#### FULL PAPER



# Copper-based Schiff Base Complex Immobilized on Coreshell $Fe_3O_4$ @SiO<sub>2</sub> as a magnetically recyclable and highly efficient nanocatalyst for green synthesis of 2-amino-4*H*chromene derivatives

# Hakimeh Ebrahimiasl 💿 |

Department of Chemistry, Bu-Ali Sina University, Hamedan, 65178, Iran

#### Correspondence

Davood Azarifar, Department of Chemistry, Bu-Ali Sina University, Zip Code 65178, Hamedan, Iran. Email: azarifar@basu.ac.ir

**Funding information** Research Council of Bu-Ali Sina University

### Davood Azarifar 🗅

#### Abstract

 $Fe_3O_4$ -supported copper (II) Schiff-Base complex has been synthesized through post-modification with 1,3-phenylenediamine followed by further post-modification with salicylaldehyde and coordination with Cu(II) ion. The resulted  $Fe_3O_4@SiO_2$ -imine/phenoxy-Cu(II) magnetic nanoparticles (MNPs) were characterized by various techniques including SEM, TEM, XRD, XPS, EDX, VSM, FT-IR, and ICP. The catalytic activity as a magnetically recyclable heterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4*H*chromene derivatives was examined. The catalyst is efficient in the reaction and can be recovered by magnetic separation and recycled several times without significant loss in the catalytic activity.

#### K E Y W O R D S

2-amino-4H-chromene, Fe<sub>3</sub>O<sub>4</sub>-immobilized-Cu (II) Schiff-Base complex, magnetic nanoparticles, nanocatalyst, three-component reaction

# **1** | INTRODUCTION

In the last few decades, scientists have greatly concerned about the environmental health issues originating from catalytic processes and have made considerable efforts for development of eco-friendly recyclable catalysts for organic transformations such as multi-component reactions (MCRs) in the synthetic and industrial fields.<sup>[1-6]</sup> In recent years, immobilization of different homogeneous catalysts onto various nanoparticles has emmerged as a promising strategy for improving the catalytic efficiency and stability.<sup>[7]</sup> The last few decades have witnessed a considerable progress in the development of various magnetic nanoparticles (MNPs) as sustainable and efficient supports or catalysts in organic synthesis and industrial fields due to their interesting physical and chemical characteristics such as large surface to volume ratio, high atom efficiency, easy magnetic separation and high

potential of recyclability.<sup>[8-13]</sup> As previously reported, the use of various magnetic metal oxides and hybrid metal oxide nanoparticles such as Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, ZnO, and La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> have attracted a massive attention both in industry and organic reactions as catalysts and/or supports.<sup>[14,15]</sup> Magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles have emerged as a privileged support for immobilization of various ligands and functional groups such as phosphorous, nitrogen and organic moieties owing to the presence of high density hydroxyl groups on their surface, high surface area, high stability, facile magnetic separation. environmental benignity and high loading capacity.<sup>[13,16-25]</sup> Among different nitrogen-based ligands, Schiff-Base ligands supported on magnetic nanoparticles immobilize in excellent state through the coordination to a variety of transition metals with improved catalytic activity and stability.<sup>[26-31]</sup> This is because the ligands containing N-donors exhibit a high performance by a stable hosting a range of metal cations and as a result, these materials become excellent candidates in catalysis design as well as analytical, industrial and medicinal applications.<sup>[32–36]</sup> In comparison, the Cu-based catalysts have offered excellent alternatives to other noble-metalbased catalysts due to their interesting features including low price, facile separation and high catalytic performance.<sup>[37-39]</sup>In addition, another environmentally important synthetic approach is the use of multi-component reactions (MCRs) that have attracted enormous interest as convergent and high atom-economy processes.2f, h, 41-46

Among the heterocyclic compounds, chromenes and their derivatives are well-documented compounds of important biological and pharmacological importance which perform anticancer, spasmolytic, diuretic, anti-HIV, antimalarial, and anti-anaphylactic activities.<sup>[31,46-50]</sup> A large group of chromenes have been widely used as therapeutically useful agents such as acenocoumarol which functions as an anticoagulant and is used for the treatment of bronchial asthma.<sup>[51]</sup> Also, a wide variety of chromenes are naturally occurring products contained in many secondary metabolites, as pigments, flavonoids, and anthocyanin.<sup>[52,53]</sup> In addition, a variety of chromenes have found wide applications as pigments, cosmetics, and biodegradable agrochemicals.<sup>[54]</sup> The methods reported in the literatures for the synthesis of chromenes utilize various catalytic systems such as ionic liquids,<sup>[54]</sup> hexadecyltrimethyl ammonium bromide.<sup>[55]</sup> diammonium hvdrogen phosphate (DAHP),<sup>[56]</sup> Mg/La mixed metal oxides,<sup>[57]</sup>  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles,<sup>[58]</sup> silica-grafted ionic liquid,<sup>[59]</sup> and H<sub>6</sub>P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>.18H<sub>2</sub>O.<sup>[60]</sup>

#### 2 **EXPERIMENTAL**

#### 2.1 | General

Chemicals were purchased from Merck Chemical Company and used without further purification. Melting points were determined in open capillary tubes using a BUCHI 510 apparatus. Fourier transform infrared (FT-IR) spectra were recorded from KBr pellets on a Perkin Elmer GX FT-IR spectrometer. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded for samples in CDCl<sub>3</sub> or DMSO-d<sub>6</sub> on 90, 250 and 400 MHz BRUKER AVANCE instruments at ambient temperature using tetramethylsilane (TMS) as internal standard. Scanning electron microscopy (SEM) images were obtained on EM3200 instrument operated at 30 kV accelerating voltage. Energy-dispersive X-ray (EDX) analysis was carried out using a FESEM-SIGM (German) instrument. Thermo-gravimetric analysis (TGA) was recorded in air using TGA/DTA PYRIS DIA-MOND instrument. Magnetic measurement of the catalvst was performed using a vibrating sample magnetometer (VSM) instrument MDKFT. Moreover, high resolution transmission electron microscopy (TEM) was conducted on the nanoparticles using a HRTEM Philips CM30, (300KV) instrument. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed by Arcos EOP, 32 Linear CCD simultaneous ICP analyzer. X-ray photoelectron spectral (XPS) analysis was performed using a K-Alpha spectrometer. To gain an accurate understanding of the molecular structures of 2amino-4H-chromene derivatives, geometry optimization and conformational analysis were performed in the gas phase with the Gaussian 09 suite of programs and the Beck's three-parameter hybrid method B3LYP with the 6-31G (d,p) basis set. Vibrational frequency analysis was also performed at the same level to ensure the structures are local minima. The natural bond orbital (NBO) method on the wave functions was obtained at the same level of theory by NBO 3.1 program.<sup>[61-64]</sup> The characterization data for the catalyst and the titled products are available online in the supporting information section at the end of the article (Scheme 1).

#### 2.2 | Preparation of Fe<sub>3</sub>O<sub>4</sub>-supported copper (II) Schiff-base complex, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) (MNPs)

The Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) core-shell magnetic nanoparticles were successfully prepared in six steps as depicted in Scheme 2 and explained bellow.

#### 2.2.1 | Synthesis of SiO<sub>2</sub>-modified coreshell Fe<sub>3</sub>O<sub>4</sub> MNPs

Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles were synthesized by coprecipitation of Fe<sup>3+</sup> and Fe<sup>2+</sup> ions with [Fe<sup>3+</sup>]/[Fe<sup>2+</sup>] molar ratio of 2:1 as described in the literature.<sup>[65]</sup> Shortly, FeCl<sub>3</sub>.6H<sub>2</sub>O (5.4 g, 0.02 mol) and FeCl<sub>2</sub>.4H<sub>2</sub>O (2.0 g, 0.01 mol) were dissolved in deionized water (80 ml) under nitrogen atmosphere with vigorous stirring. Then, 25% aqueous NH<sub>4</sub>OH solution (10 ml) was added dropwise at the constant rate of 1 ml per min to the mixture at 80 °C in N<sub>2</sub> atmosphere that resulted in the formation of uniform black Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles. Then, these black particles were cooled to room temperature, washed twice with deionized water and 0.02 M aqueous NaCl solution consecutively, and decanted using an external magnet. In the following step, the as-prepared Fe<sub>3</sub>O<sub>4</sub> nanoparticles (1 g) were dispersed

SCHEME 1 Three-component synthesis of various 2-amino-4H-chromene-3-carbonitrile derivatives catalyzed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) MNPs



EtOH, Reflux

Applied

**SCHEME 2** Stepwise preparation of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Imine/Phenoxy-Cu(II) MNPs

Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Iminomethyl/phenol

HO

Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Imine/Phenoxy-Cu(II)

3 of 20

in a mixture of ethanol (100 ml) and deionized water (10 ml) containing 25% ammonia solution (2.5 ml). Then, tetraethyl orthosilicate (TEOS) (2 ml) was added dropwise and the stirring was continued for 2 hr at 60 °C. The resulted product was magnetically separated, washed repeatedly with deionized water and ethanol, and then dried in air for 4 hr.<sup>[66]</sup>

# 2.2.2 | Chloro-functionalization of Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>

The prepared core-shell  $Fe_3O_4$  ( $O_2(1 g)$ ) was added to a solution of (3-chloropropyl)triethoxysilane (CPTES) (3 ml) in dry toluene (100 ml) followed by stirring at 90 °C for 12 hr in N<sub>2</sub> atmosphere. Finally, chloropropylbonded magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl) at the end of the reaction were repeatedly washed with toluene, separated by using a magnet and dried under reduced pressure.

