ARTICLE

Synthesis of substituted pyrimidine using $ZnFe_2O_4$ nanocatalyst via one pot multi-component reaction ultrasonic irradiation

Abstract

Pravin Chavan¹ | Sachin Bangale² | Dattatraya Pansare³ | Rohini Shelke⁴ | Shivaji Jadhav⁵ | Shrikrushna Tupare⁶ | Dhanraj Kamble⁷ | Megha Rai⁸

yield, and recoverable catalyst.

A highly efficient, eco-friendly, recyclable heterogeneous ZnFe₂O₄ nano-

catalyzed synthesis of 2-amino-4-substituted 1,4-dihydrobenzo[4,5]imidazo

[1,2-a]pyrimidine-3-carbonitrile (4a-j) derivatives via one pot multicomponent

reaction of benzimidazole (1), substituted aromatic aldehyde (2a-i) and

malononitrile (3) under ultrasonic irradiations. Significance of this synthetic

approach is short reaction time, easy handling, simplicity, efficiency, high

¹Department of Chemistry, Doshi Vakil College, Raigad, India

²Department of Chemistry, G. M. Vedak College of Science Tala, Raigad, India

³Department of Chemistry, Deogiri College, Aurangabad, India

⁴Department of Chemistry, Sadguru Gadage Maharaj College Karad, Satara, India

⁵Department of Chemistry, Tarai College of Arts and Science, Aurangabad, India

⁶Department of Chemistry, K.E.S. Anandibhai Pradhan Science College, Raigad, India

⁷Department of Chemistry, S. B. College of Science, Aurangabad, India

⁸Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, India

Correspondence

Pravin Chavan, Department of Chemistry, Doshi Vakil College, Goregaon, Raigad, Maharashtra, India. Email: chemistryp141286@gmail.com Dattatraya Pansare, Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India. Email: dnpansare74@gmail.com

1 | INTRODUCTION

Multi-component reactions (MCRs) are efficient and powerful protocols for the rapid synthesis of highly selective products and organic components, as well as multiple and diverse new bonds have been created in highly efficient and atom-economical manner through one pot synthesis. Thus it saved time, energy and evaded multistep purification of various intermediates.¹ Benzo[4,5]imidazo [1,2-a]pyrimidines have recently attracted attention as important fused nitrogen heterocyclic scaffords in the field of drugs and pharmaceuticals. These heterocycles have been widely used as Antifungal,² hepatoprotective,³ antihypertensive,⁴ antitumour,⁵ and cardiotonic agent.⁶

Pyrimidine ring is one of the most important class of heterocyclic compounds found in many natural products.

 \perp Wiley-

2

It is found in vitamins such as thiamine (a), folic acid (b) and in medicinal scaffold such as antifungal flu cytosine (c), antibacterial brodimoprim (d), and antipsychotic drug risperidone (e) (Figure 1).^{7–10}

Based on the importance of these compounds, various catalyst have been reported for synthesis of benzo[4,5] imidazo[1,2-a]pyrimidines including MgO, C_5H_5N , Me₂NH, Et₃N, N₂H₄,*p*-TSA, NH₄OAc, and InCl₃.^{11–21} However, some of the reported synthetic methods have several disadvantages such as low yields, hazardous solvent, long reaction time, high temperature reactions, expensive, and large amount of catalyst. Due to these facts, it is important to find an efficient, milder, faster, and more eco-friendly protocols with excellent yields for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines.

Recently, nanoparticles of mixed metal oxide $(ZnFe_2O_4)$ have been broadly used in modern organic synthesis. Some examples of synthesized compounds by using $(ZnFe_2O_4)$ nanocatalyst are 2,3-dihydroquinazolin-4(1H)ones²² and pyrano[2,3-d]pyrimidines²³ derivatives. ZnFe₂O₄ is one of the economically efficient, insoluble in organic solvents, easily recover, easy to separate, having low surface area, heterogeneous, and economically cheap nanocatalyst.^{24–29} Use of ZnFe₂O₄ nanocatalyst in organic synthesis resulted in several benefits such as yield improvement, time reduction, commercially efficient, suitable experimental procedure to work up and recovery of catalyst etc.

