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letterA Modified Synthesis of the Antiosteoporosis Drug Alfacalcidol via a Key 
Photochemical Transformation of 1α-5,6-trans-Vitamin D3
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Abstract: Alfacalcidol (1α-hydroxyvitamin D3) is an important
clinical drug for the treatment of osteoporosis. Its practical synthe-
sis has been intensively pursued across academia. The difficulties of
separating 5,6-cis and 5,6-trans isomers in the current process was
avoided by photochemical transformation of the 5,6-trans isomer
into the 5,6-cis isomer. Employing vitamin D3 as a starting material,
alfacalcidol was obtained by a five-step reaction sequence of ester-
ification, cyclization, oxidation, solvolysis ring-opening, and subse-
quent photochemical reaction. The overall yield has been greatly
improved from 17% to 31%.
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Alfacalcidol (1α-hydroxyvitamin D3) is a drug for the
treatment of parathyroid dysfunction, renal osteodystro-
phy, and osteoporosis caused by menopause.1 It has been
shown recently that 1α-hydroxyvitamin D3 exhibits nota-
ble activities against some cancers.2,3 Therefore an effi-
cient synthesis of 1α-hydroxyvitamin D3 is important in
pharmaceutical industry with both clinical and industrial
significance.

Currently, two approaches have been used for the indus-
trial synthesis of 1α-hydroxyvitamin D3, both using vita-
min D3 as a starting material.4 Route one treated vitamin
D3 with sulfur dioxide to produce two cyclic adducts
which are protected via a silyl group. These protected ad-
ducts undergo base-catalyzed sulfur dioxide removal and
rearrangement to a single silyl 5,6-trans-vitamin D3. Al-
lylic oxidation then affords the corresponding 1α-hydroxy
derivative, which is then deprotected to yield crystalline
1α-hydroxy-5,6-trans-vitamin D3, photochemical isomer-
ization of the 1α-hydroxy-5, 6-trans-vitamin D3 may yield
1α-hydroxyvitamin D3.

3,5 However, the use of sulfur diox-
ide as a solvent and the instability of the silyl compound
have made syntheses by this process inefficient.

The second route, based on Mazur’s observation on the
vitamin–cyclovitamin conversion, devised by DeLuca
and their collaborators, entails three main chemical oper-
ations: formation of cyclovitamin D, C-1 hydroxylation of
the cyclovitamin D, and solvolysis of cyclovitamin D.6

This method suffers from 5,6-cis and 5,6-trans isomers
which are obtained with a molar ratio of 4:1 by solvolysis

of cyclovitamin D. The isomers are hard to separate by
column chromatography, even including preparative
high-performance liquid chromatography (prep. HPLC).7

At present, a Diels–Alder reaction was adopted to selec-
tively remove the trans isomer.8 With this method, a lot of
intermediates become unusable, thus the overall yield is
usually around 15%.

Our work has been concerned with the Mazur’s solvolysis
method, trying to overcome the separation issue of iso-
mers. A photochemical reaction can be used to convert the
5,6-trans isomer into the targeted 5,6-cis isomer selective-
ly; this replaces the previous Diels–Alder reaction
(Scheme 1). Also, we have studied some important pa-
rameters in the 1α-hydroxy-vitamin D3 synthetic process,
such as solvent, temperature, and molar ratio of raw mate-
rials of esterification and cyclization reactions. In summa-
ry, an efficient procedure was reported here to produce the
corresponding 1α-hydroxyvitamin D3 from vitamin D3 in
30% overall yield.

