AGRICULTURAL AND FOOD CHEMISTRY

Article

Subscriber access provided by UNIV OF CALIFORNIA SAN DIEGO LIBRARIES

Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from Wolfberries, fruits of Lycium barbarum

Siyu Wang, Joonhyuk Suh, Xi Zheng, Yu Wang, and Chi-Tang Ho

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b05136 • Publication Date (Web): 23 Dec 2016

Downloaded from http://pubs.acs.org on December 26, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Identification and quantification of potential anti-inflammatory hydroxycinnamic acid

amides from Wolfberry

Siyu Wang,[†] Joon Hyuk Suh,[§] Xi Zheng,[&] Yu Wang,^{§,*} and Chi-Tang Ho^{†,*}

[†] Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA

§ Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850 USA

[&] Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Rd., Piscataway, NJ 08854

* Corresponding authors:

Yu Wang, Tel: (863)-956-8673; Fax: (863)-956-4631; Email: <u>vu.wang@ufl.edu;</u>

Chi-Tang Ho, Tel: (848)-932-5553; Fax: (732)-932-6776; Email:

ctho@sebs.rutgers.edu

1 Abstract

2	Wolfberry or Goji berry, the fruit of Lycium barbarum, exhibits health-promoting
3	properties that leads to an extensive study of their active components. We synthesized a
4	set of hydroxycinnamic acid amide (HCCA) compounds, including trans-caffeic acid,
5	trans-ferulic acid and 3,4-dihydroxyhydrocinnamic acid with extended phenolic amine
6	components as standards to identify and quantify the corresponding compounds from
7	wolfberry, and to investigate anti-inflammatory properties of these compounds using in
8	vitro model. With optimized LC-MS/MS and NMR analysis, nine amide compounds
9	were identified from the fruits. Seven of these compounds were identified in this plant for
10	the first time. The amide compounds with a tyramine moiety were the most abundant. In
11	vitro studies indicated that five HCCA compounds showed inhibitory effect on NO
12	production inuded by LPS with IC ₅₀ less than 15.08 μ M (<i>trans-N</i> -feruloyl dopamine).
13	These findings suggested that wolfberries demonstrated anti-inflammatory properties.
14	
15	
16	Keywords: Lycium Barbarum, wolfberries, hydroxycinnamic acid amides, organic
17	synthesis, anti-inflammation

18

19 Introduction

20	Hydroxycinnamic acid amides (HCAAs) are commonly found in flowering
21	plants, ¹ when cinnamate derivatives conjugate with either tyramine, tryptamine or
22	dopamine derivatives. ² . HCCAs play antibacterial and antiviral roles in plants as
23	numerous studies strongly indicate certain amides contribute to plant defense
24	mechanisms in response to microbial challenges and wound healing. ¹⁻³ HCCA
25	compounds, as secondary metabolites, are often considered as potential nutraceutical
26	ingredients due to reports of health benefits such as anti-fungal, ⁴ antioxidant, ⁵ anti-
27	inflammatory ⁶ as well as anti-cancer ⁷ properties.
28	The genus Lycium encompasses approximately 80 species unevenly distributed
29	throughout South America, southern Africa, North America, Eurasia, Australia and
30	several islands in the Pacific Ocean. ⁸ Wolfberry, the fruit of <i>Lycium barbarum</i> , is widely
31	used in Asian cuisine. Recently, they have been marketed as dietary supplements and
32	functional foods in multiple regions. ⁹ Their increase in popularity is due to numerous
33	health benefits that improve kidney and liver function, immune system modulation, as
34	well as provide anti-aging and cytoprotective effects. ¹⁰⁻¹¹ The health benefits associated
35	with wolfberry have led to investigations into isolating and identifying several categories
36	of compounds, including polysaccharides, ¹² polyphenols, ¹³⁻¹⁴ phenolic amides, ¹⁵
37	carotenoids, ¹⁶ flavonoids, organic acids and their derivatives. ¹⁷ Among these species,
38	hydroxycinnamic acid derivatives are found to be abundant in this fruit ¹⁷ . By using
39	preparative high performance liquid chromatography, Zhou et al. identified a set of
40	dicaffeoylspermidine derivatives that provide effective antioxidant activities and
41	protection against Alzheimer's disease. ¹⁵ Other bioactive HCCA compounds have been

42 identified from wolfberry. These include *cis-N*-feruloyltyramine, *trans-N*-

43 feruloyltyramine and its dimer through the use of an activity-guided method and NMR-

44 based identification.¹⁸⁻¹⁹

45 The anti-inflammatory properties of natural products have attracted more 46 attention due to the large body of scientific evidence that supports the close relationship 47 between chronic inflammation and many human diseases and conditions, as well as the potential health beneficial properties exerted by these food-sourced components.²⁰⁻²¹ 48 49 Consequently, in addition to the antioxidant activities investigated in previous studies, 50 some of these HCCA species identified from wolfberry have been shown to possess 51 putative anti-inflammatory properties. For example, by following a bioactivity-guided 52 method, *trans-N*-caffeoyltyramine was identified as an NF-kB inhibitor, which is known 53 as a major transcription factor activated in response to inflammation and contributes to pro-inflammatory mediator production.⁶ trans-N-feruloyltyramine was found to have an 54 55 inhibitory effect on LPS-induced NO and prostaglandin E2 production through transcription factor AP-1 and the MAPK signaling pathway.²² 56

57 The bioactive HCCA species identified from wolfberry lead to the hypothesis that 58 there are potentially more HCCA species present in the fruit with possible anti-59 inflammatory properties. This prompted us to synthesize a series of amide compounds 60 with similar extended amine components that potentially exist in wolfberry. In our 61 investigation, we designed and synthesized three sets of HCCA compounds according to 62 different hydroxycinnamic acid species, trans-caffeic acid, trans-ferulic acid and 3,4-63 dihydroxyhydrocinnamic acid. The objective was to use these synthetic amide 64 compounds as references to identify and quantify compounds extracted from wolfberrry,

65 and further investigate their anti-inflammatory activities *in vitro*.

66 Materials and Method

67 *Chemicals and reagents*

68	trans-caffeic acid, trans-ferulic acid, 3,4-dihyroxyhydrocinnamic acid,
69	phenethylamine, tryptamine, tyramine, dopamine hydrochloride, 3-phenylpropylamine,
70	N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, sulfanilamide,
71	naphthylethylenediamine dihydcrochloride, molecular biology grade dimethyl sulfoxide
72	(DMSO), lipopolysaccharides (LPS) (Escherichia coli O127: E8), N ^G -methyl-L-arginine
73	acetate (L-NMMA) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
74	Triethylamine, 3,4-dimethoxyphenethylamine, LC-MS grade methanol, acetonitrile,
75	water, and formic acid were purchased from Fisher Scientific (Fair Lawn, NJ, USA).
76	Dimethylformamide (DMF), ethyl acetate, and hexane were purchased from Pharmco-
77	AAPER (Brookfield, CT, USA). Gibco Dulbecco's Modified Eagle Medium (DMEM),
78	fetal bovine serum (FBS), and streptomycin/penicillin solution were purchased from
79	ThermoFisher Scientific (Hagerstown, MD, USA). Dimethyl sulfoxide-d ₆ was purchased
80	from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA)
81	General synthetic procedure
82	5 mM of hydroxycinnamic acid (trans-caffeic acid, trans-ferulic acid, or 3,4-
83	dihydroxyhydrocinnamic acid) were mixed with 5 mM triethylamine in 10 mL DMF and
84	placed on ice for 15 minutes. 7.5 mM of phenolic amine (phenethylamine, tryptamine,
85	tyramine, 3-phenylpropylamine, dopamine hydrochloride or 3,4-
86	dimethoxyphenethylamine) and 5 mM of N-(3-dimethylaminopropyl)-N'-
87	ethylcarbodiimide hydrochloride were added to DMF under nitrogen atmosphere at room