# 2.2.3 | Immobilization of 1,3phenylenediamine on Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl MNPs

To a solution of 1,3-phenylenediamine (1.3 g, 0.012 mol) and a few drops of triethylamine as a base in ethanol (70 ml), Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl (1 g) was added to obtain a suspension in 15 min. The resulting mixture was refluxed in N<sub>2</sub> for 24 hr and the final precipitate as the product was separated with a magnet, washed three times with ethanol and dried at room temperature.

#### Conversion of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-2.2.4 NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub> into iminomethyl/phenol Schiff-base derivative (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>iminomethyl/phenol)

Above-prepared  $Fe_{3}O_{4}@SiO_{2}-(CH_{2})_{3}-NH-(3-NH_{2}C_{6}H_{4})$ nanoparticles (1 g) were dispersed in 50 ml of methanol

4 of 20 WILEY Organometallic

in 15 min and was heated to reflux point. Then, to this suspension was added dropwise a solution of salicylaldehyde (2.93 g, 24 mmol) in ethanol (30 ml) using a decanter funnel. The reaction mixture was refluxed for 24 hr and the precipitated  $Fe_3O_4@SiO_2$ -Iminomethyl/phenol nanoparticles were separated using a magnet, washed repeatedly with ethanol, and dried in an oven.

#### 2.2.5 | Preparation of the Fe<sub>3</sub>O<sub>4</sub>immobilized Schiff-base Cu(II) complex Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II)

To a dispersion of previously prepared  $Fe_3O_4@SiO_2$ iminomethyl/phenol nanoparticles (1 g) in ethanol (50 ml) was added dropwise a 5% (*w*/*v*) solution of Cu (OAc)<sub>2</sub> in ethanol (5 ml) and the resulting mixture was refluxed for 48 hr. After the reaction completed, the expected  $Fe_3O_4@SiO_2$ -iminomethyl/phenol nanoparticles were magnetically separated by using a magnet. Finally, the isolated nanoparticles were washed repeatedly with ethanol and water to remove the remaining unreacted materials, and dried at 80 °C for 6 hr.

# **2.3** | General procedure for synthesis of **2-amino-4***H***-chromene derivatives** 7–10

To a mixture of aromatic aldehvde 1 (1.0 mmol). malononitrile 2 (0.067 g, 1 mmol) and phenolic reagent ( $\alpha$ -naphthol 3,  $\beta$ -naphthol 4, resorcinol 5 or 2-hydroxynaphthalene-1,4-dione 6) (1.0)mmol), catalyst, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) (0.02 g), was added. The mixture was stirred with a magnetic stirrer and heated at 80 °C under solvent-free conditions for an appropriate time until the mixture turned into solid (Table 1). After completion of the reaction, judged by TLC, the resulting reaction mixture was cooled to room temperature, diluted with hot ethanol (20 ml), and the catalyst was separated by an external magnet. The precipitated product was isolated by filtration and purified by recrystallization in hot ethanol.

#### 2.4 | Selected data

#### 2.4.1 | 3-Amino-4-phenyl-4H-benzo[h] chromene-2-carbonitrile (7 a)

Light brown; m.p. 220–222 °C; yield 91%; FT-IR (KBr)  $\nu$ : 3474, 3305, 3189, 3055, 3021, 2202, 1711, 1656, 1632, 1574, 1375, 1262, 1186, 1012, 742 cm<sup>-1</sup>; <sup>1</sup>H-NMR

| Entry | 20   | Peak width<br>[FWHM]<br>(degree) | Size<br>(nm) | interplanar<br>spacing of the<br>crystal (nm) |
|-------|------|----------------------------------|--------------|-----------------------------------------------|
| 1     | 6.8  | 0.5                              | 15.89        | 1.30                                          |
| 2     | 9.2  | 0.2                              | 40.75        | 0.96                                          |
| 3     | 11.9 | 0.3                              | 27.76        | 0.77                                          |
| 4     | 12.7 | 0.3                              | 26.72        | 0.70                                          |
| 5     | 22   | 0.5                              | 16.10        | 0.40                                          |
| 6     | 35.7 | 0.9                              | 9.24         | 0.25                                          |

(90 MHz, DMSO-d<sub>6</sub>) δ: 8.30–8.12 (m, 3H, H-Ar), 7.93– 7.57 (m, 7H, H-Ar), 7.31–7.09 (m, 3H, H-Ar and NH<sub>2</sub>), 5.20 (s, 1H, C-H) ppm.

#### 2.4.2 | 3-Amino-4-(2,6-dichlorophenyl)-4H-benzo[h]chromene-2-carbonitrile (7 b)

Brown; m.p. 212–214 °C; yield 96%; FT-IR (KBr)  $\nu$ : 3591, 3476, 3328, 3196, 2192, 1662, 1637, 1557, 1437, 1292, 1103, 845, 747 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.26–7.24 (m, 9H, Ar-H), 6.82 (s, 2H, NH<sub>2</sub>), 5.95 (s, 1H, C-H) ppm.

#### 2.4.3 | 3-Amino-4-(4-chloro-3nitrophenyl)-4*H*-benzo[*h*]chromene-2carbonitrile (7 c)

Light brown; m.p. 212–214 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3473, 3328, 3196, 3068, 2194, 1669, 1603, 1570, 1535, 1411, 1377, 1260, 1190, 806, 754 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.25 (d, J = 8.24 Hz, 1H, Ar-H), 8.03 (d,, J = 1.7 Hz, 1H, Ar-H), 7.90 (d, J = 8.01 Hz, 1H, Ar-H), 7.72 (d, J = 8.01 Hz, 1H, Ar-H), 7.66–7.57 (m, 4H, Ar-H), 7.34 (s, 2H, NH<sub>2</sub>), 7.13 (d, J = 8.52 Hz, 1H, Ar-H), 5.15 (s,1H, C-H) ppm; <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 160.3, 147.6, 146.6, 142.9, 133.2, 132.9, 132.1, 127.7, 127.0, 126.8, 125.8, 124.5, 124.2, 123.5, 122.7, 120.8, 120.1, 116.2 ppm. ESI-MSM/Z = 376.9 [M]<sup>+</sup>.

#### 2.4.4 | 3-Amino-4-(4-methoxyphenyl)-4*H*benzo[*h*]chromene-2-carbonitrile (7 d)

Cream; m.p. 198–200 °C; yield 90%; FT-IR (KBr)  $\nu$ : 3417, 3326, 3203, 2907, 2837, 2194, 1606, 1509, 1408, 1290, 1191, 1024, 809, 743 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.28–6.91 (m, 10H, Ar-H), 6.82 s, 2H, NH<sub>2</sub>), 4.8 (s, 1H, C-H), 3.71 (s, 3H, OCH<sub>3</sub>) ppm.

### 2.4.5 | 3-Amino-4-(4-hydroxyphenyl)-4*H*benzo[*h*]chromene-2-carbonitrile (7 e)

Brown; m.p. 241–243 °C; yield 97%; FT-IR (KBr) ν: 3457, 3316, 3192, 2198, 1630, 1511, 1448, 1261, 1039, 854, 749 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>) δ: 9.32 (s, 1H, OH), 8.26–6.37 (m, 10H, Ar-H), 6.64 (s, 2H, NH<sub>2</sub>), 4.77 (s, 1H, C-H) ppm.

# 2.4.6 | 3-Amino-4-phenyl-1*H*-benzo[*f*] chromene-2-carbonitrile (8 a)

Light brown; m.p. 270–272 °C; yield 93%; FT-IR (KBr)  $\nu$ : 3434, 3339, 3193, 3022, 2885, 2183, 1639, 1517, 1284, 815, 610 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.29–8.17 (d, 1H, Ar-H), 7.89–7.83 (d, 1H, Ar-H), 7.61–7.53 (m, 3H, Ar-H), 7.04–7.25 (m, 9H, Ar-H and NH<sub>2</sub>), 4.88 (s, 1H, C-H) ppm.

### 2.4.7 | 3-Amino-4-(2,4-dichlorophenyl)-1*H*-benzo[*f*]chromene-2-carbonitrile (8 b)

Light Brown; m.p. 228–230 °C; yield 96%; FT-IR (KBr)  $\nu$ : 3463, 3324, 3190, 2200, 1662, 1557, 1408, 1260, 1187, 1046, 846, 741 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 7.94 (dd, J = 22.6, 8 Hz, 2H, Ar-H), 7.62 (d, J = 1.7 Hz, 1H, Ar-H), 7.56 (d, J = 8.3 Hz, 1H, Ar-H) 7.49–7.40 (m, 2H, Ar-H), 7.33 (d, 1H, J = 8.9 Hz, Ar-H), 7.26 (dd, J = 10,1.7 Hz, 1H, Ar-H), 7.11 (s, 2H, NH<sub>2</sub>), 7.00 (d, J = 8.2 Hz, 1H, Ar-H), 5.69 (s, 1H, C-H) ppm; <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 159.8, 147.1, 141.6, 132.0, 131.9, 131.4, 130.7, 130.0, 129.9, 128.9, 128.7, 128.4, 127.5, 125.1, 122.5, 119.6, 116.8, 114.1 ppm.

#### 2.4.8 | 2-Amino-7-hydroxy-4-phenyl-4*H*chromene-3-carbonitrile (9 a)

Brown; m.p. 238–240 °C; yield 92%; FT-IR (KBr)  $\nu$ : 3495, 3424, 3220, 2193, 1654, 1506, 1454, 1302, 1114, 806, 623 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.69 (s, 1H, OH), 7.24–7.19 (m, 5H, Ar-H), 6.86–6.75 (m, 3H, Ar-H), 6.51–6.41 (s, 2H, NH<sub>2</sub>), 4.61 (s, 1H, C-H) ppm.