With reference to above literature survey, in continuation to our previous research work of pharmaceutical moieties,^{30–36} we have focused on synthesis of imidazo [1,2-*a*]pyrimidine-3-carbonitrile derivatives **(4a-j)** using efficient and heterogeneous Zinc Ferrite (ZnFe₂O₄) as nanocatalyzed one-pot three-component condensation reaction of benzimidazole (1) and malononitrile (3) with substituted aromatic aldehyde (2a-j) in methanol under ultrasonic irradiations. Author has selected normal spinel catalyst $ZnFe_2O_4$ for present synthesis because ammonia molecule preferred to adsorbed on the surface of Zn atom of spinal zinc ferrite and it is used to removal of ammonia.³⁷ Zinc Ferrite (ZnFe₂O₄) proves its vital role as nanocatalyst in present organic synthesis.

2 | RESULT AND DISCUSSION

2.1 | Catalyst characterization

2.1.1 | XRD analysis-

The crystalline size (d) was determined by Scherrer's formula-

$$d = \frac{0.9\lambda}{\beta \cos\theta}$$

The XRD pattern of the $ZnFe_2O_4$ particles (Figure 2) calcined at 180, 300, 500, 800, and 1000°C temperature. Series of diffraction peaks at 20° were assigned different to planes (111), (311), (400), (422), and (511). According to the (311) diffraction pattern of $ZnFe_2O_4$ crystal, the particle size of $ZnFe_2O_4$ can be calculated from the full width at half-maximum using the Scherrer's equation. Obviously, the particle size of $ZnFe_2O_4$ changes as the *Tc* controlled fewer than 180, 300, 500, 800, and 1000°C, the order is 22, 22, 25, 32, and 32 nm, respectively. These indicate that the crystallinity of $ZnFe_2O_4$ accelerated as the *Tc* above 500°C.

FIGURE 1 Fused pyrimido heterocyclic drugs

FIGURE 2 XRD pattern of calcinied mixed precursor at various temp

2.1.2 | SEM analysis-

Morphological study of $ZnFe_2O_4$ nanocatalyst was carried out with the help of SEM technique represented in Figure 3.

SEM analysis clearly indicates that the particle sizes are irregular with nano size range. Some nanoparticles agglomerations containing very fine particle, the shape of particles are not defined porous nature, small, and large core approximately (5 μ m). Porous size of particles is a favorable to a gas sensing application.

2.1.3 | TG-DTA analysis

Differential thermal analysis (DTA) was performed at heating rate of 10 K/min to investigate the thermal properties of $ZnFe_2O_4$. Figure 4 indicates dehydration, decomposition, and denitration of given materials. The following reactions clearly matched with Figure 4.

$$2C_2NH_5O_2 + (9/2)O_2 \rightarrow N_2 \uparrow + 4CO_2 \uparrow + 5H_2O \uparrow$$

 $\begin{array}{l} Zn(NO_3)_3 + Fe(NO_3)_3 + 4C_2H_5NO_2 \rightarrow ZnFe_2O_4 + 8CO_2 \\ \uparrow + 10H_2O\uparrow + 5N_2\uparrow \end{array}$

ZnFe₂O₄ powder stable at about 800°C temperature.^{38,39}

The synthesized $ZnFe_2O_4$ have efficiency to play the role of Nanocatalyst so it was used in the synthesis of 2-Amino-4-substituted 1,4-dihydrobenzo[4,5]imidazo [1,2-a]pyrimidine-3-carbonitrile (4a-j) derivatives. Initially, reaction model of (2-aminobenzimidazole (1), 4-chlorobenzaldehyde (2a) and malononitrile (3) was chosen to optimize the reaction conditions at 70°C. Optimization results of reaction scheme such as different solvents, various catalysts, yield and reaction time are shown in Table 1.

Conversion of reaction was studied with reference to amount of catalyst, Scheme 1 reaction was carried out with or without catalyst. In the absence of catalyst,

FIGURE 4 TG-DTA curve of mixed precursor

product transformation was not observed which despite of long reaction time and amount of product (Table 1, entry 1) formed was meager. Therefore, we focused on the search for suitable catalyst. With the help of Selected Lewis acid catalysts- FeCl₃, AlCl₃, CuSO₄.5H₂O, and ZnFe₂O₄, nanoparticles carried out present reaction which resulted moderate (74%, 68%, 66%, and 94%) yields. Among these (Table 1, entries 2-5), ZnFe₂O₄ nanoparticle was selected as catalyst in present work giving good yield and easy recovery, within shorter reaction time (Table 1, entry 5). Similar, examination of different solvents such as MeOH, DCE, ACN, and EtOH (Table 1, entries 5-8) were done by using model reaction under ultrasonic irradiations. We found MeOH as a suitable solvent for our particular organic synthesis of substituted pyrimidine due to its uniform solubility, excellent yield and short reaction time (Table 1, entry 5).

