The Hydride-Ion Affinity of Borenium Cations and Their Propensity to Activate H₂ in Frustrated Lewis Pairs

Ewan R. Clark, Alessandro Del Grosso, and Michael J. Ingleson^{*[a]}

Abstract: A range of frustrated Lewis pairs (FLPs) containing borenium cations have been synthesised. The catechol (Cat)-ligated borenium cation $[CatB(PtBu_3)]^+$ has a lower hydrideion affinity (HIA) than $B(C_6F_5)_3$. This resulted in H₂ activation being energetically unfavourable in a FLP with the strong base $PtBu_3$. However, ligand disproportionation of CatBH($PtBu_3$) at 100 °C enabled trapping of H₂ activation products. DFT calculations at the M06-2X/6-311G(d,p)/PCM (CH₂Cl₂) level revealed that replacing catechol with chlorides significantly increases the chloride-ion affinity (CIA) and HIA. Dichloro–borenium cations, $[Cl_2B(amine)]^+$, were calculated to have considerably greater HIA than $B(C_6F_5)_3$. Control reactions confirmed that the HIA calculations can be used to successfully predict hydride-transfer reactivity between borenium cations

Keywords: borenium cations • boron • density functional calculations • frustrated Lewis pairs • hydrides

and neutral boranes. The borenium cations $[Y(Cl)B(2,6-lutidine)]^+$ (Y=Cl or Ph) form FLPs with P(mesityl)₃ that undergo slow deprotonation of an *ortho*-methyl of lutidine at 20°C to form the four-membered boracycles $[(CH_2\{NC_5H_3Me\})B(Cl)Y]$ and $[HPMes_3]^+$. When equimolar $[Y(Cl)B(2,6-lutidine)]^+/P(mesityl)_3$ was heated under H₂ (4 atm), heterolytic cleavage of dihydrogen was competitive with boracycle formation.

Introduction

Sterically frustrated Lewis pairs (FLPs) utilise unquenched Lewis acidity and basicity for the concerted activation of small molecules.^[1,2] This field has developed rapidly since Stephan's breakthrough publication in 2006,^[3] with a range of impressive transformations reported including the reversible activation of H₂ and the catalytic reduction of unsaturated and aromatic moieties.^[4-16] A plethora of Lewis bases, ranging from moderately basic (2,4,6-trimethylphenyl)₃P (PMes₃) to strongly basic N-heterocyclic carbenes (NHCs), have been successfully employed in FLP H₂ activation. In contrast, excluding a limited number of notable exceptions,^[17-20] the Lewis acidic component has largely been limited to highly fluorinated aryl boranes, particularly $B(C_6F_5)_3$. This is due to a minimum cumulative Lewis acid (LA)/base (LB) strength being a prerequisite for H_2 activation by a FLP.^[9,21,22] Studies using FLPs containing alternative boranes have shown that even a modest reduction in borane Lewis acidity, relative to $B(C_6F_5)_3$, can shift the H₂ activation equilibrium [Eq. (1)] drastically towards the neutral starting materials, even when using a strong LB. $^{\rm [23-25]}$

$$LA + LB \longrightarrow LA - LB \xrightarrow{+H_2} [LA - H]^{-} [LB - H]^{+}$$
(1)

Borenium cations are three coordinate borocations^[26] that can possess considerable Lewis acidity engendered by the positive charge.^[27] Recently, this high electrophilicity has been utilised for applications in organic transformations.^[28,29] We have previously synthesized borocation-based FLPs based on catechol and thiocatechol (o-C₆H₄S₂) ligated borenium cations,^[30] and are interested in using these and other borenium cations in FLPs for H₂ activation. Borenium cations can be more electrophilic than $B(C_6F_5)_3$, and high Lewis acidity towards hydride ions should enable the extension of FLP activation of H₂ towards weaker LBs. Recognizing the potential of highly electrophilic cationic LAs in FLPs, Müller et al. have recently reported that a silicenium cation [(Me₅C₆)₃Si]⁺ formed an FLP with PMes₃ that rapidly cleaved H₂. However, this FLP did not activate H₂ with weakly basic $P(C_6F_5)_3^{[17]}$ Borenium cations are valence isoelectronic to silicenium cations, and a first indication that they could activate H₂ came from the work of Vedejs et al., who observed deuterium incorporation on heating 1 under a D₂ atmosphere (Figure 1, top).^[31] Although the heterogeneous nature of this system precluded mechanistic elucidation, H₂ activation by a FLP was one possibility. Insight into the hydride-ion affinity (HIA) of borenium cations, particularly relative to $B(C_6F_5)_3$, is limited. One exception comes from the work of Stephan et al., which synthesized [CatB-

