821; (d) Hsieh, J.-C. S.; Cheng, A.-Y.; Fu, J.-H.; Kang, T.-W. Org. Biomol. Chem. **2012**, *10*, 6404–6409; (e) Hirschhäuser, C.; Parker, J. S.; Perry, M. W. D.; Haddow, M. F.; Gallagher, T. Org. Lett. **2012**, *14*, 4846–4849; (f) Moody, C. L.; Franckevičius, V.; Drouhin, P.; Klein, J. E. M. N.; Taylor, R. J. K. Tetrahedron Lett. **2012**, *51*, 1897–1899; (g) Pumphrey, A. L.; Dong, H.; Driver, T. G. Angew. Chem., Int. Ed. **2012**, *51*, 5920– 5923; (h) Deppermann, N.; Thomanek, H.; Prenzel, A. H. G. P.; Maison, W. J. Org. Chem. **2010**, *75*, 5994–6000; (i) Thomson, J. E.; Kyle, A. F.; Ling, K. B.; Smith, S. R.; Slawin, A. M. Z.; Smith, A. D. Tetrahedron **2010**, *66*, 3801–3813; (j) Jaegli, S.; Vors, J.-P.; Neuville, L.; Zhu, J. Synlett **2009**, 2997–2999.
- Kamisaki, H.; Nanjo, T.; Tsukano, C.; Takemoto, Y. Chem. Eur. J. 2011, 17, 626– 633.
- Chou, C.-H.; Gong, C.-L.; Chao, C.-C.; Lin, C.-H.; Kwan, C.-Y.; Hsieh, C.-L.; Leung, Y.-M. J. Nat. Prod. 2009, 72, 830–834.
- (a) Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651–12666; (b) Cui, C. B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832–835.
- (a) Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R. S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R. B.; Pienta, K. J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. PNAS **2008**, *105*, 3933–3938; (b) Azmi, A. S.; Philip, P. A.; Beck, F. W. J.; Wang, Z.; Banerjee, S.; Wang, S.; Yang, D.; Sarkar, F. H.; Mohammad, R. M. Oncogene **2011**, *30*, 117–126.
- For reviews see: (a) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104–6155;
 (b) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003–3025; (c) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748–8758; (d) Heitzman, M. E.; Neto, C. C.; Winiarz, E.; Vaisberg, A. J.; Hammond, G. B. Phytochemistry 2005, 66, 5–29; (e) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209–2219.
- (a) Allous, I.; Comesse, S.; Sanselme, M.; Daïch, A. Eur. J. Org. Chem. 2011, 5303– 5310; (b) Allous, I.; Comesse, S.; Berkeš, D.; Alkyat, A.; Daïch, A. Tetrahedron Lett. 2009, 50, 4411–4415.
- (a) Saber, M.; Comesse, S.; Dalla, V.; Netchitaïlo, P.; Daïch, A. Synlett 2011, 2425–2429; (b) Saber, M.; Comesse, S.; Dalla, V.; Daïch, A.; Sanselme, M.; Netchitaïlo, P. Synlett 2010, 2197–2201; (c) Comesse, S.; Sanselme, M.; Daïch, A. J. Org. Chem. 2008, 73, 5566–5569.
- For a review on 3-alkenyl-oxindoles, see: Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 4527–4547.
- 10. To the best of our knowledge, only one example of such *N*-acyliminium ion precursor equivalent was previously obtained, as side product: Lakshmaiah, G.; Kawabata, T.; Shang, M.; Fuji, K. *J. Org. Chem.* **1999**, *64*, 1699–1704.

- 11. A solution of benzyl(2-bromoethyl)carbamate 9 (129 mg, 0.5 mmol) and NaH (60% in mineral oil, 24 mg, 0.6 mmol) in THF (2.5 mL) was stirred at rt for 7 h. ¹H NMR of the crude mixture showed the presence of 9 together with N-Cbz aziridine in a ratio of 45:55. The ¹H NMR spectral data of N-Cbz aziridine is in accordance with the literature: Moore, E. G.; Xu, J.; Jocher, C. J.; Corneillie, T. M.; Raymond, K. N. *Inorg. Chem.* 2010, 49, 9928–9939; Access to N-Cbz aziridine starting from tosylate derivative, see: Žinić, M.; Alihodžić, S.; Škarić, V. J. Chem. Soc., Perkin Trans. 1 1993, 21–26; For the use of N-substituted aziridines in the alkylative cyclization of 1,3-dimethylindole catalyzed by Sc(OTF)₃ and TMSCI for the formation of eserine-like alkaloids, see: Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2, 953–955.