Also differential percentage of molar concentrations (5, 10, 15, and 20 mol%) of catalyst ($ZnFe_2O_4$ nanoparticles) were studied at 70°C temperature, under ultrasonic irradiations. Amongst these various amount of catalyst (Table 1, entries 9-11), 10 mol% (Table 1, entry 5) $ZnFe_2O_4$ nanoparticles catalyst was observed suitable, as

Entry	Solvent	Catalyst (mol%)	Time (min)	Yields %
1	Neat	None	180	25
2	МеОН	FeCl ₃ (10)	120	74
3	МеОН	AlCl ₃ (10)	180	68
4	МеОН	CuSO ₄ .5H ₂ O(10)	180	66
5	МеОН	ZnFe ₂ O ₄ (10)	90	96
6	DCE	$ZnFe_2O_4(10)$	120	76
7	CAN	$ZnFe_2O_4(10)$	120	80
8	EtOH	$ZnFe_2O_4$ (10)	90	85
9	MeOH	$ZnFe_2O_4(5)$	96	76
10	MeOH	$ZnFe_2O_4$ (15)	90	95
11	MeOH	$ZnFe_2O_4(20)$	90	95

TABLE 1 Optimizations of solvents and catalysts in the synthesis (2-amino-4-substituted 1,4-dihydrobenzo[4,5]imidazo[1,2-a] pyrimidine-3-carbonitrile)

Note: Reaction conditions: benzimidazole (1) (1 mmol), 4-chloro benzaldehyde (2a) (1 mmol), malononitrile (3) (1 mmol), 8 mL solvent and 70° C temperature under ultrasonic irradiations. The bold value shows best result.

SCHEME1 Model reaction- synthesis of 2-amino-4-substituted 1,4-dihydrobenzo^{4,5} imidazolo[1,2-a]pyrimidine-3-carbonitrile (**4a**) catalyzed by ZnFe₂O₄ under ultrasonic irradiations

it recurred higher yield, short reaction time, and catalyst recovery at 70°C under ultrasonic irradiations. We also studied the reaction scheme for various temperatures but we observed that given reaction scheme produced several biproduct formation at higher temperature and found various spot on TLC. $ZnFe_2O_4$ is also plays vital role in rate of reaction so we finalized 70°C as reaction temperature. After increasing the amount of catalyst, no improvement was observed in reaction results.

After fixing protocol for synthesis of series of reaction, benzimidazole (1 mmol), malononitrile (1 mmol) were treated with substituted aromatic aldehydes (1 mmol) in presence of $ZnFe_2O_4$ (10 mol%) as a catalyst.

In continuation to our present research work, we have also studied the effect of electron withdrawing, electron releasing and halogen groups at different positions in aromatic ring of various aldehydes in the synthesis of 2-amino-4-substituted 1,4-dihydrobenzo[4,5]imidazo [1,2-a]pyrimidine-3-carbonitrile illustrated in Table 2.

Aldehyde bearing electron withdrawing groups decreased the reaction time with slightly increased the

percentage of yields and electron releasing groups increased the reaction times with no outstanding effect on the percentage of yields due to ultrasonic effect. Consequently, this protocol gives the desired products in good yields and in relatively short reaction times (Table 2).

Step I- in reaction, intermediate (5) occurred via Knoevenagel condensation between malononitrile (3) and aromatic aldehyde (2a-j) in the presence of heterogeneous $ZnFe_2O_4$ nanocatalyst. In step II- immediate Michael addition adduct (6) occurred from 2-aminobenzimidazole (1) intermediate (5) and finally, 2-amino-4-substituted-1,-4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitrile (4a-j) was formed from intramolecular cyclisation of Michael adduct (6) (Scheme 3). After completion of individual reaction, reaction mixture was cooled at room temperature following addition of 7 mL of ethyl acetate to this mixture. The reaction mixture as filtered using G1 sinter funnel and $ZnFe_2O_4$ nanocatalyst was covered washing with double distilled water, dried and used for other suitable purposes. The products were purified by column