 [[]a] Dr. E. R. Clark, A. Del Grosso, Dr. M. J. Ingleson Department of Chemistry, University of Manchester Manchester, M13 9PL (U.K.)
E-mail: Michael.ingleson@manchester.ac.uk

Supporting information for this article contains experimental details, full crystal structure determination data, additional NMR spectroscopic discussion and explicit spectra, as well as details of the quantum chemical calculations including total energies and *xyz* coordinates. It is available on the WWW under http://dx.doi.org/10.1002/chem.201203318.

Figure 1. Recent examples of H_2 activation by borocations and the application of 2 as a catalyst for the hydrogenation of enamines.

 $(PtBu_3)][HB(C_6F_5)_3]$ by hydride-ion transfer from CatBH- $(PtBu_3)$ to $B(C_6F_5)_3$.^[32] More recently, the same group reported the first definitive FLP-based activation of H₂ by using a borenium cation **2** (Figure 1, bottom). Compound **2** also has a lower HIA than $B(C_6F_5)_3$ based on hydride-transfer reactivity.^[33] Borenium cations are particularly attractive for catalysis, because they are inexpensive and simple to produce whilst being easily modified to vary electrophilicity and steric factors. Their catalytic utility has been recently demonstrated by Stephan et al. with **2** proving a highly effective hydrogenation catalyst that combines high activity with improved selectivity and functional-group tolerance compared to $B(C_6F_5)_3$ and its derivatives.^[33]

Herein, we report our recent studies into the incorporation of borenium cations into FLPs for H_2 activation. This includes combined experimental and computational studies demonstrating that borocations possess an extremely wide range (> 30 kcal mol⁻¹) of HIAs. Significantly, dichloro-ligated borenium cations were found to have considerably greater HIA than that of B(C₆F₅)₃. A number of FLPs constructed from phosphine- and amine-ligated borenium cations are accessible including examples that activate H₂.

Results and Discussion

FLPs containing catecholato-ligated borenium cations: [CatB(amine)]⁺ cations have HIA lower than that of B(C₆F₅)₃ with hydride transfer observed upon addition of B(C₆F₅)₃ to CatBH(amine) to form [CatB(amine)][HB-(C₆F₅)₃] (amine = Et₃N and 4,*N*,*N*-trimethylaniline). This is in contrast to the relative Lewis acidities determined by the Gutmann–Beckett method.^[34,35] The greater downfield chemical shift of the phosphorus resonance of Et₃PO upon coordination to [CatB(NEt₃)]⁺ indicates that this borenium cation is more Lewis acidic towards Et₃PO than B(C₆F₅)₃ [Eq. (2)]. Furthermore, we have previously reported that [CatB(NEt₃)]⁺ abstracts fluoride from [SbF₆]⁻,^[30] indicating that this borenium cation has an extremely high fluoride-ion

FULL PAPER

affinity (FIA), which is greater than that of $B(C_6F_5)_3$ (FIA of $SbF_5 = 489$ compared to a FIA of 444 kJ mol^{-1} for $B(C_6F_5)_3$.^[36] Clearly, there is a distinction between the Lewis acidity of [CatB(amine)]⁺ towards highly electronegative atoms and towards less electronegative moieties (e.g., hydrides). Presumably this is due to the large electrostatic component to bonding between boron and F⁻ or Et₃PO⁻, consistent with Pearson's classic hard-soft acid-base theory.^[37] Hence, borocations, such as [CatB(NEt₃)]⁺, which have a high calculated natural bond order (NBO) positive charge at boron (+1.365e at the MPW1K/6-311++G(d,p) level)^[30] are highly Lewis acidic towards hard bases, but less so towards hydrides. This is related to Britovsek's observation on the reversal of the relative Lewis acidity of the $B(C_6F_5)_{3-x}(OC_6F_5)_x$ (x=0-3) series with respect to Et₃PO and Et₃PS LBs.^[38]

