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A new and efficient total synthesis has been developed to obtain plagiochin G (22), a macrocyclic
bisbibenzyl, and four derivatives. The key 16-membered ring containing biphenyl ether and biaryl units
was closed via an intramolecular SNAr reaction. All synthesized macrocyclic bisbibenzyls inhibited
Epstein–Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoyl-
phorbol-13-acetate (TPA) in Raji cells and, thus, are potential cancer chemopreventive agents.

� 2014 Elsevier Ltd. All rights reserved.
Cancer, the second leading cause of death in humans, is a group
of illnesses resulting from abnormal growth of cells in the body.
Many cancer therapies, especially various anticancer agents, have
been developed since the beginning of the last century. However,
several problems, such as adverse side effects and drug resistance,
have also encouraged scientists to explore strategies to prevent
premalignant cells from completing the process of carcinogenesis.
This concept known as ‘cancer chemoprevention’ has been devel-
oped over the past few decades,1 and the Epstein–Barr virus early
antigen (EBV-EA) activation assay has been established to quickly
evaluate chemopreventive activity in vitro.2–4

Macrocyclic bisbibenzyls are phenolic natural products that
occur mainly in liverworts and exhibit remarkable biological activ-
ities, such as 5-lipoxygenase, cyclooxygenase, and calmodulin
inhibitory effects, as well as antifungal, anti-HIV, antimicrobial,
and cytotoxic activities.5–7 These compounds are divided into four
distinct structural types (I–IV, Fig. 1),8 each containing four aro-
matic rings (labeled A–D) and two ethylene bridges, and originate
biosynthetically from bibenzyl lunularin or its precursor lunularin
acid.7,9 The plagiochin family of type II macrocyclic bisbibenzyls
includes natural plagiochins A–D isolated from the liverwort
Plagiochila acanthophylla by Hashimoto et al.10 and plagiochins
E–H synthesized by Speicher et al.11

The unusual structures and intriguing biological activities of
macrocyclic bisbibenzyls have made them attractive synthetic
targets. In 1992, Keseru et al.12 synthesized plagiochins C and D
by using a Wurtz-type coupling at position a to close the
16-membered ring (Scheme 1). In 1999, Fukuyama et al.13,14 used
an intramolecular Still-Kelly reaction at position c to accomplish
the macrocyclization in the syntheses of plagiochins A and D.
‘Plagiochin E’, initially reported as a natural product from the liver-
wort Marchantia polymorpha,15 was totally synthesized in 2009 by
Speicher et al., who revised the structure of the isolated ‘plagiochin
E’ to that of riccardin D.16,17 Subsequently, in 2010, Speicher et al.
reported the syntheses of plagiochins E–H by employing an intra-
molecular McMurry reaction at position a as the key macrocycliza-
tion step (Scheme 1).11 In 2011, Cortes Morales et al.18 used an
intramolecular SNAr reaction at position d to form the 16-mem-
bered macrocyclic ring of plagiochin D (Scheme 1). Recently, Jiang
et al. prepared plagiochin E using an intramolecular McMurry
reaction at position a for the macrocyclization (Scheme 1).19

In the course of our ongoing efforts to find bioactive macrocy-
clic bisbibenzyls, we developed a new route to synthesize plagio-
chin G and several ester derivatives. We initially synthesized two
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Figure 2. Construction unit system for the synthesis of plagiochin G.
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Figure 1. Four distinct structural types of macrocyclic bisbibenzyls.
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Scheme 1. Retrosynthetic analysis of plagiochin G.
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lunularin precursors (10 and 16), then formed the arylAaryl bond
between rings B and D by using a Pd-catalyzed Suzuki–Miyaura
coupling reaction, and finally applied an intramolecular SNAr reac-
tion20 at position d to achieve the key 16-membered ring closure
(Scheme 1 and Figure 2). Furthermore, we found that all macrocy-
clic bisbibenzyls produced by this new route exhibited potential
cancer chemopreventive activity. Herein, we report the synthetic
details for producing plagiochin G (22) and its derivatives (19–21
and 22a–22d) as well as the evaluation of their cancer chemopre-
ventive activity.

Chemistry

The total synthesis of plagiochin G was achieved in 12.5%
overall yield in 14 steps as shown in Scheme 2. Both rings B and
D were produced from the commercially available 2-hydroxy-5-
methoxybenzaldehyde (1). The phenol moiety of 1 was protected
by reaction with benzyl bromide. Then, the aldehyde moiety was
reduced to a benzyl alcohol with NaBH4, and the resulting com-
pound (3) was treated with PPh3�HBr to give the phosphonium salt
4.