88	temperature for 12 hours. The reaction solution was then mixed with 100 mL distilled
89	water and extracted three times using 100 mL ethyl acetate. The organic layer was next
90	washed with 0.2 M hydrochloric acid and brine, dried, evaporated and purified by using
91	silica gel (standard grade, pore size 60 Å, 230-400 mesh particle size, 40-63 μ m particle
92	size) column chromatography (ethyl acetate and hexane), then finally freeze dried
93	resulting in the target compounds. The purity of synthetic compounds was determined by
94	TLC and NMR. The chemical structures of HCCA compounds are shown in Figure 1.
95	
96	NMR analysis
97	Proton nuclear magnetic resonance spectra (¹ H-NMR) were recorded on a Varian
98	VNMRS-500 MHz, and Varian VNMRS 400 MHz instrument and reported in ppm using
99	solvent containing TMS as an internal standard (CDCl ₃ at 7.26 ppm, (CD ₃) ₂ SO at 2.50
100	ppm, CD ₃ OD at 3.31 ppm). Data are reported as s = singlet, d = doublet, t = triplet, dd =
101	doublet of doublets, m = multiplet; integration; coupling constant(s) in Hz.
102	
103	<i>N-trans-caffeoyl phenethylamine (1, Figure 1).</i> Yellow powder; HESIMS <i>m/z</i> 284.1 [M +
104	H] (calcd for C ₁₇ H ₁₇ NO ₃ , 283.33); ¹ H NMR (500 MHz, DMSO- d_6) δ 9.22 (d, $J = 80.8$
105	Hz, 2H), 8.04 (t, <i>J</i> = 5.7 Hz, 1H), 7.31–7.14 (m, 6H), 6.93 (d, <i>J</i> = 2.1 Hz, 1H), 6.81 (dd, <i>J</i>
106	= 8.2, 2.1 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.31 (d, J = 15.7 Hz, 1H), 3.41–3.33 (m,
107	2H), 2.75 (t, $J = 7.4$ Hz, 2H). ¹³ C NMR (125 MHz, DMSO- d_6) δ 165.80, 147.70, 145.96,
108	139.97, 139.47, 129.06, 128.76, 126.82, 126.51, 120.82, 118.93, 116.18, 114.23, 40.76,
109	35.68.
110	

111	N-trans-caffeoyl 3,4-dimethoxyphenethylamine (2, Figure 1). Yellow powder; HESIMS
112	m/z 344.1 [M + H] (calcd for C ₁₉ H ₂₁ NO ₅ , 343.38); ¹ H NMR (500 MHz, DMSO- d_6) δ 9.20
113	(s, 2H), 7.99 (t, <i>J</i> = 5.7 Hz, 1H), 7.21 (d, <i>J</i> = 15.6 Hz, 1H), 6.91 (d, <i>J</i> = 2.1 Hz, 1H), 6.84
114	(d, J = 8.2 Hz, 1H), 6.81–6.79 (m, 2H), 6.73–6.69 (m, 2H), 6.31 (d, J = 15.7 Hz, 1H),
115	3.71 (s, 3H), 3.69 (s, 3H), 3.37–3.33 (m, 2H), 2.67 (t, $J = 7.3$ Hz, 2H). ¹³ C NMR (125
116	MHz, DMSO- <i>d</i> ₆) δ 165.76, 149.03, 147.68, 147.65, 145.95, 139.40, 132.40, 126.83,
117	120.87, 120.79, 118.99, 116.17, 114.21, 112.97, 112.33, 55.95, 55.80, 40.90, 35.21.
118	
119	N-trans-caffeoyl tryptamine (3, Figure 1). Dark Yellow powder; HESIMS m/z 321.1 [M -
120	H] (calcd for C ₁₉ H ₁₈ N ₂ O ₃ , 322.36); ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) δ 10.78 (s, 1H), 9.32
121	(s, 1H), 9.09 (s, 1H), 8.07 (t, J = 5.8 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.33 (s, 1H), 7.23
122	(d, J = 15.7 Hz, 1H), 7.14 (d, J = 2.3 Hz, 1H), 7.08–7.01 (m, 1H), 6.99–6.92 (m, 1H),
123	6.93 (d, J = 2.1 Hz, 1H), 6.82 (dd, J = 8.2, 2.0 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.32 (d,
124	J = 15.7 Hz, 1H), 3.48–3.39 (m, 2H), 2.86 (t, J = 7.4 Hz, 2H). ¹³ C NMR (125 MHz,
125	DMSO- <i>d</i> ₆) δ 165.79, 147.66, 145.95, 139.37, 136.68, 127.67, 126.88, 123.06, 121.34,
126	120.77, 119.12, 118.71, 118.65, 116.17, 114.24, 112.30, 111.79, 40.02, 25.77.
127	
128	<i>N-trans-caffeoyl tyramine (4, Figure 1).</i> Yellow powder; HESIMS <i>m/z</i> 300.1 [M + H]
129	(calcd for C ₁₇ H ₁₇ NO ₄ , 299.33); ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) δ 9.31 (s, 1H), 9.14 (s,
130	1H), 9.08 (s, 1H), 7.98 (t, J = 5.7 Hz, 1H), 7.20 (d, J = 15.6 Hz, 1H), 6.99 (d, J = 8.4 Hz,
131	2H), 6.91 (d, <i>J</i> = 2.1 Hz, 1H), 6.80 (dd, <i>J</i> = 8.2, 2.1 Hz, 1H), 6.72 (d, <i>J</i> = 8.1 Hz, 1H),

132 6.66 (d, J = 8.3 Hz, 2H), 6.29 (d, J = 15.7 Hz, 1H), 3.32–3.25 (m, 2H), 2.62 (t, J = 7.4