### 2.4.9 | 2-Amino-7-hydroxy-4-(3nitrophenyl)-4*H*-chromene-3-carbonitrile (9 b)

Dark brown; m.p. 165–167 °C; yield 94%; FT-IR (KBr) v: 3472, 3342, 3104, 2195, 1643, 1588, 1460, 1156, 855,

792 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.78 (s, 1H, OH), 8.04–6.82 (m, 7H, Ar-H), 6.47 (s, 2H, NH<sub>2</sub>), 4.93 (s, 1H, C-H) ppm.

#### **2.4.10** | **2-Amino-4-(2,4-dichlorophenyl)-7-hydroxy-4H-chromene-3-carbonitrile (**9 c)

White solid; m.p. 263–265 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3480, 3341, 3276, 3216, 2194, 1642, 1587, 1412, 1153, 844 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.80 (s, 1H, OH), 7.57 (d, J = 2 Hz, 1H, Ar-H), 7.39 (dd, J = 8.4, 2 Hz, 1H, Ar-H), 7.21 (d, J = 8.4 Hz, 1H, Ar-H), 6.98 (s, 2H, NH<sub>2</sub>), 6.71 (d, J = 8.5 Hz, 1H, Ar-H), 6.48 (dd, J = 8.4, 2.4 Hz, 1H, Ar-H), 6.41 (d, J = 2.2 Hz, 1H, Ar-H), 5.12 (s, 1H, C-H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 160.5, 157.4, 149.0, 141.8, 132.8, 132.2, 129.2, 129.1, 128.0, 120.1, 120.1, 112.6, 111.9, 102.3 ppm.

#### 2.4.11 | 2-Amino-7-hydroxy-4-(thiophen-2-yl)-4H-chromene-3-carbonitrile (9 d)

Cream solid; m.p. 240–242 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3476, 3423, 3332, 3219, 2195, 1654, 1588, 1506, 1327, 1290, 1150, 1043, 867 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.78 (s, 1H, OH), 7.34 (d, J = 4.9 Hz, 1H, Ar-H), 6.96 (d, J = 4.6 Hz, 2H, Ar-H), 6.95 (s, 2H, NH<sub>2</sub>), 6.91 (t, J = 4 Hz, 1H, Ar-H), 6.53 (dd, J = 8.3, 2.1 Hz, 1H, Ar-H), 6.39 (d, J = 2.1 Hz, 1H, Ar-H), 4.98 (s, 1H, C-H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 160.3, 157.3, 151.5, 148.5, 129.8, 126.8, 125.0, 124.0, 120.5, 120.5, 113.5, 112.4, 102.2 ppm.

#### 2.4.12 | 2-Amino-4-(4-fluorophenyl)-7hydroxy-4*H*-chromene-3-carbonitrile (9 e)

Brown solid; m.p. 202–204 °C; yield 96%; FT-IR (KBr)  $\nu$ : 3432, 3344, 3281, 2187, 1646, 1505, 1407, 1094, 865, 779 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.71 (s, 1H, OH), 7.19–6.51 (m, 7H, Ar-H), 6.41 (s, 2H, NH<sub>2</sub>), 4.65 (s, 1H, C-H) ppm.

### 2.4.13 | 2-Amino-7-hydroxy-4-(4-tolyl)-4*H*-chromene-3-carbonitrile (9 f)

Brown solid; m.p. 202–204 °C; yield 90%; FT-IR (KBr)  $\nu$ : 3440, 3339, 3049, 2972, 2191, 1641, 1589, 14.64, 1113, 1045, 858 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 9.33 (s, 1H, OH), 8.46–6.50 (m, 7H, Ar-H), 6.41 (s, 2H, NH<sub>2</sub>), 2.25 (s, 3H, CH<sub>3</sub>) ppm.

#### 2.4.14 | 2-Amino-5,10-dioxo-4-phenyl-5,10-dihydro-4*H*-benzo[g]chromene-3carbonitrile (10 a)

Brown solid; m.p. 263–265 °C; yield 91%; FT-IR (KBr)  $\nu$ : 3400, 3323, 3191, 3021, 2198, 1670, 1405, 1244, 984, 754 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.02–7.84 (m, 4H, Ar-H), 7.30–6.87 (m, 7H, Ar-H and NH<sub>2</sub>), 4.61 (s, 1H, C-H) ppm.

### 2.4.15 | 2-Amino-5,10-dioxo-4-(4nitrophenyl)-5,10-dihydro-4*H*-benzo[g] chromene-3-carbonitrile (10 b)

Dark-brown solid; m.p. 232–234 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3397, 3331, 3196, 3075, 2203, 1670, 1521, 1411, 1246, 1183, 859, 780 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.21–7.60 (m, 8H, Ar-H), 7.47 (s, 2H, NH<sub>2</sub>), 4.82 (s, 1H, C-H) ppm.

# 2.4.16 | 2-Amino-4-(2,4-dichlorophenyl)-5,10-dioxo-5,10-dihydro-4*H*-benzo[g] chromene-3-carbonitrile (10 c)

Red-brown solid; m.p. 280–282 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3467, 3341, 3167, 3073, 2202, 1670, 1592, 1248, 1199, 847, 717 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.35–7.25 (m, 9H, Ar-H and NH<sub>2</sub>), 5.12 (s, 1H, C-H) ppm.

# 2.4.17 | 2-amino-4-(4-chloro-3nitrophenyl)-5,10-dihydro-5,10-dioxo-4*H*benzo[g]chromene-3-carbonitrile (10 d)

Red-brown solid; m.p. 255–257 °C; yield 98%; FT-IR (KBr)  $\nu$ : 3410, 3330, 3218, 2193, 1660, 1593, 1530, 1412, 1245, 716 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.08 (s, 1H, Ar-H), 8.06 (dd, J = 6.5, 2 Hz, 1H, Ar-H) 7.88–7.71 (m, 5H, Ar-H), 7.50 (s, 2H, NH<sub>2</sub>), 4.81 (s, 1H, C-H) ppm; <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 182.6, 176.9, 158.2, 149.5, 148.1, 134.5, 134.1, 131.1, 131.0, 130.5, 128.3, 126.0, 125.7, 122.6, 122.6, 119.5, 119.5, 112.4 ppm. ESI-MS-M/  $Z = 406.9 \text{ [M]}^+$ .

# 2.4.18 | 2-Amino-4-(furan-2-yl)-5,10dioxo-5,10-dihydro-4*H*-benzo[g]chromene-3carbonitrile (10 e)

Orange solid; m.p. 257–259 °C; yield 97%; FT-IR (KBr)  $\nu$ : 3414, 3330, 2197, 1665, 1592, 1420, 1201, 708 cm<sup>-1</sup>; <sup>1</sup>H-

NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.04 (dd, J = 5.7, 3.3 Hz, 1H, Ar-H), 7.95–7.84(m, 3H, Ar-H), 7.53(d, J = 1 Hz, 1H, Ar-H), 7.43 (s, 2H, NH<sub>2</sub>), 6.36 (dd, J = 3.1, 1.9 Hz, 1H, Ar-H), 6.29 (d, J = 3.18 Hz, 1H, Ar-H), 4.76 (s, 1H, C-H) ppm; <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 182.2, 176.8, 159.2, 154.5, 149.2, 142.7, 134.7, 130.9, 130.5, 126.2, 125.9, 119.8, 119.7, 119.2, 119.2, 110.7, 106.4 ppm.

### 2.4.19 | 2-Amino-4-(4dimethylaminophenyl)-5,10-dioxo-5,10dihydro-4*H*-benzo[g]chromene-3carbonitrile (10 f)

Dark-orange solid; m.p. 241–243 °C; yield 94%; FT-IR (KBr)  $\nu$ : 3336, 3323, 3193, 2798, 2199, 1667, 1524, 1403, 1244, 715 cm<sup>-1</sup>; <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 8.04–8.02 (m, 1H, Ar-H),7.88–7.81 (m, 3H, Ar-H), 7.25 (s, 2H, NH<sub>2</sub>), 7.08 (d, J = 8 Hz, 2H, Ar-H), 6.63 (d, J = 8.7 Hz, 2H, Ar-H), 4.48 (s, 1H, C-H), 2.83 (s, 6H, CH<sub>3</sub>) ppm; <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 182.6, 176.9, 158.2, 149.5, 148.1, 134.5, 134.1, 131.1, 131.0, 130.5, 128.3, 126.0, 125.0, 122.6, 122.6, 119.5, 119.5, 112.4 ppm. ESI-MS-M/ Z = 371 [M]<sup>+</sup>.

# 2.4.20 | 2-Amino-5,10-dioxo-4-(4-tolyl)-5,10-dihydro-4*H*-benzo[g]chromene-3carbonitrile (10 g)

Dark-brown; m.p. 243–245 °C; yield 94%; FT-IR (KBr)  $\nu$ : 3407, 3327, 3195, 3247, 2199, 1661, 1593, 1408, 1243, 950, 734 cm<sup>-1</sup>; <sup>1</sup>H-NMR (90 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 7.99–7.14 (m, 10H, Ar-H and NH<sub>2</sub>), 4.44 (s, 1H, C-H), 2.25 (s, 6H, CH<sub>3</sub>) ppm.

### 3 | RESULTS AND DISCUSSION

#### 3.1 | Preparation of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu(II) catalyst

Herin, we report the stepwise synthesis of hitherto unexplored  $Fe_3O_4$ -supported copper (II) Schiff-base complex  $Fe_3O_4@SiO_2$ -imine/phenoxy-Cu(II) as an efficient and recyclable nanocatalyst as explained above (Scheme 2).