6

7

8

9

10

4-Me-C₆H₄

4-CN-C₆H₄

 $4-NO_2-C_6H_4$

 $2,4-(Cl)_2C_6H_3$

2-OH-4-MeOC₆H₃

4f

4g

4h

4i

4j

84

74

79

88

77

nitrile (4a-j)											
				Yield (%)		M.P. (°C)					
7	R ¹	Product	Time (min)	Found	Reported (ref.)	Found	Reported (ref.)				
	4-Cl-C ₆ H ₄	4a	75	96	93 ²⁷	232-235	238 ²⁷				
	3-Br-C ₆ H ₄	4b	82	93	89 ²⁷	240-243	240 ²⁷				
	4-F-C ₆ H ₄	4c	89	94	91 ²⁷	265-267	270 ²⁷				
	4-MeO-C ₆ H ₄	4d	81	92	86 ²⁹	205-208	-				
	$4-HO-C_6H_4$	4e	79	89	80 ²⁹	210-213	215 ²⁹				

92

96

95

93

95

88²⁹

92²⁹

_

_

_

222-225

218-220

236-239

216-218

224-227

_

_

-

-

 NH_2

6

215²⁹

TABLE 2 ZnFe₂O₄ nanocatalyzed multi-component synthesis of 2-amino-4-substituted-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carbo

Note: Reaction conditions- benzimidazole (1) (1 mmol), aromatic aldehyde (2a-j) (1 mmol), malononitrile (3) (1 mmol), ZnFe₂O₄ (10 mol%) catalyst and methanol (8 mL) at 70°C under ultrasonic irradiations.

3-carbonitrile (4a-j) is outlined in Scheme 2. These products formed by multistep reaction in one pot

•____WILEY-

chromatography. The synthesized series of compounds were characterized by FTIR, ¹H NMR, ¹³C NMR, analysis. Advantages of present method were efficiency, high percentage of yields, shorter reaction time, simplicity and easy work-up.

3 CONCLUSION

Present research work concludes, an highly efficient, synthesis of 2-amino-4-substituted 1,4-dihydrobenzo[4,5] imidazo[1,2-a]pyrimidine-3-carbonitrile (4a-i) via one pot three component condensation reaction of benzimidazole (1), malononitrile (3) and aromatic aldehyde (2a-j) using heterogeneous ZnFe₂O₄ nanoparticles catalyst at 70°C under ultrasonic irradiation. Some nanoparticles agglomerations containing very fine particle, the shape of particles are not defined porous nature and small and large core approximately (5 µm). Outcome of this synthetic protocol are reduced reaction time, one time chemical addition, easy handling, simplicity, efficiency, high yield, and recoverable catalyst.

EXPERIMENTAL 4

4.1 General experimental information

All A.R. Grade chemicals were used. They were purchased from Sigma-Aldrich and Avra Chemicals. Ultrasonication irradiator was performed (230 V AC, 50 Hz, liquid holding capacity of bath, 5.5 L) at temperature 70°C. Water condenser fixed with round bottom flasks having reaction ingredients were suspended at center of the ultrasonication bath up to the completion of reaction. ¹H NMR spectra were recorded on a Bruker-400 MHz NMR and ¹³C NMR spectra were recorded on 100 MHz ¹³C NMR. The IR spectra were reported on a Perkin-Elmer FT-IR Spectrometer Melting points were measured manually by open capillary. TLC was carried out on aluminum sheets (precoated with 0.2 mm layer of silica gel). All reagents were commercially available. TG-DTA analysis, XRD spectra was recorded by Bruker AXS D8 Advance X-ray diffractometer. SEM images were obtained on S-4800 Type-II, HITACHI Japan.

4.2 | Preparation of $ZnFe_2O_4$ nanoparticles

ZnFe₂O₄ nanoparticle was prepared by combustion method. In this preparation, urea was used as fuel. Initially, zinc nitrates, iron nitrates and urea are taken in appropriate size beaker using stoichiometric amount (1:1:4) and dissolved until clear solution was obtained. This clear solution was evaporated (80°C) using hot plate and thick gel was obtained, again on increasing temperature (180°C) of hot plate thick gel, nanocrystalline powder was formed. Finally, the synthesized powder was sintered at 300, 500, 800, and 1000°C temperature for 4 hours. ZnFe₂O₄ nanoparticle was characterized by the X-ray diffraction (XRD) patterns were recorded on (Bruker AXS D8 Advance X-ray diffractometer) using radiation³⁸ monochromatic (wavelength Cu-Ka $\lambda = 1.5406$ Å). SEM and TG-DTA methods.