Ring C was developed from commercially available 3-hydroxy-
4-methoxybenzaldehyde (5). Protection of the phenol moiety with
chloromethyl methyl ether yielded compound 6.21 Units 4 and 6
were coupled with a Wittig reaction in the presence of K2CO3

and 18-crown-6 to give the D–C segment 7 (obtained as an E/Z
mixture in a ratio 1:1),22 which was hydrogenated over Pd/C to
give bibenzyl 8. The deprotected hydroxy group in 8 was then con-
verted to the corresponding triflate in 9, which underwent a
PdCl2(dppf) mediated conversion to the pinacolboronate ester 10,
produced in 62% overall yield from 5.23

The synthesis of the second bibenzyl sub-unit (16) began with
commercially available 4-fluorobenzaldehyde (11), corresponding
to ring A. Compound 11 was nitrated to yield compound 12, which
was linked with phosphonium salt 4 by using a Wittig reaction to
give A–B segment 13 (obtained as an E/Z mixture in a ratio 7:1).22

The double bond of each isomer was reduced with Wilkinson’s
catalyst to afford a single compound 14; the benzyl ether was
retained under the mild hydrogenation conditions.24 Subsequently,
O-debenzylation was accomplished using concentrated HCl in
HOAc to yield compound 15,18 and the free hydroxyl group was
then converted to a triflate in 16.23

The triflate 16 and the pinacolboronate ester 10 were combined
via an aryl-aryl bond between rings B and D by using the
Suzuki–Miyaura coupling reaction to afford 17, followed by
deprotection of the phenol methoxymethyl ether using p-toluene-
sulfonic acid. Macrocyclization to give 19 was achieved in 89%
yield through an intramolecular SNAr reaction using K2CO3 in
DMF at room temperature. Next, the nitro group was removed in
a two-step sequence of reduction and deamination18 to give
plagiochin trimethyl ether (21). Plagiochin G (22) was finally
obtained after cleavage of the methyl ethers.11,26

The acetyl ester derivative 22a was prepared by reaction of 22
with acetyl chloride and Et3N in CH2Cl2 with DMAP as a catalyst.
Derivatives 22b–22d were synthesized from 22 by esterification
with 3-(1H-imidazol-1-yl)propanoic acid, 3-(1H-1,2,4-triazol-1-
yl)propanoic acid, and 3-(1H-tetrazol-1-yl)propanoic acid, respec-
tively (Scheme 3).

Biological evaluation

To evaluate the cancer chemoprevention effects of compounds
(19–22 and 22a–22d) in vitro, we assayed the eight compounds
for inhibition of EBV-EA activation.27 Glycyrrhetic acid was used
as a positive control. In this assay, all tested compounds showed
inhibitory effects toward EBV-EA activation without cytotoxicity
to Raji cells. As shown in Table 1, plagiochin G (22) exhibited the
highest potency with 88%, 45%, and 19% inhibition at 1 � 103,
5 � 102, 1 � 102 mol ratio/TPA, respectively, and IC50 value of
481 lM, with highly preserved viability of Raji cells. The four ester
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Table 1
Relative ratioa of EBV-EA activation with respect to positive control (100%) in the presence of 22 and related compounds

Compound Compound concentration (mol ratio/TPAb) IC50
c (lM)

1000 500 100 10

19 14.9 ± 0.5 (70)d 58.2 ± 0.7 83.1 ± 2.4 100 ± 0.5 491
20 15.3 ± 0.4 (70) 59.6 ± 0.6 84.6 ± 2.3 100 ± 0.4 500
21 13.0 ± 0.5 (70) 56.8 ± 0.5 81.1 ± 2.5 100 ± 0.5 490
22 11.5 ± 0.6 (70) 54.3 ± 0.6 80.1 ± 2.3 100 ± 0.5 481
22a 13.9 ± 0.5 (70) 57.9 ± 0.5 82.4 ± 2.5 100 ± 0.6 495
22b 13.0 ± 0.4 (60) 55.4 ± 1.5 79.1 ± 2.3 100 ± 0.5 479
22c 13.8 ± 0.5 (60) 56.0 ± 1.6 80.0 ± 2.5 100 ± 0.3 482
22d 14.0 ± 0.5 (60) 57.6 ± 1.4 81.6 ± 2.4 100 ± 0.5 488
Glycyrrhetic acide 7.4 ± 0.5 (60) 35.7 ± 0.8 83.2 ± 2.0 100 ± 0.3 413

a Values represent percentages relative to the positive control value (100%).
b TPA concentration is 20 ng/mL (32 pmol/mL).
c The molar ratio of compound, relative to TPA, required to inhibit 50% of the positive control activated with 32 pmol TPA.
d Values in parentheses are viability percentages of Raji cells. In all other experiments, viability was >80%.
e Positive control.
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derivatives (22a–22d) showed similar inhibitory effects, while the
three synthetic precursors (19–21) of 22 were comparably or
slightly less potent.

Conclusions

In this study, a new and efficient total synthesis of 22 and four
ester derivatives (22a–22d) was successfully accomplished in
12–16 steps. An intramolecular SNAr reaction was used for the
formation of the 16-membered ring. All tested synthetic macrocy-
clic bisbibenzyls exhibited potential cancer chemopreventive
activity as evaluated by an EBV-EA activation assay. To the best
of our knowledge, this is the first report of macrocyclic bisbibenz-
yls with cancer chemopreventive activity. The new synthetic route
reported herein is an additional effective strategy to construct
variously substituted macrocyclic bisbibenzyls and should greatly
facilitate our further synthesis and SAR study of cancer-preventa-
tive derivatives of 22.
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