- 133 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.72, 156.06, 147.67, 145.95, 139.37,
- 134 129.98, 129.90, 126.84, 120.79, 119.01, 116.17, 115.54, 114.23, 41.12, 34.90.
- 135
- 136 *N-trans-caffeoyl dopamine (5, Figure 1).* Yellow powder; HESIMS *m/z* 316.1 [M + H]
- 137 (calcd for $C_{17}H_{17}NO_5$, 315.33); ¹H NMR (500 MHz, DMSO- d_6) δ 8.92 (s, 4H), 7.98 (t, J
- 138 = 5.7 Hz, 1H), 7.21 (d, J = 15.7 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 6.81 (dd, J = 8.2, 2.1
- 139 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.43
- 140 (dd, J = 8.0, 2.1 Hz,1H), 6.30 (d, J = 15.6 Hz, 1H), 3.28 (dd, J = 14.0, 6.5 Hz, 2H), 2.59–
- 141 2.52 (m, 2H). ¹³C NMR (125 MHz, DMSO) δ 165.73, 147.67, 145.95, 145.48, 143.95,
- 142 139.37, 130.70, 126.85, 120.79, 119.65, 119.04, 116.41, 116.18, 115.93, 114.23, 41.16,
- 143 35.19.
- 144
- 145 *N-trans-feruloyl phenethylamine (6, Figure 1).* Colorless powder; HESIMS *m/z* 298.1 [M
- 146 + H] (calcd for $C_{18}H_{19}NO_3$, 297.35); ¹H NMR (500 MHz, DMSO- d_6) δ 9.39 (s, 1H), 8.01
- 147 (t, J = 5.6 Hz, 1H), 7.34–7.24 (m, 3H), 7.24–7.16 (m, 3H), 7.12–7.07 (m, 1H), 6.96 (dd, J
- 148 = 8.0, 1.9 Hz, 1H), 6.77 (dd, J = 8.0, 0.8 Hz, 1H), 6.42 (dd, J = 15.6, 0.8 Hz, 1H), 3.78 (s,
- 149 3H), 3.44–3.28 (m, 2H), 2.75 (t, J = 7.3 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ
- 150 165.78, 148.68, 148.24, 139.95, 139.35, 129.05, 128.75, 126.84, 126.50, 121.94, 119.39,
- 151 116.07, 111.19, 55.95, 40.73, 35.66.
- 152
- 153 *N-trans-feruloyl 3,4-dimethoxyphenethylamine (7, Figure 1).* Colorless powder; HESIMS
- 154 m/z 358.2 [M + H] (calcd for C₂₀H₂₃NO₅, 357.41); ¹H NMR (500 MHz, DMSO- d_6) δ
- 155 9.39 (s, 1H), 7.96 (t, J = 5.7 Hz, 1H), 7.30 (d, J = 15.6 Hz, 1H), 7.09 (d, J = 1.9 Hz, 1H),

6.96 (dd, J = 8.3, 1.9 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.77 (d,
J = 8.1 Hz, 1H), 6.71 (dd, J = 8.1, 2.0 Hz, 1H), 6.43 (d, J = 15.7 Hz, 1H), 3.78 (s, 3H),
3.72 (s, 3H), 3.69 (s, 3H), 3.43–3.34 (m, 2H), 2.68 (t, J = 7.3 Hz, 2H). ¹³C NMR (125
MHz, DMSO-d₆) δ 165.76, 149.04, 148.66, 148.24, 147.65, 139.31, 132.36, 126.86,
121.91, 120.86, 119.45, 116.08, 112.95, 112.32, 111.18, 55.95, 55.93, 55.80, 40.86,
35.19.

162

163 *N-trans-feruloyl tryptamine (8, Figure 1).* Pale yellow powder; HESIMS *m/z* 337.2 [M +

164 H] (calcd for $C_{20}H_{20}N_2O_3$, 336.39); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.80 (s, 1H), 9.39

165 (s, 1H), 8.04 (t, J = 5.7 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.35–7.32 (m, 2H), 7.16 (d, J = 5.7 Hz, 1H), 7.54 (d, J = 5.7 Hz, 1H), 7.55 (d, J = 5.7 Hz, 1H), 7.54 (d, J = 5.7 Hz, 1H), 7.55 (d, J = 5.7 Hz, 1H), 7.54 (d, J = 5.7 Hz, 1H), 7.55 (d, J = 5.7 Hz, 1H), 7.54 (d, J = 5.7 Hz, 1H), 7.55 (d, J = 5.7

166 2.0 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 7.05 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 6.99–6.94 (m,

167 2H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.45 (d, *J* = 15.7 Hz, 1H), 3.79 (s, 3H), 3.46 (dd, *J* = 13.1,

168 7.3 Hz, 2H), 2.87 (t, J = 6.9 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 165.79, 148.65,

169 148.25, 139.28, 136.70, 127.68, 126.91, 123.07, 121.93, 121.36, 119.60, 118.72, 118.66,

- 170 116.09, 112.28, 111.80, 111.19, 55.96, 39.99, 25.75.
- 171
- 172 *N-trans-feruloyl tyramine (9, Figure 1).* Colorless powder; HESIMS *m/z* 314.1 [M + H]
- 173 (calcd for $C_{18}H_{19}NO_4$, 313.35); ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.38 (s, 1H), 9.14 (s,
- 174 1H), 7.95 (t, J = 5.7 Hz, 1H), 7.29 (d, J = 15.7 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 6.99 (d,
- 175 J = 8.4 Hz, 2H), 6.96 (dd, J = 8.2, 2.0 Hz, 1H), 6.77 (d, J = 8.1 Hz, 1H), 6.66 (d, J = 8.4
- 176 Hz, 2H), 6.41 (d, *J* = 15.8 Hz, 1H), 3.78 (s, 3H), 3.33–3.29 (m, 2H), 2.63 (t, *J* = 7.4 Hz,
- 177 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.72, 156.06, 148.64, 148.23, 139.27, 129.95,
- 178 129.89, 126.86, 121.92, 119.47, 116.07, 115.54, 111.17, 55.95, 41.09, 34.87.

- 180 *N-trans-feruloyl 3-methoxytyramine (10, Figure 1).* Colorless powder; HESIMS *m/z*
- 181 344.2 [M + H] (calcd for $C_{19}H_{21}NO_5$, 343.38); ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.38 (s,
- 182 1H), 8.68 (s, 1H), 7.95 (t, J = 5.7 Hz, 1H), 7.29 (d, J = 15.7 Hz, 1H), 7.09 (d, J = 1.9 Hz,
- 183 1H), 6.96 (dd, J = 8.3, 1.9 Hz, 1H), 6.80–6.73 (m, 2H), 6.66 (d, J = 8.0 Hz, 1H), 6.58 (dd,
- 184 J = 8.0, 1.9 Hz, 1H), 6.42 (d, J = 15.7 Hz, 1H), 3.78 (s, 3H), 3.72 (s, 3H), 3.38 3.29 (m,
- 185 2H), 2.64 (t, J = 7.4 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 165.73, 148.64, 148.24,
- 186 147.82, 145.22, 139.27, 130.65, 126.86, 121.90, 121.16, 119.49, 116.08, 115.77, 113.20,
- 187 111.17, 55.95, 55.94, 40.98, 35.24.
- 188
- 189 *N-trans-feruloyl dopamine (11, Figure 1).* Colorless powder; HESIMS *m/z* 330.1 [M + H]
- 190 (calcd for $C_{18}H_{19}NO_5$, 329.35); ¹H NMR (500 MHz, DMSO- d_6) δ 9.38 (s, 1H), 8.72 (s,
- 191 1H), 8.62 (s, 1H), 7.94 (t, J = 5.6 Hz, 1H), 7.29 (d, J = 15.7 Hz, 1H), 7.09 (d, J = 2.0 Hz,
- 192 1H), 6.96 (dd, J = 8.3, 1.9 Hz, 1H), 6.77 (d, J = 8.1 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H),
- 193 6.58 (d, J = 2.1 Hz, 1H), 6.48 6.35 (m, 2H), 3.78 (s, 3H), 3.33–3.23 (m, 2H), 2.56 (t, J =
- 194 7.4 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.70, 148.64, 148.23, 145.48, 143.95,
- 195 139.26, 130.68, 126.87, 121.92, 119.64, 119.50, 116.41, 116.07, 115.93, 111.17, 55.95,
- 196 41.12, 35.15.
- 197
- 198 *N-3,4-Dihydroxyhydrocinnamoyl phenethylamine (12, Figure 1).* Colorless liquid;
- 199 HESIMS m/z 286.1 [M + H] (calcd for C₁₇H₁₉NO₃, 285.34); ¹H NMR (500 MHz, DMSO-
- 200 d_6) δ 8.63 (s, 1H), 7.84 (t, J = 5.5 Hz, 1H), 7.29–7.21 (m, 2H), 7.17 (dt, J = 8.2, 1.8 Hz,
- 201 2H), 7.16–7.12 (m, 2H), 6.61–6.57 (m, 1H), 6.55 (d, *J* = 2.1 Hz, 1H), 6.40 (dd, *J* = 8.0,