First, the silica-coated  $Fe_3O_4$  MNPs were prepared by co-precipitation of ferrous ( $Fe^{2+}$ ) and ferric ( $Fe^{3+}$ ) ions followed by the reaction of dispersion of the resulted nanoparticles in ethanol and deionized water with tetraethyl orthosilicate (TEOS) in the presence of 25% ammonia solution to obtain the core-shell  $Fe_3O_4@SiO_2$  nanoparticles. In the next step, the  $Fe_3O_4$   $(@SiO_2)$ nanoparticles were reacted with (3-chloropropyl) triethoxysilane (CPTES) in dry toluene under nitrogen atmosphere to obtain the chloro-functionalized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl MNPs. Then, the reaction of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl nanoparticles with 1,3-phenylenediamine in ethanol containing few drops of triethylamine under nitrogen atmosphere and refluxed condition furnished the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>) nanoparticles. Conversion of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub> nanoparticles into iminomethyl/ phenol Schiff-base derivative Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Iminomethyl/ accomplished via the reaction of phenol was Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>) nanoparticles as a dispersion in methanol with salicylaldehyde in ethanol under refluxed condition and nitrogen atmosphere to obtain the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Iminomethyl/phenol MNPs. Finally, the dispersion of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Iminomethyl/phenol nanoparticles in ethanol was treated with 5% (w/v)solution of Cu(OAc)<sub>2</sub> in ethanol to afford the Fe<sub>3</sub>O<sub>4</sub>immobilized Schiff-base Cu(II) complex Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu (II). The structure of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu(II) MNPs was fully established by different analytical techniques as described below.

#### 3.2 | Characterization of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) catalyst

The structure of  $Fe_3O_4$ @SiO<sub>2</sub>-imine/phenoxy-Cu (II) catalyst was fully established by different analytical techniques as described below. The characterization data for the catalyst are available at the end of the article.

#### 3.2.1 | FT-IR analysis

The FT-IR spectra of the naked Fe<sub>3</sub>O<sub>4</sub> NPs (a), silicacoated Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> NPs (b), Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl (c), Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub> (d), Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>iminomethyl/phenol (e) and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) (f) presented in Figure 1 are compared. Appearance of the characteristic absorption bands at about 566 and 637 cm<sup>-1</sup> corresponding to the Fe-O vibrations in all the spectra **1a-f** indicated the successful immobilization of the organic moieties and Cu species on the surface of the Fe<sub>3</sub>O<sub>4</sub> nanoparticles. In addition, a broad peak at 3000–3600 cm<sup>-1</sup> exhibited by these spectra along with another peak at about 1612 cm<sup>-1</sup> are associated with the O-H stretching vibrations.<sup>[67,68]</sup> The absorption band observed at about 1084 cm<sup>-1</sup> with a small shoulder at 1180  $\text{cm}^{-1}$  in the spectra **1b-f** can be attributed to the symmetric and asymmetric stretching vibrations of the Si-O-Si groups which clearly confirm the silica-modification of the nanoparticles. Moreover, the presence of  $\sigma$ -bonded propyl groups on the surface of the Fe<sub>3</sub>O<sub>4</sub> was confirmed by the aliphatic C-H stretching vibrations at 2949–2878 cm<sup>-1</sup> observed in the spectra **1c**f. Immobilization of the 1,3-phenylendiamine on the surface of the silica-coated Fe<sub>3</sub>O<sub>4</sub> nanoparticles was evidenced by the presence of the characteristic N-H stretching band at 3292 cm<sup>-1</sup> overlapped with the O-H group in the spectrum **1 d**. Formation of the immobilized iminomethyl/phenol Schiff-base ligand and its Cu (II) complex were approved by the N-H and C=N characteristic vibrational bands at about 3292 and 1629  $\text{cm}^{-1}$  respectively as observed in the spectra **1** e and **1** f. Moreover, the absorption band observed at 459 cm<sup>-1</sup> in the



**FIGURE 1** FT-IR spectra of (a) naked Fe<sub>3</sub>O<sub>4</sub>, (b) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, (c) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-Cl, (d) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-(CH<sub>2</sub>)<sub>3</sub>-NH-(3-NH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>, (e) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-iminomethyl/phenol and (f) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Imine/Phenoxy-Cu(II)

8 of 20 WILEY Organometallic Chemistry

spectrum **1 f** can be attributed to the Cu-O stretching vibration. Appearance of additional bands in the range 1170–1600 cm<sup>-1</sup> can be assigned to the stretching vibrations of the C=C, C-N, and C-O bonds which further confirm the formation immobilized Schiff-base ligand and its related Cu (II) complex. The slight shift of the C=N absorption frequency to a lower frequency shown in the spectrum **1 f** is likely due to the successful co-ordination of the imminomethyl/phenol Schiff-base ligand to Cu(II) ion.<sup>[69]</sup>

#### 3.2.2 | XRD analysis

The crystalline nature and the size of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu(II) nanoparticles were determined by X-ray diffraction (XRD) analysis. As indicated in the resulted XRD pattern of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles in Figure 2a, the intense Bragg's peaks observed at  $2\theta = 18.5^{\circ}$ ,  $30.5^{\circ}$ ,  $35.7^{\circ}$ ,  $43.3^{\circ}$ ,  $53.8^{\circ}$ ,  $57.1^{\circ}$ , 62.8 and  $73.8^{\circ}$  (2 a) correspond to the (111), (220), (311), (400), (422), (511) and (531) reflection planes, respectively. These peaks are related to the crystal planes in the Fe<sub>3</sub>O<sub>4</sub> lattice. The positions and relative intensities of these peaks clearly match with the literature data from the Joint Committee on Powder Diffraction System of Fe<sub>3</sub>O<sub>4</sub> (JCPDS Card No. 65–3107). Comparison of the XRD pattern of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles (2 a) with that of the blank  $Fe_3O_4$ nanoparticles (2 b) proved that the crystalline structure was retained in the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles after coatation with SiO<sub>2</sub> layer and immobilization with the Schiff-base Cu (II) complex.<sup>[70]</sup>

From the XRD pattern can be ascertained the average crystallite size of nanoparticles by applying the Debye–Scherer equation that can be written as:  $((D = (K\lambda)/(\beta cos \theta)))$ .<sup>[71]</sup> In this equation, D is the average crystalline and K is a dimensionless shape factor. The shape factor has a typical value of about 0.9, which varies with the actual shape of the crystallite;  $\lambda$  is the X-ray wavelength,  $\beta$  is the line broadening at half the maximum intensity (FWHM) after subtracting the instrumental line broadening in radians, and also  $\theta$  is the Bragg angle. Eventually, Bragg equation ( $d_{hkl} = \lambda/2\sin\theta$ ) was employed to calculate the distance between the layers (Table 1).

#### 3.2.3 | Energy dispersive X-ray (EDX) and inductively coupled plasma (ICP) analyses

The elemental composition of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) nanoparticles was determined by EDX.



**FIGURE 2** XRD patterns of (a) naked Fe<sub>3</sub>O<sub>4</sub> MNPs and (b) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/Phenoxy-Cu(II) MNPs

The presence of Fe, Si, O, N, C and Cu elements with the corresponding weight percent (0.81%, 77%, 0.32%, 0.20%, 0.18%, 0.7%) is clearly evidenced by the EDX spectrum presented in Figure 3. Formation of the Iminomethyl/Phenol Schiff-base and its Cu(II) complex grafted on the surface of the nanoparticles was confirmed by appearance of the peaks due to the N and Cu atoms. In addition, the Cu content of the catalyst was detected and evaluated by ICP-OES which was found to be 11.36 wt%.

#### 3.2.4 | Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

The morphology and particle size of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu(II) nanoparticles were studied by field-emission scanning electron microscopy (FE-SEM) and TEM, respectively. It can be observed from the TEM images shown in Figure 4a that, the encapsulated Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) complex are made up of nanometer-sized particles exhibiting a regularly spherical morphology with the diameters in the range 15-20 nm. Moreover, on the basis of the TEM image shown in Figure 4b, the core-shell structure and the nanometer-sized nature of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) particles were obvious. Also, the coreshell structure of the nanoparticles was further approved by the presence of dark spots inside the bright spherical thin silica shell. However, it should be noted that, due to aggregation of the particles with paramagnetic nature, the exact evaluation of the particle size is difficult.