Although catechol-borenium cations are less Lewis acidic towards hydride than $B(C_6F_5)_3$, it remained feasible that they would activate H₂ in a FLP with a strong LB analogous to the borenium cation 2.^[33] Because stable FLPs obtained by using [CatB(NEt₃)]⁺ were not accessible,^[39] the 1:1 mixture of PtBu₃/[CatB(PtBu₃)][AlCl₄] (3) was investigated. It displayed broad ${}^{31}P{}^{1}H$ and ${}^{11}B$ NMR resonances ($\delta = 34.9$ and 21.5 ppm, respectively) both devoid of B-P coupling indicative of fluxionality involving B-P bond cleavage.^[39] Multinuclear NMR spectroscopy at -40°C revealed the presence of two major species, the borenium cation 3 and free PtBu₃^[39] Thus, compound **3** and PtBu₃ exist as a FLP in equilibrium with its Lewis adduct [CatB(PtBu₃)₂]⁺. The addition of H₂ (ca. 4 atm) to equimolar $3/PtBu_3$ in C₆H₄Cl₂ (+10% C₆D₆) led to no reaction at 25°C (18 h). However, heating this solution to 100 °C for 24 h resulted in the formation of products consistent with H_2 activation (Figure 2). The expected initial products from heterolytic H₂ cleavage by $3/PtBu_3$ are $[HPtBu_3]^+$ and CatBH(PtBu_3), but the latter is in equilibrium with CatBH and PtBu₃. This system is further complicated by CatBH/PtBu₃ disproportionating rapidly

Figure 2. Schematic representation of the equilibrium with $3/PtBu_3$ and activation of H_2 with subsequent ligand disproportionation.

www.chemeurj.org

CHEMISTRY

at 100 °C^[40] to form products including B₂cat₃ and (*t*Bu₃P)BH₃ (determined by ¹¹B NMR spectroscopy).^[41,42] Unambiguous confirmation of dihydrogen activation was provided by the exposure of equimolar **3**/P*t*Bu₃ to D₂. This led to the formation of [DP*t*Bu₃]⁺ (a 1:1:1 triplet in the ³¹P{¹H} NMR spectrum with P–D coupling of 66 Hz) and broad ¹¹B NMR resonances devoid of B–H coupling.

The requirement for high temperatures before H₂ activation observed with $3/PtBu_3$ is attributed to the activation of H₂ being energetically unfavourable due to the lower HIA of $[CatB(PtBu_3)]^+$ (relative to $B(C_6F_5)_3$). A low equilibrium concentration of H₂ activation products is presumably present and the rapid ligand disproportionation of CatBH/PtBu₃ that takes place at 100 °C and drives H₂ activation to completion. This hypothesis is supported by the reverse reaction, that is, the addition of $[HPtBu_3][B(C_6H_3Cl_2)_4]$ to CatBH- $(PtBu_2)$ evolving H_2 at 20°C [Eq. (3)] $([B(C_6H_3Cl_2)_4]^-$ is termed $[BAr^{Cl}]^-$ from here on).

Assessment of relative HIAs and chloride-ion affinities (CIAs): Seeking a borenium cation that possesses a greater HIA than $B(C_6F_5)_3$, the relative HIA of a range of borenium cations was calculated. On the basis of a benchmarking study, M06-2X/6-311G(d,p) was chosen as an optimal compromise between accuracy and computational time.^[39,43] Relative HIAs were calculated from the isodesmic reactions between [HBEt₃]⁻, and the boron LA [Eq. (4) and (5)] analogous to DuBois's approach.^[44] The addition of a polarisable continuum model (PCM) to approximate solvation was essential to prevent over estimation of borenium-cation HIA due to charge neutralization. An analogous affect has been reported when calculating the fluoride-ion affinities (FIA) of phosphenium cations, which led to $> 100 \text{ kcal mol}^{-1}$ overestimation of FIA.^[45] CIAs relative to AlCl₃ were also estimated by using an approach based on the transfer of chloride from $[AlCl_4]^-$ to the borenium cation [Eq. (6)].^[46] This value is important for determining accessibility of the borenium cation by halide abstraction.