202	2.2 Hz, 1H), 3.27–3.18 (m, 2H), 2.67–2.63 (m, 2H), 2.59 (t, <i>J</i> = 7.7 Hz, 2H), 2.24 (dd, <i>J</i> =
203	8.7, 6.9 Hz, 2H). ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) δ 171.85, 145.40, 143.72, 139.98,
204	132.60, 129.06, 128.71, 126.43, 119.16, 116.10, 115.82, 40.63, 38.00, 35.66, 31.04.
205	
206	N-3,4-Dihydroxyhydrocinnamoyl 3,4-dimethoxyphenthylamine (13, Figure 1). Yellow
207	amorphous powder; HESIMS m/z 346.2 [M + H] (calcd for C ₁₉ H ₂₃ NO ₅ , 345.40); ¹ H
208	NMR (500 MHz, DMSO- d_6) δ 8.69 (s, 1H), 8.59 (s, 1H), 7.81 (t, $J = 5.6$ Hz, 1H), 6.82
209	(d, J = 8.1 Hz, 1H), 6.75 (d, J = 2.0 Hz, 1H), 6.64 (dd, J = 8.2, 2.0 Hz, 1H), 6.60 (d, J = 0.1 Hz, 1H)
210	8.0 Hz, 1H), 6.56 (d, <i>J</i> = 2.1 Hz, 1H), 6.40 (dd, <i>J</i> = 8.0, 2.1 Hz, 1H), 3.71 (s, 3H), 3.69 (s,
211	3H), 3.21 (dt, $J = 7.7, 6.2$ Hz, 2H), 2.62–2.58 (m, 4H), 2.28–2.21 (m, 2H). ¹³ C NMR (125
212	MHz, DMSO- <i>d</i> ₆) δ 172.35, 149.53, 145.92, 144.24, 133.15, 132.97, 121.41, 121.39,
213	119.67, 116.61, 116.35, 113.44, 112.84, 56.46, 56.30, 41.32, 38.53, 35.74, 31.59.
214	
215	N-3,4-Dihydroxyhydrocinnamoyl tryptamine (14, Figure 1). Yellow amorphous powder;
216	HESIMS m/z 325.2 [M + H] (calcd for C ₁₉ H ₂₀ N ₂ O ₃ , 324.38); ¹ H NMR (500 MHz,
217	DMSO- d_6) δ 10.76 (s, 1H), 8.63 (s, 2H), 7.88 (t, $J = 5.8$ Hz, 1H), 7.51 (d, $J = 7.9$ Hz,
218	1H), 7.31 (d, <i>J</i> = 8.1 Hz, 1H), 7.10 (s, 1H), 7.06–7.02 (m, 1H), 6.96 (t, <i>J</i> = 7.4 Hz, 1H),
219	6.60 (d, J = 7.9 Hz, 1H), 6.57 (d, J = 2.1 Hz, 1H), 6.41 (dd, J = 8.0, 2.1 Hz, 1H), 3.30
220	(dd, <i>J</i> = 13.8, 7.0 Hz, 2H), 2.77 (t, <i>J</i> = 7.5 Hz, 2H), 2.61 (dd, <i>J</i> = 8.9, 6.8 Hz, 2H),
221	2.30–2.21 (m, 2H). ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) δ 172.30, 145.90, 144.20, 137.15,
222	133.18, 128.17, 123.50, 121.80, 119.65, 119.18, 119.12, 116.59, 116.33, 112.83, 112.26,
223	40.42, 38.61, 31.57, 26.21.
224	

225 *N-3,4-Dihydroxyhydrocinnamoyl tyramine (15, Figure 1).* Colorless amorphous powder;

- HESIMS m/z 302.1 [M + H] (calcd for C₁₇H₁₉NO₄, 301.34); ¹H NMR (500 MHz, DMSO-
- 227 d_6) δ 8.88 (d, J = 153.8 Hz, 3H), 7.80 (t, J = 5.6 Hz, 1H), 6.95 6.91 (m, 2H), 6.67 6.63
- 228 (m, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 2.1 Hz, 1H), 6.40 (dd, *J* = 8.0, 2.1 Hz, 1H),
- 229 3.20–3.12 (m, 2H), 2.63–2.56 (m, 2H), 2.57–2.50 (m, 2H), 2.27–2.20 (m, 2H). ¹³C NMR
- 230 (125 MHz, DMSO-*d*₆) δ 171.81, 156.01, 145.40, 143.71, 132.63, 130.01, 129.90, 119.16,
- 231 116.10, 115.83, 115.51, 41.01, 38.02, 34.89, 31.06.
- 232
- 233 *N-3,4-Dihydroxyhydrocinnamoyl dopamine (16, Figure 1).* Colorless liquid; HESIMS
- 234 m/z 318.2 [M + H] (calcd for C₁₇H₁₉NO₅, 317.34); ¹H NMR (500 MHz, DMSO- d_6) δ 8.63

235 (s, 4H), 7.79 (t, J = 5.6 Hz, 1H), 6.63 - 6.56 (m, 2H), 6.55 (d, J = 2.1 Hz, 2H), 6.39 (ddd,

236 J = 8.1, 6.0, 2.1 Hz, 2H), 3.15-3.11 (m, 2H), 2.61-2.57 (m, 2H), 2.48-2.45 (m, 2H),

237 2.25–2.21 (m, 2H).¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.76, 145.46, 145.39, 143.91,

- 238 143.69, 132.65, 130.71, 119.64, 119.14, 116.37, 116.07, 115.89, 115.83, 41.02, 38.06,
- 239 35.19, 31.08.
- 240
- 241 N-trans-feruloyl 3-phenylpropylamine (17, Figure 1). Yellow liquid; HESIMS m/z 312.1
- 242 [M + H] (calcd for $C_{19}H_{21}NO_3$, 311.38); ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.39 (s, 1H),
- 243 7.99 (t, J = 5.7 Hz, 1H), 7.32 (d, J = 15.7 Hz, 1H), 7.28–7.24 (m, 2H), 7.21–7.17 (m, 2H),
- 244 7.17–7.13 (m, 1H), 7.11 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.2, 1.9 Hz, 1H), 6.78 (d, J = 1.0 Hz, 1H), 7.11 (d, J = 1.0 Hz, 1H),
- 245 8.1 Hz, 1H), 6.44 (d, J = 15.7 Hz, 1H), 3.79 (s, 3H), 3.20–3.09 (m, 2H), 2.63 2.54 (m,
- 246 2H), 1.78 1.68 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.26, 149.14, 148.74,