**FIGURE 3** The energy dispersive X-ray (EDX) spectrum of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/Phenoxy-Cu(II) MNPs

#### 3.2.5 | Study of X-ray photoelectron spectroscopy (XPS) of the synthesized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), is

used to determine quantitative atomic composition and chemistry of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles. The discrete peaks observed in the XPS spectra determined in the regions for Si, Fe, N, Fe (Figure 5) correspond to ionization from the core electron orbitals of the atoms in the outermost 10-50 Å of the surface. The results obtained from the analysis of the Si 2p spectra confirmed the presence of binding energies at 103.28 and 103.88 eV corresponding to Si-O-Si and Si-O bonds respectively. Also, the presence of carbon atom in the structure of the nanoparticles was approved by the peaks related to C 1 s at the binding energies of 284.88 (C-O-C), 286.18 (C-O) and 287.58 (C=N) eV.<sup>[72]</sup> The nitrogen atoms contained in the grafted Schiff-base group exhibited their N 1 s peaks at the related binding energies 398.68 and 400.28 eV corresponding to C-N and C=N bonds respectively.<sup>[73]</sup> Appearance of the Fe 2p3/2 and Fe 2p1/2 peaks binding energies at 712.68 and 725.38 eV respectively correspond to Fe<sup>3+</sup> present in the Fe<sub>3</sub>O<sub>4</sub> phase. The XPS spectrum resulted in the Fe 2 pv region presented two main binding energy peaks at 710.68 and 724.6 eV which were related to Fe<sup>2+</sup>.<sup>[74]</sup>

XPS spectrum in the Cu2p region showed a doublet peak located at approximately 933.48 and 952.18 eV which are attributed to Cu 2p3/2 and Cu 2p1/2



**FIGURE 4** (a) SEM and (b) TEM images of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ Phenoxy-Cu(II) MNPs respectively Also, the doublet peaks with binding energies of 935.08 and 954.58 eV were assigned to Cu 2p3/2 and Cu 2p1/2 in Cu (II\_ On the other hand, two shakeup satellite peaks at 941.28 and 944.48 eV are related to Cu (II) species.<sup>[75]</sup>

WILEY Organometallic

10 of 20

#### 3.2.6 | Vibrating-sample magnetometer (VSM) analysis of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) nanoparticles

In addition to the above-mentioned XRD, SEM and TEM analyses, the room temperature magnetization behavior was also studied by conducting vibrating-sample magnetometer (VSM) on Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles. The magnetization curves obtained for the naked Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles are illustrated in Figure 6. As seen in these curves, the specific saturation magnetizations (Ms) of uncoated Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles are measured to be 54 and 26 emu  $g^{-1}$ respectively. The slight decrease (28 emu  $g^{-1}$ ) observed in the saturation magnetization value (Ms) of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles compared to the Ms value of the bare Fe<sub>3</sub>O<sub>4</sub> nanoparticles was most likely attributed to the existence of the coated SiO<sub>2</sub> and Schiff-base Cu(II) (11.36 wt.%) materials on the surface of the Fe<sub>3</sub>O<sub>4</sub> nanoparticles.

# 3.2.7 | Thermal gravimetric analysis (TGA)

Thermal gravimetric analysis (TGA) was applied to the  $Fe_3O_4$ @SiO<sub>2</sub>-imine/phenoxy-Cu(II) catalyst in order to investigate its thermal stability and verify the existence of the materials immobilized on the surface of the nanoparticles. According to the TGA pattern presented in Figure 7, weight loss takes place in three consecutive



**FIGURE 6** Magnetization curves of (a) bare  $Fe_3O_4$  and (b)  $Fe_3O_4$ @SiO<sub>2</sub>-imine/phenoxy-Cu(II)

steps in thermal range 25–800 °C. The first small weight loss of about 7% occurs below 150 °C which is likely due to the removal of the adsorbed water and remaining organic solvents. The second weight loss of almost 12% in the range 150–450 °C is possibly attributed to the removal of the Fe<sub>3</sub>O<sub>4</sub>-grafted organic materials and Cu (II) Schiff base complex. Complete decomposition of the catalyst and the possible change of the crystal phase from Fe<sub>3</sub>O<sub>4</sub> to  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> happen in the final thermal step beyond 450 °C.<sup>[76]</sup> These results clearly confirm the successful immobilization of the imine/phenoxy derived Schiff-base Cu (II) complex on the surface of the silica-coated Fe<sub>3</sub>O<sub>4</sub> MNPs.

#### 3.3 | Catalyst activity of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>imine/phenoxy-Cu(II) MNPs

In order to evaluate the catalytic activity of the synthesized  $Fe_3O_4@SiO_2$ -imine/phenoxy-Cu(II) nanoparticles, we chose to study three-component condensation



FIGURE 5 The X-ray photoelectron spectroscopy (XPS) spectra of the synthesized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Imine/Phenoxy-Cu(II) nanoparticles



**FIGURE 7** TGA curve of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu (II) MNPs

reactions between the aldehydes, malononitrile, and different phenolic reagents like  $\alpha$ -naphthol,  $\beta$ -naphthol, resorcinol, and 2-hydroxynaphthalene-1,4-dione to synthesis various derivatives of 2-amino-4H-chromene-3-carbonitrile using Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles as the catalyst (Scheme 1). At first, the effects of different reaction parameters such as catalyst loading, solvent, and temperature on the reaction were screened to establish the conditions of the reactions using the reaction between benzaldehyde, malononitrile and

**TABLE 3** Comparative catalytic activity of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Imine/phenoxy-Cu(II) nanoparticles under optimal conditions

Organometallic\_WILEY

11 of 20

**Applied** 

| Entry | Catalyst                                                                    | Time<br>(min) | Yield<br>(%) |
|-------|-----------------------------------------------------------------------------|---------------|--------------|
| 1     | Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> -Imine/<br>Phenoxy-Cu (II) | 10            | 98           |
| 2     | Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> -Iminomethyl/<br>Phenol    | 30            | 80           |
| 3     | Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub>                            | 120           | 58           |
| 4     | Fe <sub>3</sub> O <sub>4</sub>                                              | 35            | 70           |

 $\alpha$ -naphthol as the model reaction. According to the experimental results summarized in Table 2, the best results in terms of the reaction yield and rate for the selected model reaction were observed when the reaction was performed at 70 °C under solvent-free condition using the catalyst loading of 20 mg (entry 10). Indispensable use of the catalyst Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu (II) in the reaction was established by conducting the reaction under the optimized conditions in the absence of the catalyst and noticed that no detectable amount of the product was produced after a long reaction time (entry 13). Moreover, the catalytic activity of the  $Fe_3O_4$  ( $igsiO_2$ -

| TABLE 2 | Screening the r | eaction paramete | rs for the synthesis of | 2-amino-4-phenyl-4H | -benzo[ <i>h</i> ]chromene | -3-carbonitrile (7a) |
|---------|-----------------|------------------|-------------------------|---------------------|----------------------------|----------------------|
|         |                 | <b>1</b>         |                         |                     |                            |                      |

|       | ĺ             | OH<br>+            |                  | H <sub>2</sub><br>CN<br>Ph<br>7a |                        |
|-------|---------------|--------------------|------------------|----------------------------------|------------------------|
| Entry | Catalyst (mg) | Solvent            | Temperature (°C) | Time (min)                       | Yield (%) <sup>b</sup> |
| 1     | 10            | H <sub>2</sub> O   | 25               | 80                               | 38                     |
| 2     | 10            | EtOH               | 25               | 80                               | 46                     |
| 3     | 10            | CH <sub>3</sub> CN | 25               | 80                               | 43                     |
| 4     | 10            | Solvent-free       | 25               | 80                               | 58                     |
| 5     | 10            | H <sub>2</sub> O   | reflux           | 60                               | 45                     |
| 6     | 10            | EtOH               | reflux           | 60                               | 62                     |
| 7     | 10            | CH <sub>3</sub> CN | reflux           | 60                               | 68                     |
| 8     | 10            | Solvent-free       | 70               | 40                               | 72                     |
| 9     | 10            | Solvent-free       | 100              | 40                               | 70                     |
| 10    | 20            | Solvent-free       | 70               | 10                               | 98                     |
| 11    | 40            | Solvent-free       | 70               | 15                               | 85                     |
| 12    | 60            | Solvent-free       | 70               | 15                               | 80                     |
| 13    | No catalyst   | Solvent-free       | 70               | 120                              | trace                  |

<sup>a</sup>Conditions: benzaldehyde (1 mmol), malononitrile (1 mmol), α-naphthol (1 mmol), solvent (5 ml). <sup>b</sup>Isolated pure yield.

#### **TABLE 4**Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu (II)-catalyzed synthesis of 2-amino-4H-chromene derivatives<sup>a</sup>

Applied Organometallic Chemistry

LEY-

12 of 20



(Continues)

#### TABLE 4 (Continued)

|       |                                                   | $ArCH_{2O} + NC$<br>1 2 | $\frac{1}{3-6} + \underbrace{\frac{\text{Fe}_{3}O_{4}@SiO_{2}-lmine/l}{\text{solvent-free} / 80 \circ 0}}_{3-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 <sup>henoxy-Cu(II)</sup> (cat.) | -10 Ar                 |         |                         |
|-------|---------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|---------|-------------------------|
| -     |                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                        | Mp (°C) |                         |
| Entry | Ar                                                | Phenols 3–6             | Products 7–10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time (min)                        | Yield (%) <sup>b</sup> | Found   | Reported                |
| 6     | C <sub>6</sub> H <sub>5</sub>                     | 4                       | $\overset{\text{Ph}}{\underset{\textbf{CN}}{\overset{\text{Ph}}{\underset{\textbf{CN}}{\overset{\text{Ph}}{\underset{\textbf{CN}}{\overset{\text{CN}}{\underset{\textbf{CN}}{\overset{\text{NH}_2}{\underset{\text{CN}}{\overset{\text{CN}}{\underset{\text{Sa}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\underset{\text{Sa}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\underset{\text{Sa}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\underset{\text{Sa}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\underset{\text{Sa}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{CN}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}{\overset{NH}_2}}{\overset{NH}_2}}{\overset{NH}_2}{\overset{NH}_2}}{\overset{NH}_2}}}}}}$ | 10                                | 93                     | 270     | 274 <sup>[77]</sup>     |
| 7     | 2,6-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> | 4                       | $ \begin{array}{c}  Cl & NH_2 \\  Cl & CN \\  Cl & O \\  Bb \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                 | 96                     | 230     | 222-224 <sup>[29]</sup> |
| 8     | C <sub>6</sub> H <sub>5</sub>                     | 5                       | HO O NH <sub>2</sub><br>9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                | 92                     | 238–240 | 234–237 <sup>[30]</sup> |
| 9     | 3-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>   | 5                       | $HO = \frac{1}{9b} O = \frac{1}{2} O $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                | 94                     | 165     | 169–170 <sup>[31]</sup> |
| 10    | 2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> | 5                       | $HO = \frac{\mathbf{P}_{1}^{Cl}}{\mathbf{P}_{2}^{Cl}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                | 97                     | 263–265 | 256–258 <sup>[71]</sup> |