- 12. General procedure: To a solution of benzyl(2-bromoethyl)carbamate 9 (129 mg, 0.5 mmol) and the corresponding Michael acceptor 11 (0.5 mmol) in THF (2.5 mL) at 0 °C, was added NaH (60% in mineral oil, 24 mg, 0.6 mmol) portion by portion. The ice bath was removed and the reaction mixture was stirred for 3 h to 3 days (monitored by TLC), was then poured into a saturated NH₄Cl solution, and extracted with ethyl acetate (2 \times 25 mL). The organic phase was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography (cyclohexane/EtOAc: 20/ 80). 1-Benzyl 3,3-dimethyl 2-methoxypyrrolidine-1,3,3-tricarboxylate (**12a**): 84% as a white solid. mp 67–69 °C. IR (neat) 1737, 1705, 1396, 1275, 1246, 1108, 1071, 970, 954, 754, 702 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) of a mixture of two rotamers (55:45), δ (ppm): 2.29–2.38 (m, 1H), 2.33 (dt, J = 13.2, 6.6 Hz, 1H), 2.72-2.86 (m, 1H), 2.68-2.91 (m, 1H), 3.29 and 3.46 (s, 3H), 3.32-3.43 (m, 1H), 3.52–3.61 (m, 1H), 3.56 (dd, J = 18.1 and 9.1 Hz, 1H), 3.70 and 3.71 (s, 3H), 3.74 and 3.76 (s, 3H), 5.11–5.25 (m, 2H), 5.05–5.33 (m, 2H), 5.62 (d, *J* = 15 Hz, 1H), 5.61 (d, *J* = 15.1 Hz, 1H), 7.32–7.39 (m, 5H), 7.28–7.47 (m, 5H). ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$ of a mixture of two rotamers (55:45), δ (ppm): 28.4, 29.3, 43.8, 43.9, 52.9, 53.2, 56.9, 57.6, 63.9, 64.7, 67.3, 67.7, 90.4, 90.9, 127.9, 128.2, 128.3, 128.7, 136.4, 136.5, 154.9, 155.6, 166.9, 167.1, 169.2. HRMS (ESI, C17H21NO7: [M+Na]⁺): calcd 374.1216, found: 374.1206.
- (a) Bouchikhi, F.; Rossignol, E.; Sancelme, M.; Aboab, B.; Anizon, F.; Fabbro, D.; Prudhomme, M.; Moreau, P. *Eur. J. Med. Chem.* **2008**, 43, 2316–2322; (b) Pedras, M. S. C.; Jha, M. *J. Org. Chem.* **2005**, 70, 1828–1834.
- 14. Sodium carbonate (21 mg, 0.2 mmol) was added in one portion to a solution of acylated product (±)-**14** (364 mg, 1.0 mmol) in MeOH (10 mL) at 0 °C. The mixture was stirred at this temperature for 20 min, poured into brine (20 mL), and extracted with ethyl acetate (3 × 30 mL). The combined organic phase was dried over MgSO₄, filtered and, concentrated in vacuo. The crude mixture was purified by flash chromatography (cyclohexane/EtOAc: 50/50). (±)-Benzyl 2-oxospiro[indoline-3,3'-pyrrolidine]-1'-carboxylate (**15**): 99% as colorless oil. IR (neat) 3229, 1698, 1677, 1416, 1121, 747, 695 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) of a mixture of two rotamers (55:45), δ (ppm): 9.05 (d, *J* = 17.2 Hz, 1H), 7.42–6.93 (m, 8H), 5.29–5.08 (m, 2H), 3.94–3.64 (m, 4H), 2.48–4.38 (m, 1H), 2.17–2.51 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) of a mixture of two rotamers (55:45), δ (ppm): 180.9, 180.7, 155.4, 140.8, 140.7, 137.2, 137.0, 133.0, 132.7, 128.9, 128.9, 128.4, 128.3, 128.2, 123.4, 123.1, 110.5, 67.1, 54.3, 54.0, 53.2, 52.3, 45.7, 45.2, 36.2, 35.3. HRMS (ESI, C₁₇H₁₈N₂O₃: [M+Na]⁺): calcd 345.1210, found: 345.1212.
- 15. Cossy, J.; Cases, M.; Pardo, D. G. Tetrahedron Lett. 1998, 39, 2331–2332.
- (a) White, J. D.; Li, Y.; Ihle, D. C. J. Org. Chem. 2010, 75, 3569–3577; (b) Chang, M.-Y.; Pai, C.-L.; Kung, Y.-H. Tetrahedron Lett. 2005, 46, 8463–8465; (c) Selvakumar, N.; Azhagan, A. M.; Srinivas, D.; Krishna, G. G. Tetrahedron Lett. 2002, 43, 9175–9178.
- Kulkarni, M. G.; Dhondge, A. P.; Chavhan, S. W.; Borhade, A. S.; Shaikh, Y. B.; Birhade, D. R.; Desai, M. P.; Dhatrak, N. R. *Beilstein J. Org. Chem.* **2010**, *6*, 876– 879.