247	142.63, 139.77, 129.23, 129.20, 129.17, 127.37, 126.65, 122.43, 119.97, 116.57, 111.63,
248	56.43, 39.21, 33.52, 31.95, 15.01.
249	
250	LC-MS/MS analysis
251	LC separation was performed with an Ultimate 3000 system (Dionex, Sunnyvale,
252	CA, USA) including an RS pump, an XRS Open autosampler, and an RS column
253	compartment. Sixteen amide compounds were simultaneously chromatographed on a
254	Synergi Fusion-RP column (2.0 mm \times 100 mm, 2.5 μm particle size, Phenomenex,
255	Torrance, CA, USA). The column temperature was set to 25 °C. Gradient elution of
256	mobile phase A (0.1% formic acid in water) and B (0.1% formic acid in acetonitrile) was
257	applied with a flow rate of 0.4 mL/min with a linear gradient from 20% to 100% solvent
258	B for 0-5 min, holding at 100% solvent B for 5-7 min, and then returning to 20% solvent
259	B for column equilibration. The injection volume was 10 μ L.
260	MS detection was conducted on a triple quadrupole mass spectrometer (TSQ
261	Quantiva, Thermo Fisher Scientific, San Jose, CA, USA) with selected reaction
262	monitoring (SRM). The instrument was operated with a heated-electrospray ionization
263	(HESI) in both polarity modes. All compounds except for compound 3 were analyzed in
264	positive mode, and only compound 3 was detected in negative mode. Nitrogen gas was
265	used as both sheath and auxiliary gas. Argon gas was employed as the collision gas. The
266	ion source conditions were as follows: positive spray voltage, 3,500 V; negative spray
267	voltage, 2,500 V; sheath gas, 45 Arb; aux gas, 15 Arb; sweep gas, 1 Arb; ion transfer tube
268	temperature, 350 °C; and vaporizer temperature, 350 °C. The MS/MS parameters were
269	optimized as follows: collision gas pressure, 2 mTorr; source fragmentation voltage, 0 V;

270	chrom filter, 3 sec; and dwell time, 100 msec. RF lens voltage was 85 V for compound 3
271	and 10, and was 65 V for the others. Data analysis was performed using Xcaliber
272	software (Ver. 3.0).
273	
274	Preparation of standard solutions
275	Stock solutions were prepared at a concentration of 1,000 μ g/mL, filtered through
276	0.45 μ m nylon membrane filters, and stored at -20 °C until use. 1, 2, 3, 4, 6, 7, 8 and 9
277	were dissolved in dimethyl sulfoxide, 12, 13, 14 and 15 were dissolved in dimethyl
278	sulfoxide:methanol (1:1) mixture, and 5, 10, 11, and 16 were dissolved in dimethyl
279	sulfoxide:methanol (1:4) mixture. Standard working solutions were prepared by diluting
280	and mixing each stock solution with methanol to obtain proper concentrations. For
281	compound 17 (internal standard), a stock solution was prepared in dimethyl
282	sulfoxide:methanol (1:4) mixture at a concentration at 1,000 μ g/mL, and a working
283	solution was prepared by diluting the stock solution with methanol. Each sample
284	contained 10 ng/mL of internal standard.
285	
286	Preparation of samples
287	Dried wolberries were finely ground into powder, and then extracted using one of
288	two different methods. For compounds 9 and 10, which were found in relatively high
289	quantities in the sample, 10 mg of the powder was extracted using 4.5 mL of methanol

40 min. After vigorous agitation by using a multi-tube vortexer for 1 h, the resultant

solution was filtered through a 0.45 μ m membrane filter, and injected into the LC-MS.

293	For all other compounds, an evaporation procedure was added during the extraction. 100
294	mg of the powder was extracted using 4.5 mL of methanol and 0.5 mL of internal
295	standard solution using the same procedure previously described. Then, 3 mL of the
296	filtrate was vaporized under nitrogen, and the residue was suspended in 0.3 mL of
297	methanol before injection into the LC-MS/MS system.
298	
299	Cell culture
300	RAW264.7 murine macrophages were purchased from the American Type
301	Culture Collection (Manassas, VA, USA). Cells were cultured in high-glucose
302	Dulbecco's Modified Eagle's medium, supplemented with 100 IU/mL
303	penicillin/streptomycin, 1 mM sodium pyruvate and 10% fetal bovine serum. Cells were
304	incubated in 10 cm culture Petri dishes in 5% CO_2 with 70% humidity at 37 °C.
305	
306	Cell viability Assay
307	4×10^5 cells/mL were seeded into 96-well plates and incubated for 12 hours before
308	treatment. Compounds of interest were first dissolved in molecular biology grade DMSO
309	at a concentration of 100 μ M, and were further diluted with growth media to reach the
310	final assay concentration. Growth media with 0.01% v/v DMSO served as the control. 75
311	μ g/mL of L-NMMA was used as a positive control. Either the compound of interest or a
312	vehicle was added to the medium and then incubated for 24 hr. After treatment, cells
313	were washed twice with phosphate buffered saline. Phenol red free medium containing 5
314	mg/mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was added to

315 cells and then incubated at 37 °C for 4 hours. After removing the supernatant, formazan

316 crystals were dissolved in 150 µL of DMSO. Optical densities were measured at 570 nm.

317

318 Nitrite Assay

100 μM DMSO stock solutions of test compounds were diluted with growth

320 media to achieve assay concentrations.75 µg/mL L-NMMA was used as positive control.

321 Cells (4×10^5 cells/mL) were treated with *E. coli* LPS (100 ng/mL) in either the presence

322 of the compound of interest or 0.01% dimethyl sulfoxide (DMSO) as a vehicle in phenol

323 red free medium for 24 hours. After a 12-hour incubation period, 50 µL of conditional

324 supernatant was removed, mixed with an equal volume of Griess reagent (1%

325 sulfanilamide in 5% phosphoric acid and 0.1% naphthylethylenediamine dihydrochloride

in water), and incubated at room temperature for 10 minutes. Production of nitrite was

327 measured at an absorbance of 550 nm.

328

329 Statistical Analysis

All compound quantification results are shown as mean \pm standard deviation.

331 Statistical analysis for IC_{50} was performed using Prism 7 by non-linear regression. IC_{50}

332 values are shown as mean \pm standard error. All experimental data were obtained

independently and replicated a total of three times. Significant differences were

determined as p < 0.05.

336	Results and discussion
337	NMR of synthetic amide compounds
338	Amide structures were confirmed using the triplet with coupling constant of J
339	\sim 5.7 Hz. ¹ H NMR spectrum of caffeoyl and feruloyl amides had two vinyl doublets with
340	a coupling constant of $J \sim 15.7$ Hz, and feruloyl amides also had a methoxyl singlet at
341	3.80 ppm. 3,4-dihydroxyhydrocinnamoyl amides lost the vinyl structure and alternately,
342	characteristic methylene chemical shifts around 2.58 ppm were found. 3,4-
343	dimethoxylphenethylamine moieties had two singlets with a chemical shift of ~3.70 ppm,
344	which were attributed to two methoxyl groups. An indole singlet above 10 ppm
345	confirmed the tryptamine moieties in compounds 3, 8, and 14.
346	
347	Quantification of amide compounds
348	The LC-MS/MS analytical results showed that the fruits had amide compounds at
349	various concentrations. For example, the content of 9 was greater than 10,000-fold more
350	than that of 7, whereas some compounds only presented in nanogram quantities.
351	The established LC-MS/MS method was applied to comprehensive analysis and
352	quantitative evaluation of the fruits samples. The analysis was performed in triplicate
353	(n=3). The chromatograms of 16 amide compounds are shown in Figure 2. The
354	compounds were fairly well separated from interferences. The retention times of
355	compounds 1-16 and 17 (internal standard) are 2.93 min, 2.66 min, 2.98 min, 2.32 min,
356	2.03 min, 3.25 min, 2.97 min, 3.25 min, 2.64 min, 2.36 min, 2.71 min, 2.46 min, 2.81
357	min, 2.04 min, 1.71 min, 2.68 min and 3.49 min, respectively. Quantification of each
358	analyte in the samples was calculated using the ratio of peak area (analyte peak area