(Continues)

| 4 of 20 | WILEY_                                          | rganometallic <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | EBRAHIMIA | ASL AND AZARIFA         |
|---------|-------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-----------|-------------------------|
| ABLE    | 4 (Continued)                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |           |                         |
|         |                                                 | $ArCH_{2}O + NC$<br>1 2 | $CN + \begin{cases} OH \\ Fe_3O_4@SiO_2-Im \\ solvent-free / 8 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ine/Phenoxy-Cu(II) (cat.) | 7-10 Ar                |           |                         |
|         |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | Mp (°C)   |                         |
| Entry   | Ar                                              | Phenols 3–6             | Products 7–10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time (min)                | Yield (%) <sup>b</sup> | Found     | Reported                |
| 11      | Thiopen-2-yl                                    | 5                       | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                        | 96                     | 240–242   | 230–232 <sup>[71]</sup> |
| 12      | 4-FC <sub>6</sub> H <sub>4</sub>                | 5                       | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                         | 96                     | 202       | 186–188 <sup>[78]</sup> |
| 13      | 4-MeC <sub>6</sub> H <sub>4</sub>               | 5                       | HO $0$ $H_2$ | 14                        | 90                     | 178–180   | 183–186 <sup>[30]</sup> |
| 14      | C <sub>6</sub> H <sub>5</sub>                   | 6                       | 91<br>0<br>0<br>0<br>0<br>NH <sub>2</sub><br>CN<br>10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                        | 91                     | 265       | 260–26 <sup>[79]</sup>  |
| 15      | 4-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> | 6                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                         | 97                     | 232       | 233-234 <sup>[79]</sup> |

#### TABLE 4 (Continued)





10d



(Continues)



<sup>a</sup>Conditions: aldehyde (1 mmol), malononitrile (1 mmol), phenolic reagent (1 mmol), catalyst (0.02 g), 80  $^{\circ}$ C. <sup>b</sup>Isolated pure yield.

imine/phenoxy-Cu(II) nanoparticles was compared with the catalytic activities of the bare  $Fe_3O_4$ ,  $Fe_3O_4$ @SiO<sub>2</sub> and  $Fe_3O_4$ -supported Schiff-base nanoparticles in separate experiments conducted under the same optimal conditions. The resulting yields given in Table 3 clearly indicated that the  $Fe_3O_4$ @SiO<sub>2</sub>-imine/phenoxy-Cu(II) nanoparticles perform relatively higher catalytic activity compared with other three nanoparticles.

With the optimized reaction conditions in hand, the scope and generality of the reaction was investigated using a divers series of aromatic aldehydes carrying different substituent groups and various phenolic compounds **4–6**. According to the experimental results summarized in Table 4, all the tested aldehydes reacted smoothly irrespective of the nature of the substituent groups and the resulted 2amino-4*H*-chromene derivatives **7a-e**, **8a-b**, **9a-f** and **10a-g** were produced in excellent yields and short reaction times. The products were structurally characterized by their physical properties and using FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and ESI-MS (in the case of new compounds) spectral analyses and compared with the reported data.

#### 3.4 | Proposed catalytic reaction

A plausible mechanism for three-component reaction of aldehydes, malononitrile and different phenolic compounds for the synthesis of the corresponding 2amino-4*H*-chromene derivatives is suggested in Scheme 3. Likely, the initial step involves the condensation reaction between the aldehyde and malononitrile in the presence of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) as a Lewis acid catalyst to generate arylidenemalononitrile (**I**). In the following step, the resulted intermediate (**I**) undergoes a Michael-type addition reaction with the phenolic species ( $\alpha$ -naphthol,  $\beta$ -naphthol, resorcinol or 2-hydroxynaphthalene-1,4-dione) under the catalytic acceleration to produce the adduct (**II**). Finally, enolization of (**II**) occur to yield the intermediate (**III**) which undergoes intramolecular nucleophilic cyclization to afford the respective products **7–10**.<sup>[71]</sup>

#### 3.5 | Catalyst recyclability

We examined the recycling and reusability of the  $Fe_3O_4@SiO_2$ -imine/phenoxy-Cu(II) catalyst for the model reaction between benzaldehyde, malononitrile and  $\alpha$ -naphthol under the optimized conditions. After completion of the reaction, the catalyst was separated magnetically using a magnet. The isolated nanoparticles were washed with ethanol and water several times, ovendried at 60 °C, and reused for five successive runs with no significant loss of activity (Figure 8).

#### **4** | THEORETICAL STUDIES

Theoretical calculations were performed to analyze the optimization of the molecular structures of 2-amino-4*H*-

chromene derivatives by using density functional theory (DFT)/B3LYP method. The most important geometrical parameters of the target compounds are quoted in Table 5. The frontier molecular orbitals, *i.e.* the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), of 2-amino-4*H*-chromene derivatives are presented as Figure 1 in



**SCHEME 3** A plausible pathway for one-pot synthesis of 2amino-4*H*-chromenes catalyzed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu (II) MNPs

supplementary data. In addition, some considerable electronic features such as calculated bond lengths, dipole moments and energies of the HOMO and LUMO for all 2-amino-4*H*-chromene derivatives are listed in Table 5. As can be seen from this table, the higher negative charge density in the HOMO molecular orbitals, was found to be around the nitrogen atoms of the NH<sub>2</sub> and CN groups in 2-amino-4*H*-chromene derivatives. This observation implies the increased probability of nucleophilic attack of these groups at the metal ion. Moreover, the negative charge density of LUMO molecular orbitals has been nearly delocalized over the entire molecule. The higher energy of HOMO and the lower energy of LUMO facilitate the interaction between the electron-donor and electron-acceptor units.

#### 5 | CONCLUSIONS

In the present research, we report for the first time the preparation of a new Cu(II) Schiff-base complex immobilized on silica-coated Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles. The prepared Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/ phenoxy-Cu(II) catalyst was structurally characterized by FT-IR, SEM, TEM, EDX, XRD, TGA, XPS, VSM and ICP-OES analytical techniques. These newly prepared nanoparticles were explored as efficient heterogeneous Lewis acid catalyst for the synthesis of various 2-amino-4H-chromene derivatives via one-pot three-component reactions between aldehydes, malononitrile and phenolic reagents such as  $\alpha$ -naphthol,  $\beta$ -naphthol, resorcinol and 2-hydroxynaphthalene-1,4-dione under green solvent-free condition. Moreover, this catalyst can be easily recycled and reused for five times without significant loss of catalytic activity.