First, vitamin D3 (1) was treated with p-toluenesulfonyl
chloride in quantitative yield to the vitamin D3 tosylate
(2). Pyridine was reported to be used as solvent,9 which is
miscible with water and conjugated with the triene struc-
ture of the product to form π–π bond interaction. Thus te-
dious extraction and washing procedures were necessary
for separation to avoid product loss with pyridine. In order
to simplify the operating conditions and the posttreatment
process, as well as to avoid product waste, dichlorometh-
ane was used as solvent to replace pyridine.10 As a result,
it significantly reduced pyridine hydrochloride waste and
improved process economy. On the other hand, we select-
ed 4-dimethylaminopyridine as catalyst, and the reaction
temperature was changed from 4 °C to room temperature;
and the reaction time was shortened from 48 hours to 6.5
hours. Compound 2 was obtained in ca. 100% yield.11

In the cyclization reaction, a large amount of sodium bi-
carbonate was used as catalyst.12 This, however, made
stirring difficult and subsequent filtration inconvenient,
since it can hardly dissolve in the reaction system. In order
to simplify operations and improve yield, we attempted to
find out the optimal temperature and molar ratio of raw
materials. Molar ratio of sodium bicarbonate and 2 was re-
duced from 18.3:1 to 3.6:1, which saved both sodium bi-
carbonate and filtration. At this molar ratio, the best
reaction temperature is 63 °C, and the reaction time was
shortened from 5.3 hours to 2.3 hours. Under optimized
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conditions, the yield of 3,5-cyclovitamin D3 (3) was im-
proved from 73% to 78%.13

Selective oxidation of 3 was effected under tert-butyl al-
cohol peroxide and SeO2, giving 4 as a yellowish oil in a
yield of 61%, which was further solvolyzed under acetic
acid and DMSO to give a mixture of 5a and 5b. The un-
desired byproduct of the solvolysis ring-opening reaction,
5,6-trans-isomer (5b),14 which was formerly consumed
and separated from 5,6-cis-1α-hydroxyvitamin D3 (5a) by
a selective Diels–Alder reaction with maleic anhydride as
dienophile and further separation by column chromatog-
raphy, was converted into 5a by photochemical reaction
employing anthracene as a photosensitizer.15 5,6-trans-
1α-Hydroxyvitamin D3 (5b) could be completely convert-
ed into 5,6-cis-1α-hydroxyvitamin D3 (5a), and the total
yield of the ring-opening and subsequent photochemical
reaction [from 1α-hydroxy-3,5-cyclovitamin D3 (4) to 5a]
came up to 66%. By this way, tedious procedure was sim-
plified and loss of 5b was reasonably avoided. To our sat-
isfaction, the overall yield of the whole synthesis process
is greatly improved from 17% to 31%.16

In conclusion, we have simplified the synthetic method of
1α-hydroxyvitamin D3 with a higher yield. The tedious
workup of the esterification reaction was simplified, and
the reaction time was greatly reduced. The cyclization re-
action was also improved with optimal temperature and
molar ratio of raw materials and shorter reaction time. It
is noteworthy that the previous Diels–Alder reaction used
for separating the cis/trans mixtures was replaced by pho-
tochemical reaction. In this way, the loss of product was
prevented and higher product yield was then achieved.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.Supporting InformationSupporting Information
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Scheme 1  The synthetic route of alfacalcidol
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Analytcal Data
IR (KBr): 3406, 1643, 1629, 1059, 909 cm–1. 1H NMR 
(500MHz, CDCl3): δ = 0.55 (3 H, s, 18-CH3), 0.87 (6 H, dd, 
J1 = 2.3 Hz, J2 = 6.6 Hz, 26-CH3, 27-CH3), 0.92 (3 H, d, 
J = 6.5 Hz, 21-CH3), 2.32 (1 H, dd, J1 = 6.6 Hz, J2 = 13.4 
Hz, H-4β), 2.60 (1 H, dd, J1 = 3.3 Hz, J2 = 13.4 Hz, H-4α), 
2.83 (1 H, dd, J1 = 3.8 Hz, J2 = 11.8 Hz, H-14), 4.24 (1 H, m, 
H-3α), 4.44 (1 H, dd, J1 = 4.3 Hz, J2 = 7.8 Hz, H-1β), 5.01 (1 
H, s, H-19E), 5.33 (1 H, t, J = 1.5 Hz, H-19Z), 6.02 (1 H, d, 
J = 11.3 Hz, H-7), 6.39 (1 H, d, J = 11.3 Hz, H-6).
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