359	versus internal standard peak area) based on the calibration curve of each individual
360	standard. The correlation coefficient values of all models exhibited good linearity ($R^2 >$
361	0.998) (Supplementary Figure 1). The results indicated successful application of the LC-
362	MS/MS method for the quantification of amide compounds in different quantities. The
363	major constituents in the fruits were found to be 4, 5, 9, 10 and 11. Their contents were
364	between 107.2 and 11109.6 ng/g. The content of 3Tyra was 12.1 ng/g. All compounds
365	contained a tyramine or dopamine moiety, whereas compounds, 6-8 , having a
366	phenethylamine, 3,4-dimethoxyphenethylamine or tryptamine moiety, were found to be
367	minor ones (0.7 to 3.1 ng/g). Table 1 lists the mean concentrations of amide compounds
368	detected in the samples.
369	
370	The methodology for identification of HCCA compounds from wolfberries
371	In our study, a novel identification method used synthetic standards as references
372	for LC-MS/MS analysis that compensated for the drawbacks of identification and
373	isolation of minor components from the plants. Our synthesis design was based on the
374	results from literatures and plant biosynthesis pathway of HCCA compounds. HCCA
375	compounds form a large class of secondary metabolites abundantly present in plants,
376	serving as growth and floral signaling compounds as well as metabolic intermediates. ^{1, 23}
377	In addition to the HCCA compounds isolated from the wolfberry fruits, several studies
378	reported that HCCA compounds with trans-caffeic, trans-ferulic and 3,4-
379	dihydroxyhydrocinnamic acid moieties were isolated from the root bark of the plant. ^{24, 25}
380	These hydroxycinnamoyl moieties derived from deaminated phenylalanine, and these
381	hydroxycinnamic acid precursors, including trans-caffeic acid and trans-ferulic acid were

382	also identified from wolfberries ¹⁷ . Thus, we proposed that HCCA compounds were
383	synthesized from these three hydroxycinnamic acid families. Amine moieties could result
384	from decarboxylated amino acid; for instance, trans-feruloyl tyramine is the most
385	common HCCA species conjugated from decarboxylated amino acid, tyrosine, which was
386	also found in wolfberry and other plant species. ²⁶⁻²⁸ Plant aromatic L-amino acid
387	decarboxylases generate phenethylamine, tryptamine and dopamine conjugates from L-
388	phenylalanine, L-tryptophan and L-Dopa, respectively. ²⁹ The amine conjugates can be
389	further modified through species-specific hydroxylation or methylation reaction, ³⁰ which
390	gives possible methoxylated species, in our case, 3,4-dimethoxyphenethylamine and 3-
391	methoxytyramine. Finally, the coupling of hydrocycinnamoyl and amine moieties is
392	catalyzed by a diverse set of specific hydroxycinnamoyl transferases. ³⁰ As a result, we
393	designed the synthesis from three hydroxycinnamic acid species with similar extended
394	amine moieties.

As shown in Table 1, our method did improve sensitivities to identify minor components from the plants. We identified compounds **6**, **7**, **8** and **15** with concentrations as low as 0.7 ng/g. Furthermore, by using reference standards, LC-MS/MS analysis differentiated structural analogs with high sensitivities, which may remain a challenge using traditional identification and isolation processes.

400

401 Nitric Oxide inhibition of HCCAs

402 Chronic inflammation is a complex process mediated by activation of
403 inflammatory or immune cells and has been shown to trigger chronic disorders. During
404 the inflammatory response, macrophages play a critical role in managing inflammatory

405	phenomena such as the overproduction of pro-inflammatory cytokines and inflammatory
406	mediators, including nitric oxide (NO). In order to select proper concentrations of the
407	compounds of interest for the anti-inflammatory studies, murine macrophage RAW264.7
408	cells were treated with the compounds of interest at various concentrations or 0.01%
409	DMSO vehicle for 24 hours, and cell viability was determined by MTT assay. Among the
410	IC_{50} values shown in Table 2, all of the tested compounds possessed IC_{50} values larger
411	than 100 μ M, indicating low cytotoxicity of these compounds, which was also shown in
412	Figure 3.
413	The NO production inhibitory effects of these HCCA compounds were
414	investigated by co-incubating RAW264.7 murine macrophages with the test HCCA
415	compounds and LPS (100 ng/mL) for 24 hours. The NO accumulation in cell medium
416	was measured by Griess reagent. After LPS stimulation, the NO production significantly
417	increased compared to the negative control groups, and could be observed in all
418	experimental groups, as seen in Figure 4. These results are shown in Table 2. A total of
419	five HCCA compounds exhibited NO inhibitory properties, including two HCCA
420	compounds with <i>trans</i> -caffeic acid moiety, compounds 4, and 5, two compounds with
421	trans-ferulic acid moiety, 6 and 11, and one compound with 3,4-dihydrohydroxycinnamic
422	acid moiety, 15. Compound 5 was found to be the most potent compound that inhibited
423	NO production in LPS-induced murine macrophage with the lowest IC_{50} value, followed
424	by 4, which also showed significant inhibitory effects on NO production. Hence, in
425	wolfberry, these two compounds are abundantly present (Table 1).
426	These results suggest excellent anti-inflammatory properties of the HCCA
427	compounds, especially the caffeic acid derivatives. Further efforts have been proposed to

428	study the detailed structure-activity relationship of HCCA compounds and their anti-
429	inflammatory effects, as well as the underlying anti-inflammatory mechanism.
430	In our study, 16 HCCA compounds that potentially exist in wolfberry were
431	synthesized and used as reference standards for LC/MS-MS analysis. Among these
432	candidates, nine amide compounds were identified from the fruits. Furthermore, seven of
433	these compounds were identified for the first time in this plant (compounds 5-8, 11, 15),
434	and all the compounds found in the plant were directly quantified. By using HCCA
435	species from wolfberry as a model, we proposed a methodology for natural products
436	identification with improved sensitivities, which differentiate structural analogs as well as
437	identify minor chemical components.
438	The anti-inflammatory activities of these compounds were investigated in vitro
439	using an RAW264.7 cell model. We found that these compounds exhibited a promising
440	inhibitory effect on NO production. Compounds 4 and 11 showed significant potency in
441	NO inhibition. The major advantage of amide compounds is their stable characteristic at
442	physicological condition, leading to broader applications. Future plans include
443	elucidation of detailed molecular mechanisms of anti-inflammatory properties using both
444	in vitro and in vivo models, as well as their absorption and metabolism. The discovery of
445	novel HCCA compounds from worberry broadened the variety of this family in the plant,
446	enhancing potential use of wolfberry as functional ingredients in foods and dietary
447	supplements to prevent and treat of inflammation and inflammation-related diseases.
448	
449	Funding