General procedure for synthesis of 4.3 2-amino-4-(R)-1,2-dihydroxybenzo[4,5] imidazo[1,2-a]pyrimidine-3-carbonitrile derivatives (4a-j)

A round bottom flask was charged with benzimidazole (1) (1 mmol), aromatic aldehyde (2a-j) (1 mmol), malononitrile (3) (1 mmol), and $ZnFe_2O_4$ (10 mol%) catalyst in methanol (8 mL). The mixture was irradiated in ultrasonic bath at (70°C). The reaction condition was assessed by TLC plate using ethyl acetate and cyclohexane (7:3) as solvent. After the completion of reaction, add 4 mL of methanol in reaction mixture, dissolved total catalyst in methanol and evaporated the solvent using high pressure vacuum pump. Finally, the product was purified by recrystallization techniques using ethanol to afford the pure products.

4.3.1 | 2-Amino-4-(4-chlorophenyl)-1,4-dihydrobenzo[4,5]imidazolo[1,2-a] pyrimidine-3-carbonitrile(4a)

Yield 94%; yellow solid; M.P. 232-235°C. FT IR (KBr cm⁻¹): 3254, 2933, 2187, 1675, ¹H NMR (400 MHz, DMSO- d_6) δ 8.62 (s, 1H, NH), 7.63 (d,1H, Ar), 7.43-7.40 (m, 2H, Ar), 7.32 (d, 2H, Ar), 7.24 (d, 1H, Ar), 7.18 (d, 2H, Ar), 6.89 (s, 2H, NH₂), 5.27 (s, 1H, CH). ¹³C NMR (100 MHz, DMSO- d_6) δ 151.60, 149.39, 144.1, 135.3, 131.3, 131.0, 129.1, 128.1, 123.1, 121.9, 120.0, 119.0, 116.1, 113.1, 62.0, 55.4.

4.3.2 | 2-Amino-4-(3-bromophenyl)-1,4-dihydrobenzo[4,5]imidazolo[1,2-a] pyrimidine-3-carbonitrile(4b)

Yield 90%; yellow solids; M.P. 240-243°C. 3278, 2939, 2189, 1683, ¹H NMR (400 MHz, DMSO- d_6) δ 8.61 (s, 1H, NH), 7.58 (d, 1H, Ar), 7.51 (d, 2H, Ar), 7.29(t, 3H, Ar), 7.15 (t, 1H, Ar), 6.89 (t, 1H, Ar), 6.88 (s, 2H, NH₂), 5.27 (s, 1H, CH). ¹³C NMR (100 MHz, DMSO- d_6) δ 152.0, 149.1, 144.0, 141.1, 131.6, 130.5, 130.1, 129.0, 123.2, 122.0, 120.0, 119.1, 116.1, 112.3, 61.6, 53.0.

4.3.3 | 2-Amino-4-(4-fluorophenyl)-1,4-dihydrobenzo[4,5]imidazolo[1,2-a] pyrimidine-3-carbonitrile(4c)

Yield 92%; yellow solid; M. P. 265-267°C, 3279, 2940, 2182, 1691, ¹H NMR (400 MHz, DMSO- d_6) δ 8.26 (s, 1H, NH), 7.59 (d, 1H, Ar), 7.21-7.18 (m, 5H, Ar), 7.10 (t, 1H, Ar), 7.00 (t, 1H, Ar), 6.78 (s, 2H, NH₂), 5.33 (s, 1H, CH). ¹³C NMR (100 MHz, DMSO- d_6) δ 172.2, 160.1 (C-F), 152.0, 148.9, 144.1, 135.5, 131.0, 130.2, 123.3, 122.1, 119.8, 119.1, 116.8, 115.1, 112.7, 60.2, 54.6.

4.3.4 | 2-amino-4-(4-methoxyphenyl)-1,4-dihydrobenzo[4,5]imidazolo[1,2-a] pyrimidine-3-carbonitrile(4d)

yellow solid; Yield 90%; M. P. 205-208°C, 3268, 2936, 2186, 1684, 1196, ¹H NMR (400 MHz, DMSO- d_6) δ 8.51 (s, 1H, NH), 7.94 (d, 2H, Ar), 7.65 (t, 1H, Ar), 7.20-7.15 (m, 1H Ar), 7.10 (t, 1H, Ar), 7.00 (t, 1H, Ar), 6.91(d, 2H, Ar), 6.79 (s, 2H, NH₂), 5.16 (s, 1H,CH), 3.40 (s, 3H CH₃). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.0, 151.3, 149.2, 144.1, 133.5, 133.4, 129.4, 127.3, 124.1, 123.2, 120.1, 115.6, 115.0, 113.9, 64.1, 63.0, 52.7, 14.3.