**FIGURE 8** Recyclability of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-imine/phenoxy-Cu(II) catalyst

| TABLE 5   | Some theoretica | Ily computed HO | MO, LUMO ene     | rgies, dipole | moments and | selected struct | ure parameters | s of DFT of 2-a | mino-4 <i>H</i> -chroi | mene derivativ | /es     |         |
|-----------|-----------------|-----------------|------------------|---------------|-------------|-----------------|----------------|-----------------|------------------------|----------------|---------|---------|
|           |                 |                 |                  |               | Bond Leng   | th (Å)          |                |                 |                        |                |         |         |
| Samples   | E (HOMO)        | E (LUMO)        | <b>Δ</b> Ε (L-H) | dipole        | 020-C13     | N22-C21         | C21-C13        | C13-C12         | C12-N23                | C12-C11        | C11-C26 | 1       |
| Та        | -0.19936        | -0.04482        | 0.15454          | 5.2047        | 1.3859      | 1.1661          | 1.4209         | 1.358           | 1.379                  | 1.5151         | 1.5346  |         |
| 7b        | -0.19758        | -0.04975        | 0.14783          | 6.0287        | 1.3852      | 1.1661          | 1.4201         | 1.3567          | 1.379                  | 1.515          | 1.5395  |         |
| Лc        | -0.21076        | -0.0981         | 0.11266          | 6.1927        | 1.3834      | 1.1656          | 1.422          | 1.3575          | 1.381                  | 1.5147         | 1.5346  |         |
| 7d        | -0.19743        | -0.04225        | 0.15518          | 5.4891        | 1.3864      | 1.1662          | 1.4208         | 1.3581          | 1.3789                 | 1.5152         | 1.5333  |         |
| Лe        | -0.19803        | -0.04321        | 0.15482          | 6.1486        | 1.3861      | 1.1661          | 1.4209         | 1.358           | 1.379                  | 1.5156         | 1.5331  |         |
|           |                 |                 |                  |               | 020-C11     | N22-C21         | C21-C11        | C11-C12         | C12-N23                | C12-C13        | C13-C26 |         |
| 8a        | -0.20119        | -0.0441         | 0.15709          | 5.2743        | 1.3872      | 1.1665          | 1.4187         | 1.3589          | 1.3723                 | 1.5172         | 1.5376  |         |
| 8b        | -0.20704        | -0.05116        | 0.15588          | 5.0234        | 1.3813      | 1.1658          | 1.4215         | 1.3553          | 1.3824                 | 1.5171         | 1.5421  |         |
|           |                 |                 |                  |               | N18-C17     | C17-C11         | C11-C12        | C12-N14         | C12-013                | 013-C3         | C1-019  |         |
| <u>9a</u> | -0.2106         | -0.02248        | 0.18812          | 4.8123        | 1.1678      | 1.4174          | 1.3653         | 1.3662          | 1.356                  | 1.3877         | 1.3643  |         |
| 9b        | -0.22178        | -0.08781        | 0.13397          | 8.0625        | 1.1677      | 1.4173          | 1.3672         | 1.3626          | 1.355                  | 1.3878         | 1.3626  |         |
| 9c        | -0.21793        | -0.03418        | 0.18375          | 5.6778        | 1.1677      | 1.4173          | 1.3668         | 1.3633          | 1.3551                 | 1.3887         | 1.3633  |         |
| p6        | -0.21256        | -0.02374        | 0.18882          | 4.6666        | 1.1677      | 1.4173          | 1.3662         | 1.3653          | 1.355                  | 1.3871         | 1.3639  |         |
| 9e        | -0.21614        | -0.02973        | 0.18641          | 5.4991        | 1.1678      | 1.4174          | 1.3667         | 1.3639          | 1.3551                 | 1.3887         | 1.3636  |         |
| 9f        | -0.22357        | -0.02148        | 0.20209          | 4.7831        | 1.1831      | 1.4178          | 1.3649         | 1.3669          | 1.3564                 | 1.3876         | 1.3645  |         |
|           |                 |                 |                  |               | N22-C21     | C21-C11         | C11-C12        | C12-N18         | C12-017                | 017-C7         | C34-O35 | C36-O37 |
| 10a       | -0.22494        | -0.12086        | 0.10408          | 4.849         | 1.1674      | 1.4174          | 1.3637         | 1.362           | 1.3675                 | 1.3665         | 1.2217  | 1.2263  |
| 10b       | -0.23762        | -0.13128        | 0.10634          | 8.1777        | 1.1672      | 1.4173          | 1.3649         | 1.3592          | 1.3674                 | 1.3654         | 1.2211  | 1.2268  |
| 10c       | -0.22619        | -0.12401        | 0.10218          | 4.9973        | 1.1675      | 1.4164          | 1.3642         | 1.3582          | 1.3657                 | 1.3625         | 1.221   | 1.227   |
| 10d       | -0.23536        | -0.13165        | 0.10371          | 6.7442        | 1.1672      | 1.4171          | 1.3657         | 1.3564          | 1.3674                 | 1.3645         | 1.2208  | 1.2274  |
| 10e       | -0.21864        | -0.12159        | 0.09705          | 5.0934        | 1.1674      | 1.4167          | 1.3639         | 1.3617          | 1.3665                 | 1.3649         | 1.2217  | 1.2255  |
| 10f       | -0.28471        | -0.23259        | 0.05212          | 4.5114        | 1.1676      | 1.4173          | 1.3636         | 1.3639          | 1.3668                 | 1.3675         | 1.2224  | 1.2265  |
| 10 g      | -0.22311        | -0.11987        | 0.10324          | 4.6796        | 1.1674      | 1.4175          | 1.3635         | 1.3625          | 1.3673                 | 1.3665         | 1.2219  | 1.2264  |
|           |                 |                 |                  |               |             |                 |                |                 |                        |                |         |         |

#### ACKNOWLEDGMENTS

The authors wish to thank the Research Council of Bu-Ali Sina University for financial support to carry out this research.

#### ORCID

Hakimeh Ebrahimiasl D https://orcid.org/0000-0001-6690-5820

Davood Azarifar b https://orcid.org/0000-0002-7331-2748

#### REFERENCES

- [1] A. Loupy, C. R. Chim. 2004, 7, 103.
- [2] (a) P. T. Anastas, T. Williamson, Green Chemistry: Frontiers in Benign Chemical Synthesis and Process, Oxford University Press, Oxford 1998. (b) S. Rostamnia, K. Lamei, Synthesis 2011, 11, 3080. (c) E. Doustkhah, S. Rostamnia, J. Mol. Cat. A 2016, 411, 317. (d) Y. Zhang, X. Yang, Y. Zhou, G. Li, Z. Li, C. Liu, M. Bao, W. Shen, Nanoscale 2016, 8, 18626. (e) G. H. Liu, K. X. Chen, H. P. Zhou, K. G. Ren, C. Pereira, J. M. F. Ferreira, Key Eng. Mater. 2007, 336, 930. (f) A. Alizadeh, Q. Oskueyan, S. Rostamnia, A. A. Esmaili, Synthesis 2007, 709. (h) S. Rostamnia, E. Doustkhah, A. Nuri, J. Fluorine Chem. 2013, 153, 1. (i) S. Rostamnia, RSC Adv. 2015, 5, 97044.
- [3] R. B. Nasir Baig, R. S. Varma, Green Chem. 2013, 15, 1839.
- [4] D. D. Someshwar, G. P. Vedavati, T. J. Yeon, *Tetrahedron Lett.* 2012, 53, 4376.
- [5] P. G. Rambhau, P. R. A. Ambarsing, Drug Invention Today 2013, 5, 148.
- [6] (a)L. Yunyun, Z. Rihui, W. Jie-Ping, Synth. Commun. 2013, 43, 2475. (b) S. Sajjadifar, Z. Arzehgar, S. Khoshpoori, J. Inorg. Organomet. P. 2018, 28, 837. (c) S. Sajjadifar, S. Rezayati, Z. Arzehgar, S. Abbaspour, M. Torabi Jafroudi, J. Chin. Chem. Soc. 2018, 65, 960.
- [7] X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong, X. Zhang, *Environ. Sci. Nano* 2014, 1, 71.
- [8] (a) R. J. Yolanda de Miguel, *Chem. Soc. Perkin Trans* 2000, 1, 4213. (b) U. Shaikh, Q. Tamboli, S. Pathange, Z. Dahan, Z. Pudukulathan, *Chem. Methodol.* 2018, 2, 73. (c) I. Sheikhshoaie, Z. Tohidiyan, *Chem. Methodol.* 2019, 3, 30. (d) S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, F. Yekke Zare, *Chem. Methodol.* 2019, 3, 696.
- [9] R. A. Sheldon, H. Van Bekkum, Fine Chemicals through Heterogeneous Catalysis, Wiley-VCH, Weinheim 2001.
- [10] (a) C. O. Dalaigh, S. A. Corr, Y. G. Ko, S. J. Connon, Angew. Chem. Int. Ed. 2007, 46, 4329. (b) I. Sheikhshoaie, S. Davary, S. Ramezanpour, Methodol. 2018, 2, 47. (c) Z. Arzehgar, V. Azizkhani, S. Sajjadifar, M. Fekri, Chem. Methodol. 2019, 3, 251. (d) R. Mohammadi, A. Sajjadi, J. Med. Chem. Sci. 2019, 2, 55. (e) S. Taghavi Fardood, A. Ramazani, P. Azimzadeh Asiabi, Y. Bigdeli Fard, B. Ebadzadeha, Asian J. Green Chem. 2017, 1, 34.
- [11] (a) F. Shi, M. K. Tse, M. M. Pohl, A. Bruckner, S. Zhang, M. Beller, *Angew. Chem. Int. Ed.* 2007, 46, 8866. (b) S. Taghavi Fardood, A. Ramazani, M. Ayubi, F. Moradnia, S. Abdpour, R. Forootan, *Chem. Methodol.* 2019, *3*, 583. (c) S. Rezayati, Z. Abbasi, E. Rezaee Nezhad, R. Hajinasir, A. Farrokhnia, *Res. Chem. Intermed.* 2016, *42*, 7597. (d)S. Sajjadifar, S. Rezayati,