450 Researches fund by USDA NIFA Hatch Project NJ10136.

452 Supporting Information

- 453 The supporting information contains SRM parameter setting for compound 1-17 and LC-
- 454 MS/MS spectrum of compound 1-17

56	References
57	1. Martin-Tanguy, J.; Cabanne, F.; Perdrizet, E.; Martin, C., The distribution of
58	hydroxycinnamic acid amides in flowering plants. Phytochemistry 1978, 17, 1927-1928.
59	2. Facchini, P. J.; Hagel, J.; Zulak, K. G., Hydroxycinnamic acid amide metabolism:
50	physiology and biochemistry. Canadian Journal of Botany 2002, 80, 577-589.
51	3. Campos, L.; Lisón, P.; López-Gresa, M. P.; Rodrigo, I.; Zacarés, L.; Conejero, V.;
52	Bellés, J. M., Transgenic tomato plants overexpressing tyramine N-
53	hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and
64	enhanced resistance to Pseudomonas syringae. Molecular Plant-Microbe Interactions
65	2014, <i>27</i> , 1159-1169.
66	4. Lee, D. G.; Park, Y.; Kim, MR.; Jung, H. J.; Seu, Y. B.; Hahm, KS.; Woo, E
57	R., Anti-fungal effects of phenolic amides isolated from the root bark of Lycium
68	chinense. Biotechnol. Lett. 2004, 26, 1125-1130.
59	5. Lee, YT.; Hsieh, YL.; Yeh, YH.; Huang, CY., Synthesis of phenolic amides
70	and evaluation of their antioxidant and anti-inflammatory activity in vitro and in vivo.
71	<i>RSC Adv.</i> 2015, <i>5</i> , 85806-85815.
72	6. Xie, L. W.; Atanasov, A. G.; Guo, D. A.; Malainer, C.; Zhang, J. X.; Zehl, M.;
73	Guan, S. H.; Heiss, E. H.; Urban, E.; Dirsch, V. M.; Kopp, B., Activity-guided isolation
74	of NF-kappaB inhibitors and PPARgamma agonists from the root bark of Lycium
75	chinense Miller. J. Ethnopharmacol. 2014, 152, 470-7.
76	7. Park, J. B.; Schoene, N., N-Caffeoyltyramine arrests growth of U937 and Jurkat
77	cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3. Cancer Lett.
78	2003, <i>202</i> , 161-171.
	i6 i7 i8 i9 i1 i2 i3 i4 i5 i6 i7 i8 i9 i1 i2 i3 i4 i5 i6 i7 i8 i9 i0 i2 i3 i4 i5 i6 i7 i8 i9 i0 i2 i3 i4 i5 i7 i7 i7 i7 i7 i8 i9 i10 i7 i7 i7 i8 i7 i7 i7 i7 i7 i7 i7

- 479 8. Fukuda, T.; Yokoyama, J.; Ohashi, H., Phylogeny and biogeography of the genus
- 480 Lycium (Solanaceae): inferences from chloroplast DNA sequences. *Mol. Phylogen. Evol.*

481 2001, *19*, 246-258.

- 482 9. Amagase, H.; Farnsworth, N. R., A review of botanical characteristics,
- 483 phytochemistry, clinical relevance in efficacy and safety of *Lycium barbarum* fruit
- 484 (Goji). Food Res. Int. 2011, 44, 1702-1717.
- 485 10. Chang, R. C.-C.; So, K.-F., Use of anti-aging herbal medicine, Lycium barbarum,
- 486 against aging-associated diseases. What do we know so far? *Cell. Mol. Neurobiol.* 2008,
- 487 *28*, 643-652.
- 488 11. Song, M.; Salam, N.; Roufogalis, B. D.; Huang, T., Lycium barbarum (Goji
- 489 Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in
- 490 human retinal pigment epithelial cells: possible implications for diabetic retinopathy
- 491 treatment. *Biochem. Pharmacol.* **2011**, *82*, 1209-1218.
- 492 12. Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J.;
- 493 Kamerling, J. P.; Bucheli, P., Cell wall polysaccharides of Chinese wolfberry (Lycium
- 494 *barbarum*): Part 2. Characterisation of arabinogalactan-proteins. *Carbohydr. Polym.*
- **495 2011**, *84*, 1075-1083.
- 496 13. Zhou, Z.-Q.; Xiao, J.; Fan, H.-X.; Yu, Y.; He, R.-R.; Feng, X.-L.; Kurihara, H.;
- 497 So, K.-F.; Yao, X.-S.; Gao, H., Polyphenols from wolfberry and their bioactivities. Food
- 498 *Chem.* **2017**, *214*, 644-654.
- 499 14. Le, K.; Chiu, F.; Ng, K., Identification and quantification of antioxidants in
- 500 Fructus lycii. Food Chem. 2007, 105, 353-363.

- 501 15. Zhou, Z.-Q.; Fan, H.-X.; He, R.-R.; Xiao, J.; Tsoi, B.; Lan, K.-H.; Kurihara, H.;
- 502 So, K.-F.; Yao, X.-S.; Gao, H., Lycibarbarspermidines A–O, new dicaffeoylspermidine
- 503 derivatives from wolfberry, with activities against Alzheimer's disease and oxidation. J.
- 504 Agric. Food Chem. 2016, 64, 2223-2237.
- 505 16. Peng, Y.; Ma, C.; Li, Y.; Leung, K. S.-Y.; Jiang, Z.-H.; Zhao, Z., Quantification
- 506 of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant
- 507 Foods Hum. Nutr. 2005, 60, 161-164.
- 508 17. Inbaraj, B. S.; Lu, H.; Kao, T. H.; Chen, B. H., Simultaneous determination of
- 509 phenolic acids and flavonoids in *Lycium barbarum* Linnaeus by HPLC–DAD–ESI-MS. J.
- 510 Pharm. Biomed. Anal. 2010, 51, 549-556.
- 511 18. Forino, M.; Tartaglione, L.; Dell'Aversano, C.; Ciminiello, P., NMR-based
- 512 identification of the phenolic profile of fruits of *Lycium barbarum* (goji berries). Isolation
- and structural determination of a novel N-feruloyl tyramine dimer as the most abundant
- antioxidant polyphenol of goji berries. *Food Chem.* **2016**, *194*, 1254-1259.
- 515 19. Gao, K.; Ma, D.; Cheng, Y.; Tian, X.; Lu, Y.; Du, X.; Tang, H.; Chen, J., Three
- new dimers and two monomers of phenolic amides from the fruits of *Lycium barbarum*
- and their antioxidant activities. J. Agric. Food Chem. 2015, 63, 1067-1075.
- 518 20. Pan, M.-H.; Lai, C.-S.; Ho, C.-T., Anti-inflammatory activity of natural dietary
- 519 flavonoids. *Food Funct.* **2010**, *1*, 15-31.
- 520 21. Pan, M.-H.; Lai, C.-S.; Dushenkov, S.; Ho, C.-T., Modulation of inflammatory
- 521 genes by natural dietary bioactive compounds. J. Agric. Food Chem. 2009, 57, 4467-
- 522 4477.