4.3.5 | 2-amino-4-(4-hydroxyphenyl)-1,4-dihydroxybenzo[4,5]imidazo[1,2-a] pyrimidine-3-carbonitrile(4e)

white solid, Yield 88%; M. P. 210-213°C, FTIR (KBr cm⁻¹): 3298, 3246, 2931,2185, 1674, ¹H NMR 400 MHz, DMSO- d_6) δ 8.22 (s, 1H, NH), 7.59 (d, 1H, Ar), 7.21-7.18 (m, 5H, Ar), 7.10 (t, 1H, Ar), 7.00 (t, 1H, Ar), 6.78 (s, 2H, NH₂), 5.33 (s, 1H, OH), 5.10(s, 1H, CH), ¹³C NMR (100 MHz, DMSO- d_6): δ 160.1, 152.1, 148.8, 143.0, 135.1, 130.9, 130.1, 123.3, 123.5, 120.2, 119.1, 116.9, 116.1, 113.1, 112.6, 60.3, 55.7.

4.3.6 | 2-Amino-4-(4-methylphenyl)-1,4-dihydrobenzo[4,5]imidazolo[1,2-a] pyrimidine-3-carbonitrile(4f)

yellow solid; Yield 85%; M.P. 230-233°C. FTIR (KBr cm⁻¹): 3284, 2954, 2183, 1677, ¹H NMR (400 MHz, DMSO- d_6) δ 8.56 (s, 1H, NH), 7.62 (d,1H, Ar), 7.43 (d, 1H, Ar), 7.31 (d,

1H, Ar), 7.26-7.14 (m, 3H, Ar), 7.10 (t, 1H, Ar), 6.92 (s, 2H, NH₂), 5.27 (s, 1H, CH). ¹³C NMR (100 MHz, DMSO- d_6) δ 151.6, 149.4, 144.1, 135.3, 131.4, 131.2, 129.1, 128.3, 123.2, 121.8, 120.2, 119.1, 116.0, 113.1, 62.0, 55.5, 17.6.

4.3.7 | 2-amino-4-(4-cynophenyl)-1,4-dihydroxybenzo[4,5]imidazo[1,2-a] pyrimidine-3-carbonitrile(4g)

white solid, Yield 96%; M. P. 218-220°C, FTIR (KBr cm⁻¹): 3310, 3266, 2973,2191, 1685, ¹H NMR 400 MHz, DMSO- d_6) δ 8.82 (s, 1H, NH), 7.81 (d, 1H, Ar), 7.71-7.48 (m, 4H, Ar), 7.32 (t, 1H, Ar), 7.22 (t, 1H, Ar), 7.05 (t, 1H, Ar), 6.85 (s, 2H, NH₂), 5.10(s, 1H, CH), ¹³C NMR (100 MHz, DMSO- d_6): δ 162.1, 155.5, 150.8, 147.1, 140.1, 136.9, 131.1, 125.1, 123.1, 120.4, 118.1, 117.9, 116.1, 113.5, 112.6, 60.3, 54.6.

4.3.8 | 2-amino-4-(2,4-dichlorophenyl)-1,4-dihydroxybenzo[4,5]imidazo[1,2-a] pyrimidine-3-carbonitrile(4h)

white solid, Yield 95%; M. P. 236-239°C, FTIR (KBr cm⁻¹): 3297, 3250, 2953,2151, 1646, ¹H NMR 400 MHz, DMSO- d_6) δ 8.61 (s, 1H, NH), 7.50 (s, 1H, Ar), 7.36-7.41 (m, 2H, Ar), 7.15 (m, 2H, Ar), 6.95 (m, 2H, Ar), 6.72 (s, 2H, NH₂), 5.07(s, 1H, CH), ¹³C NMR (100 MHz, DMSO- d_6): δ 161.2, 152.4, 148.1, 147.1, 139.1, 136.8, 130.1, 122.3, 123.2, 121.4, 117.9, 117.8, 117.1, 112.8, 111.9, 59.8, 54.7.