A. Shahriari, S. Abbaspour, *Appl. Organomet. Chem.* 2018, *32*, e4172.

- [12] J. H. Clark, D. J. Macquarrie, *Green Chemistry and Technology*, Blackwell, Abingdon 2002.
- [13] X. Zheng, S. Luo, L. Zhang, J.-P. Cheng, Green Chem. 2009, 11, 455.
- [14] (a) M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci.: Mater. Electron. 2018, 29, 2806. (b)
  S. Rostamnia, E. Doustkhah, J. Magn. Magn. Mater. 2015, 386, 111. (c) S. Rostamnia, B. Zeynizadeh, E. Doustkhah, A. Baghban, K. O. Aghbash, Catal. Commun. 2015, 68, 77.
- [15] A. Azarifar, R. Nejat-Yami, M. Al Kobaisi, D. Azarifar, J. Iran. Chem. Soc. 2013, 10, 439.
- [16] J. Govan, Y. K. Gun'ko, Nanomaterials 2014, 4, 222.
- [17] L. L. Chng, N. Erathodiyil, J. Y. Ying, Acc. Chem. Res. 2013, 46, 1825.
- [18] R. N. Baig, R. S. Varma, Chem. Commun. 2013, 49, 752.
- [19] S. Shylesh, V. Schünemann, W. R. Thiel, Angew. Chem. Int. Ed. 2010, 49, 3428.
- [20] A. Ghorbani-Choghamarani, B. Tahmasbi, N. Noori, S. Faryadi, C. R. Chim. 2017, 20, 132.
- [21] Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane, *ChemCatChem* **2010**, *2*, 365.
- [22] A. Ghorbani-Choghamarani, B. Tahmasbi, Z. Moradi, Appl. Organomet. Chem. 2017, 31, e3665.
- [23] C. W. Lim, I. S. Lee, Nano Today 2010, 5, 412.
- [24] D. Wang, D. Astruc, Chem. Rev. 2014, 114, 6949.
- [25] L. Shiri, B. Tahmasbi, Sulfur Silicon 2017, 192, 53.
- [26] P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
- [27] J. M. Khurana, B. Nand, P. Saluja, Tetrahedron 2010, 66, 5637.
- [28] J. Bloxham, C. P. Dell, C. W. Smith, ChemInform 1994, 25.
- [29] A. Q. Zhang, M. Zhang, H. H. Chen, J. Chen, H. Y. Chen, Synth. Commun. 2007, 37, 231.
- [30] J. Goujon, F. Zammattio, S. Pagnoncelli, Y. Boursereau, B. Kirschleger, *Synlett* 2002, 0322.
- [31] S. Khaksar, A. Rouhollahpour, S. M. Talesh, J. Fluorine Chem. 2012, 141, 11.
- [32] M. A. Panchbhai, L. J. Paliwal, N. S. Bhave, *E- J. Chem.* 2008, 5, 1048.
- [33] P. M. Reddy, K. Shanker, R. Rohini, V. Ravinder, Int. J. ChemTech Res. 2009, 1, 367.
- [34] V. Alexander, Chem. Rev. 1995, 95, 273.
- [35] S. Chandra, A. Gautum, M. Tyagi, *Trans. Met. Chem.* 2007, *32*, 1079.
- [36] D. P. Singh, K. Kumar, S. S. Dhiman, J. Sharma, J. Enzyme, *Inhib. Med. Chem.* **2010**, *25*, 21.
- [37] M. Kidwai, N. K. Mishra, S. Bhardwaj, A. Jahan, A. Kumar, S. Mozumdar, *ChemCatChem* 2010, 2, 1312.
- [38] L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, J. Liu, *Nano Lett.* **2009**, *9*, 800.
- [39] N. N. Hoover, B. J. Auten, B. D. Chandler, J. Phys. Chem. 2006, 110, 8606.
- [40] R. Motamedi, G. Rezanejade Bardajee, S. Makenali Rad, Asian J. Green Chem. 2017, 1, 89.
- [41] H. Aghahosseini, A. Ramazani, K. Ślepokura, T. Lis, J. Colloid Interface Sci. 2018, 511, 222.
- [42] A. Ramazani, A. Tofangchi Mahyari, M. Rouhani, A. Rezaei, *Tetrahedron Lett.* 2009, 50, 5625.
- [43] S. Rostamnia, E. Doustkhah, RSC Adv. 2014, 4, 23238.
- [44] S. Rostamnia, E. Doustkhah, Synlett 2015, 26, 1345.

20 of 20 WILEY Organometallic

- [45] S. Rostamnia, E. Doustkhah, Tetrahedron Lett. 2014, 55, 2508.
- [46] C. O. Chichester, *The chemistry of plant pigments*, Academic Press, NY 1972.
- [47] S. Gao, C. H. Tsai, C. Tseng, C. F. Yao, *Tetrahedron* 2008, 64, 9143.
- [48] D. Kumar, V. B. Sharad, S. U. Dube, S. Kapur, J. Eur. Med. Chem. 2009, 44, 3805.
- [49] A. Tanabe, H. Nakashima, O. Yoshida, N. Yamamoto, O. Tenmyo, T. Oki, *J. Antibiot.* **1988**, *41*, 1708.
- [50] A. Bolognese, G. Correale, M. Manfra, A. Lavecchia, O. Mazzoni, E. Novellino, P. La Colla, G. Sanna, R. Loddo, J. Med. Chem. 2004, 47, 849.
- [51] J. A. Joule, K. Mills, G. F. Smith, *Heterocyclic Chemistry*, 3rd ed., Chapman & Hall, London 1995 166.
- [52] N. Morita, M. Arisawa, Heterocycles 1976, 4, 373.
- [53] H. Schmid, Chem. Org. Naturst. 1954, 11, 124.
- [54] Y. Peng, G. Song, Catal. Commun. 2007, 8, 111.
- [55] T.-S. Jin, L.-B. Liu, Y. Zhao, T.-S. Li, Synth. Commun. 2005, 35, 1859.
- [56] S. Balalaie, S. Abdolmohammadi, Tetrahedron Lett. 2007, 48, 3299.
- [57] B. N. Seshu, N. Pasha, R. K. T. Venkateswara, P. P. S. Sai, N. Lingaiah, *Tetrahedron Lett.* 2008, 49, 2730.
- [58] H. Nagabhushana, S. S. Saundalkar, L. Muralidhar, B. M. Nagab-hushana, C. R. Girija, D. Nagaraja, M. A. Pasha, V. P. Jayashankara, *Chin. Chem. Lett.* **2011**, *22*, 143.
- [59] K. Niknam, A. Piran, Green Sustain. Chem. 2013, 3, 1.
- [60] M. M. Heravi, B. Alimadadi Jani, F. Derikvand, F. F. Bamoharram, H. A. Oskooie, *Catal. Commun.* 2008, 10, 272.
- [61] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [62] M. B. Gawande, A. K. Rathi, P. S. Branco, I. D. Nogueira, A. Velhinho, J. J. Shrikhande, U. U. Indulkar, R. V. Jayaram, C. A. A. Ghumman, N. Bundaleski, *Chem. – Eur. J.* 2012, 18, 12628.
- [63] E. D. Glendening, J. Badenhoop, F. Weinhold, J. Comput. Chem. 1998, 19, 628.
- [64] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [65] M. Ma, Y. Zhang, X. Li, D. Fu, H. Zhang, N. Gu, *Colloids Surf.*, a **2003**, 224, 207.
- [66] M. Tajbakhsh, M. Farhang, R. Hosseinzadeh, Y. Sarrafi, RSC Adv. 2014, 4, 23116.
- [67] H. Cao, J. He, L. Deng, X. Gao, Appl. Surf. Sci. 2009, 255, 7974.
- [68] H. Zhu, Y. Hu, G. Jiang, G. Shen, Eur. Food Res. Technol. 2011, 233, 881.
- [69] H. Keypour, M. Mahmoudabadi, A. Shooshtari, M. Bayat, F. Mohsenzadeh, R. William Gable, J. Mol. Struct. 2018, 1155, 196.
- [70] M. Ghorbanloo, R. Bikas, G. Małecki, *Inorg. Chim. Acta* 2016, 445, 8.
- [71] J. Safari, Z. Zarnegar, M. Heydarian, Bull. Chem. Soc. Jpn. 2012, 85, 1332.
- [72] D. Chen, S. Huang, J. Micro Nanolithogr. MEMS MOEMS 2016, 15, 035005.

- [73] X. Fu, X. Hu, Z. Yan, K. Lei, F. Li, F. Cheng, J. Chen, Chem. Commun. 2016, 52, 1725.
- [74] M. Gholinejad, F. Zareh, C. Najera, Appl. Organomet. Chem. 2018, 32, e4454.
- [75] M. Gholinejad, E. Oftadeh, J. M. Sansano, *ChemistrySelect* 2019, 4, 3151.
- [76] S. Paul, P. Bhattacharyya, A. R. Das, *Tetrahedron Lett.* 2011, 52, 4636.
- [77] B. S. Kumar, N. Srinivasulu, R. Udupi, B. Rajitha, Y. T. Reddy, P. N. Reddy, P. Kumar, *Russ. J. Org. Chem.* **2006**, *42*, 1813.
- [78] D. S. Raghuvanshi, K. N. Singh, ARKIVOC 2010, 10, 305.
- [79] H. R. Shaterian, M. Mohammadnia, J. Mol. Liq. 2013, 177, 353.
- [80] A. Shaabani, R. Ghadari, S. Ghasemi, M. Pedarpour, A. H. Rezayan, A. Sarvary, S. W. Ng, J. Comb. Chem. 2009, 11, 956.
- [81] J. B. Harborne, T. J. Mabry, *The flavonoids: Advances in research science 1980*, Chapman & Hall, London & NY **1988**.
- [82] G. A. Iacobucci, J. E. Sweeny, Tetrahedron 1983, 39, 3005.
- [83] A. Azarifar, R. Nejat-Yami, M. AlKobaisi, D. Azarifar, J. Iran. Chem. Soc. 2012, 10, 439.
- [84] A. Azarifar, R. Nejat-Yami, D. Azarifar, J. Iran. Chem. Soc. 2013, 10, 297.
- [85] D. Azarifar, Y. Abbasi, Synth. Commun. 2016, 46, 745.
- [86] D. Azarifar, O. Badalkhani, Y. Abbasi, M. Hasanabadi, J. Iran. Chem. Soc. 2017, 1, 403.
- [87] D. Azarifar, H. Ebrahimiasl, R. Karamian, M. Ahmadi-Khoei, J. Iran. Chem. Soc. 2019, 16, 341.
- [88] D. Azarifar, M. Tadayoni, M. Ghaemi, *Appl. Organomet. Chem.* 2018, *32*, e4293.
- [89] D. Azarifar, S. Mahmoudi-GomYek, M. Ghaemi, Appl. Organomet. Chem. 2018, 32, e4541.
- [90] S. Mahmoudi-GomYek, D. Azarifar, M. Ghaemi, H. Keypour, M. Mahmoudabadi, *Appl. Organomet. Chem.* 2019, 33, e4918.
- [91] D. Azarifar, M. Ghaemi, R. Karamian, Y. Abbasi, F. Ghasemloub, M. Asadbegy, *New J. Chem.* 2018, 42, 1796.

#### SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Ebrahimiasl H, Azarifar D. Copper-based Schiff Base Complex Immobilized on Core-shell  $Fe_3O_4@SiO_2$  as a magnetically recyclable and highly efficient nanocatalyst for green synthesis of 2-amino-4*H*chromene derivatives. *Appl Organometal Chem*. 2019;e5359. https://doi.org/10.1002/aoc.5359