- 523 22. Jiang, Y.; Yu, L.; Wang, M.-H., N-trans-feruloyltyramine inhibits LPS-induced
- 524 NO and PGE 2 production in RAW 264.7 macrophages: Involvement of AP-1 and MAP
- 525 kinase signalling pathways. *Chem.-Biol. Interact.* **2015**, *235*, 56-62.
- 526 23. Matsuno, M.; Compagnon, V.; Schoch, G. A.; Schmitt, M.; Debayle, D.; Bassard,
- 527 J.-E.; Pollet, B.; Hehn, A.; Heintz, D.; Ullmann, P.; Lapierre, C.; Bernier, F.; Ehlting, J.;
- 528 Werck-Reichhart, D., Evolution of a Novel Phenolic Pathway for Pollen Development.
- 529 *Science* **2009**, *325*, 1688-1692.
- 530 24. Zhang, J. X.; Guan, S. H.; Yang, M.; Feng, R. H.; Wang, Y.; Zhang, Y. B.; Chen,
- 531 X.; Chen, X. H.; Bi, K. S.; Guo, D. A., Simultaneous determination of 24 constituents in
- 532 *Cortex Lycii* using high-performance liquid chromatography-triple quadrupole mass
- 533 spectrometry. J. Pharm. Biomed. Anal. 2013, 77, 63-70.
- 534 25. Zhang, J.; Guan, S.; Sun, J.; Liu, T.; Chen, P.; Feng, R.; Chen, X.; Wu, W.; Yang,
- 535 M.; Guo, D.-a., Characterization and profiling of phenolic amides from *Cortex Lycii* by
- 536 ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass
- 537 spectrometry. Anal. Bioanal. Chem. 2015, 407, 581-595.
- 538 26. Amaro, C.; González-Cortazar, M.; Herrera-Ruiz, M.; Román-Ramos, R.;
- 539 Aguilar-Santamaría, L.; Tortoriello, J.; Jiménez-Ferrer, E., Hypoglycemic and
- 540 hypotensive activity of a root extract of Smilax aristolochiifolia, standardized on N-trans-
- 541 feruloyl-tyramine. *Molecules* **2014**, *19*, 11366-11384.
- 542 27. Yoshihara, T.; Takamatsu, S.; Sakamura, S., Three new phenolic amides from the
- 543 roots of eggplant (Solanum melongena L.). Agric. Biol. Chem. 2014, 42, 623-627.

544	28.	Yoshihara, T.; Yamaguchi, K.; Takamatsu, S.; Sakamura, S., A New lignan	
545	amide,	grossamide, from bell pepper (Capsicum annuum var. grossurri). Agric. Biol.	
546	Chem. 2014, 45, 2593-2598.		
547	29.	Facchini, P. J.; Huber-Allanach, K. L.; Tari, L. W., Plant aromatic L-amino acid	
548	decarb	oxylases- evolution, biochemistry, regulation, and metabolic engineering	
549	applica	ations. Phytochemistry 2000, 54, 121-138.	
550	30.	Bassard, JE.; Ullmann, P.; Bernier, F.; Werck-Reichhart, D., Phenolamides:	
551	Bridgi	ng polyamines to the phenolic metabolism. <i>Phytochemistry</i> 2010 , <i>71</i> , 1808-1824.	

553 Figure Captions

- **Figure 1**. Chemical structure of HCCA synthetic compounds. Compounds 1-5 were
- 555 *trans*-caffeic acid species. Compounds 6-11 were *trans*-ferulic acid species, and
- 556 compounds **12-16** were 3,4-dihydroxyhydrocinnamic acid species. Compound **17** was
- synthesized by *trans*-ferulic acid and 3-phenylpropylamine, and used as the internal
- standard for quantification.

559

- 560 Figure 2. LC-MS/MS chromatograms of standards (A) and fruit extracts (B): 1 *N-trans-*
- 561 caffeoyl phenethylamine, 2 *N-trans*-caffeoyl 3,4-dimethoxyphenethylamine, 3 *N-trans*-
- 562 caffeoyl tryptamine, 4 *N-trans*-caffeoyl tyramine, 5 *N-trans*-caffeoyl dopamine, 6 *N-*
- 563 *trans*-feruloyl phenethylamine, 7 *N-trans*-feruloyl 3,4-dimethoxyphenethylamine, 8 *N*-
- 564 *trans*-feruloyl tryptamine, 9 *N*-trans-feruloyl tyramine, 10 *N*-trans-feruloyl 3-
- 565 methoxytyramine, 11 *N-trans*-feruloyl dopamine, 12 *N*-3,4-
- 566 Dihydroxyhydrocinnamoyl phenethylamine, 13 N-3,4-Dihydroxyhydrocinnamoyl 3,4-
- 567 dimethoxyphenethylamine, 14 N-3,4-Dihydroxyhydrocinnamoyl tryptamine, 15 N-3,4-
- 568 Dihydroxyhydrocinnamoyl tyramine, 16 N-3,4-Dihydroxyhydrocinnamoyl dopamine,

and 17 *N-trans*-feruloyl 3-phenylpropylamine (internal standard)

570

- 571 Figure 3. Cytotoxicity of HCCA compounds on RAW264.7 cells. 75 μg/mL L-NMMA
- 572 was used as a positive control. The cells were incubated with compounds of interest or
- 573 vehicle control (0.01% DMSO) for 24 hour. Asterisks indicate significant differences
- from the control (0 μ M) determined using Dunnett's multiple comparison t-test (*p <

575 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001).

5	7	6
J		o

577	Figure 4. Effect of HCCA compounds on LPS-induced NO release of RAW624.7 cell. 75
578	μ g/mL L-NMMA was used as the positive control. Compounds of interested were co-incu
579	bated with 100 ng/mL LPS for 24 hour. Negative control groups (-) were incubated with
580	growth media only without LPS or compounds of interest. The NO accumulation in cell
581	medium was measured by Griess reagent. Asterisks indicate significant differences from
582	the control (0 μ M) determined using Dunnett's multiple comparison t-test (* $p < 0.05$, **
583	p < 0.005, *** $p < 0.001$, **** $p < 0.0001$).5

Compound No.	Compound name	Mean \pm Standard
		Error (ng/g)
4	N-trans-caffeoyl tyramine	237.6 ± 6.2
5	N-trans-caffeoyl dopamine	107.2 ± 2.3
6	N-trans-feruloyl phenethylamine	3.1 ± 0.1
7	N-trans-feruloyl 3,4-	0.9 ± 0.0
	dimethoxyphenethylamine	
8	N-trans-feruloyl tryptamine	0.7 ± 0.0
9	N-trans-feruloyl tyramine	11110±140
10	N-trans-feruloyl 3-methoxytyramine	634.4 ± 21.3
 <i>N-trans</i>-feruloyl dopamine <i>N</i>-3,4-Dihydroxyhydrocinnamoyl tyramine 		516.6 ± 27.4
		12.1 ± 0.3

Table 1. Mean Concentrations of Amide Compounds in Wolfberry (n = 3).

Table 2. Cytotoxicity IC_{50} value and NO Production IC_{50} value of HCCA compounds toRAW 264.7.

Compd.	IC ₅₀ (Mean±Standard Error) μM	50% NO inhibition conc. (Mean± Standard Error) μM
4	>100 µM	12.76±1.66
5	>100 µM	39.05±3.53
6	>100 µM	14.28±2.10
7	>100 µM	>10 µM
8	>100 µM	>50 µM
9	>100 µM	>50 µM
10	>100 µM	>50 µM
11	>100 µM	15.08 ± 0.80
15	>100 µM	40.36±4.65

Figure 1.

Figure 3.

Table of Contents Graphic