4.3.9 | 2-amino-4-(2-hydroxy,4methoxyphenyl)-1,4-dihydroxybenzo[4,5] imidazo[1,2-a]pyrimidine-3-carbonitrile(4i)

Yellow solid, Yield 93%; M. P. 216-218°C, FTIR (KBr cm⁻¹): 3267, 3226, 2948, 2161, 1639, ¹H NMR 400 MHz, DMSO- d_6) δ 8.58 (s, 1H, NH), 7.60 (s, 1H, Ar), 7.31-7.39 (m, 2H, Ar), 7.14 (m, 2H, Ar), 6.78 (m, 2H, Ar), 6.69 (s, 2H, NH₂), 5.06(s, 1H, CH), ¹³C NMR (100 MHz, DMSO- d_6): δ 160.2, 151.4, 149.1, 146.1, 138.1, 134.8, 134.1, 121.3, 123.1, 120.4, 118.0, 117.6, 117.0, 112.1, 111.1, 59.6, 55.4.

4.3.10 | 2-amino-4-(4-nitrophenyl)-1,4-dihydroxybenzo[4,5]imidazo[1,2-a] pyrimidine-3-carbonitrile(4j)

yellow solid, Yield 95%; M. P. 224-227°C, FTIR (KBr cm⁻¹): 3305, 3259, 2987, 2189, 1675, ¹H NMR 400 MHz, DMSO- d_6) δ 8.76 (s, 1H, NH), 7.71-7.48 (m, 4H, Ar),

⁸ ____WILEY-

7.34-7.22 (t, 4H, Ar), 6.81 (s, 2H, NH₂), 5.09 (s, 1H, CH), ¹³C NMR (100 MHz, DMSO- d_6): δ 161.1, 156.5, 161.8, 149.1, 141.1, 137.9, 133.1, 126.1, 124.1, 120.4, 119.1, 118.9, 116.1, 113.6, 119.6, 61.3, 54.7.

ACKNOWLEDGMENTS

We are grateful to Department of Chemistry, Doshi Vakil Arts, G.C.U.B. Science and Commerce College, Goregaon, Raigad for providing the necessary laboratory facility during our research.

CONFLICT OF INTEREST

The authors confirm that, this article content has no conflict of interest.

ORCID

Pravin Chavan ^b https://orcid.org/0000-0002-1232-9343 Dattatraya Pansare ^b https://orcid.org/0000-0002-0419-3538

Rohini Shelke Dhttps://orcid.org/0000-0002-2053-4785

REFERENCES

- (a) S. H. S. Azzam, M. A. Pasha, *Tetrahedron Lett.* 2012, 53, 7056.
 (b) V. Estevez, M. Villacampa, J. C. Menendez, *Chem. Soc. Rev.* 2014, 43, 4633.
 (c) M. S. Singh, S. Chowdhury, *RSC. Adv.* 2012, 2, 4547.
 (d) A. Domling, W. Wang, K. Wang, *Chem. Rev.* 2012, 112, 3083.
- [2] V. K. Ahluwalia, R. Batla, A. Khurana, R. Kumar, Indian J. Chem. 1990, 29, 1141.
- [3] T. Ohtaki, Chem. Abstr. 1994, 121, 205395.
- [4] E. M. Grivaky, S. Lee, C. W. Siyal, D. S. Duch, C. A. Nichol, J. Med. Chem. 1980, 23, 327.
- [5] D. Heber, C. Heers, U. Ravens, Pharmazie 1993, 48, 537.
- [6] R. A. Cox, Quart. Rev. Chem. Soc. 1968, 22, 499.
- [7] I. Kompis, A. Wick, Helv. Chim. Acta. 1977, 60, 3025.
- [8] A. Polak, H. Scholer, J. Chemother. 1975, 21, 113.
- [9] B. Padamshari, V. P. Vaidya, M. L. Vijayayakumar, Indian J. Heterocycl. Chem. 2002, 12, 89.
- [10] V. J. Rao, R. Shankar, K. Mukkanti, N. Vekariya, J. Chem. Pharm. Res. 2013, 5(7), 141.
- [11] H. Sheibani, F. Hassani, Heterocycl. Chem. 2011, 48, 915.
- [12] H. Sheibani, M. Seifi, A. Bazgir, Synth. Commun. 2009, 39, 1055.
- [13] M. D. Wendt, A. Kunzer, R. F. Henry, J. Cross, T. G. Pagano, *Tetrahedron Lett.* 2007, 48, 6360.
- [14] B. Insuasty, A. Salcedo, R. Abonia, J. Quiroga, M. Nogueras, A. Sanchez, *Heterocycl. Commun.* 2002, *8*, 287.
- [15] F. A. Bassyouni, I. I. Ismail, Afinidad 2011, 58, 375.
- [16] S. K. Komykhov, A. R. Ostras, S. M. Kostanyan, D. V. Desenko, H. Orlov, J. Meier, *Heterocycl. Chem.* 2005, 42, 1111.
- [17] E. I. El-Desoky, S. Aboul-Fetouh, M. A. Metwally, J. Chem. Technol. Biotechnol. 1996, 67, 153.

- [19] P. Chavan, A. Gothi, S. Jadhav, M. Rai, IJCPS 2018, 7, 53.
- [20] A. Corma, R. M. Martin-Aranda, Appl. Catal. A 1993, 105, 271.
- [21] B. M. Reddy, A. Khan, Catal. Rev. Sci. Eng. 2005, 47, 257.
- [22] B. D. Rupnar, T. R. Kachave, P. D. Jawale, S. U. Shisodia, R. P. Pawar, J. Iran. Chem. Soc. 2017, 26, 1. https://doi.org/10.1007/ s13738-017-1124-y.
- [23] A. Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei, A. R. Moosavi-Zare, *RSC Adv.* 2015, *5*, 13643.
- [24] R. Narayanan, Green Chem. Lett. Rev. 2012, 5, 707.
- [25] R. Baig, R. Varma, Green Chem. 2013, 15, 1839.
- [26] (a) M. Zhang, Y. H. Liu, Z. R. Shang, H. C. Hu, Z. H. Zhang, *Catal. Commun.* 2017, 88, 39. (b) M. Benjamin, L. Hansjoerg, Y. Hongwei, C. Like, T. Xiangguang, P. Jutta, S. Berthold, *Curr. Opin. Green Sustain. Chem.* 2019, 15, 27.
- [27] R. M. Borade, S. B. Somvanshi, S. B. Kale, R. P. Pawar, K. M. Jadhav, *Mater. Res. Express* 2020, 7, 016116.
- [28] V. Ranganath, S. Kalluri, S. Melad, S. Aanchal, S. Gaddipati, *Curr. Org. Chem.* 2017, 21(25), 2573.
- [29] P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X. S. Zhao, *Lang-muir* 2013, 29(28), 8997.
- [30] D. N. Pansare, R. N. Shelke, C. D. Pawar, Lett. Org. Chem. 2017, 14(7), 517.
- [31] D. N. Pansare, R. N. Shelke, D. B. Shinde, J. Heterocycl. Chem. 2017, 54(6), 3077.
- [32] D. N. Pansare, D. B. Shinde, J. Saudi Chem. Soc. 2017, 21, 434.
- [33] D. N. Pansare, D. B. Shinde, Res. Rev. J. Chem. 2015, 4(1), 8.
- [34] R. N. Shelke, D. N. Pansare, C. D. Pawar, M. C. Khade, V. N. Jadhav, S. U. Deshmukh, A. P. Sarkate, R. P. Pawar, N. S. Gore, D. B. Shinde, S. R. Thopate, *Eur. Chem. Bull.* **2019**, *8*(2), 63.
- [35] D. N. Pansare, R. N. Shelke, M. C. Khade, V. N. Jadhav, C. D. Pawar, R. A. Jadhav, S. R. Bembalkar, *Eur. Chem. Bull.* **2019**, 8 (1), 7.
- [36] R. N. Shelke, D. N. Pansare, C. D. Pawar, M. C. Khade, V. N. Jadhav, S. U. Deshmukh, A. K. Dhas, P. N. Chavan, A. P. Sarkate, R. P. Pawar, D. B. Shinde, S. R. Thopate, *Eur. Chem. Bull.* 2019, 8(1), 1.
- [37] C.-Y. Zou, W. Ji, Z. Shen, T. Qingli, M. Fan, NH3 Molecule adsorption on spinel type ZnFe₂O₄ surface: A DFT and Experimental comparison study, 2018, NASA ADS.
- [38] S. V. Bangale, S. R. Bamane, J. Mater. Sci. 2013, 24(1), 277.
- [39] S. V. Bangale, S. R. Bamane, Res. J. Rec. Sci. 2012, 1, 202.

How to cite this article: Chavan P, Bangale S, Pansare D, et al. Synthesis of substituted pyrimidine using ZnFe₂O₄ nanocatalyst via one pot multi-component reaction ultrasonic irradiation. *J Heterocyclic Chem.* 2020;1–8. <u>https://doi.org/10.</u> 1002/jhet.4048