 $[X_2BL]^+ + [HBEt_3]^- \xrightarrow{\Delta H_{HIA}} X_2HBL + BEt_3$ (4)

 $X_{3}B + [HBEt_{3}]^{-} \xrightarrow{\Delta H_{HIA}} X_{3}BH + BEt_{3}$ (5)

$$[X_2BL]^+ + [AICI_4] \xrightarrow{\Delta H_{CIA}} X_2CIBL + AICI_3$$
(6)

Although there is a general correlation between CIA and HIA, deviations were observed in a number of cases, and these are attributable to two main phenomena: 1) enhancement of relative CIA (compared to relative HIA) due to the increased magnitude of positive charge localized at boron. For example, $[CatBNEt_3]^+$ has an enhanced CIA versus the thiocatechol analogue $[(o-C_6H_4S_2)BNEt_3]^+$ consistent with

the respective NBO charges at boron of 1.34 and 0.40 e;^[30] 2) the enhanced steric demand of chloride versus hydride. This is particularly noticeable with $[Cl_2B(2,6-lutidine)]^+$, $([4]^+)$, in which the CIA is significantly lower than expected based on the HIA value. The discrepancy arises from unfavourable steric interactions between the *ortho* methyl groups of lutidine, which are directed towards the boron centre, and one of the three chlorides in (lutidine)BCl₃. Steric crowding in four coordinate (at boron) (*i*Pr–NHC)BH(C₈H₁₄) presumeably contributes to the low HIA of cation [2]⁺, which is not stabilised by any π -donor ligands (Table 1).

Table 1. Relative hydride- and chloride-ion affinities.

	HIA [kcal mol ⁻¹]	CIA [kcalmol ⁻¹]
	M06-2X/6-311G(d,p)	M06-2X/6-311G(d,p)
	$/\text{PCM}_{(\text{CH}_2\text{Cl}_2)} \Delta H$	$/\mathrm{PCM}_{(\mathrm{CH}_2\mathrm{Cl}_2)}\Delta H$
neutral boranes		
BEt ₃	0.0	-
$B(C_6F_5)_3$	-41.0	-
borenium cations		
[CatB-PtBu3]+, [3]+	-33.0	27.1
[CatB-NEtiPr ₂] ⁺	-37.9	30.2
[2]+	-41.6	-
[CatB-NEt ₃]+	-43.6	21.8
$[(o-C_6H_4S_2)B-NEt_3]^+$	-45.8	27.7
[PhBCl(2,6-lut)]+, [6]+	-47.8	26.8
[Cl ₂ B-NEt <i>i</i> Pr ₂] ⁺	-61.0	17.3
[Cl ₂ B(2,6-lut)] ⁺ , [4] ⁺	-61.7	20.7
[Cl ₂ B-NEt ₃]+	-65.8	8.3
[Py-BCl ₂]+	-67.8	6.3
AlCl ₃	_	0.0

Anion-transfer reactions: To determine if the calculated ΔH values for CIA and HIA allow prediction of solution-phase reactivity, a number of control reactions were investigated. First, all CIAs were positive relative to AlCl₃ consistent with the chloride abstraction experimentally observed on combination of X₂BCl(L) and AlCl₃, forming [X₂BL]-[AlCl₄].^[47,48] The calculated CIAs between borenium cations were also internally consistent, with chloride transfer observed from CatB(NEt₃)Cl to [Cl₂B(2,6-lut)]⁺. Of more importance to this work is the accuracy of the relative HIA of $B(C_6F_5)_3$ and borenium cations. Cation [4]⁺ has a HIA 20.7 kcalmol⁻¹ greater than that of $B(C_6F_5)_3$; thus [4]⁺ should abstract hydride from $[HB(C_6F_5)_3]^-$. Pleasingly, mixing $[HPtBu_3][HB(C_6F_5)_3]$ and $[4][BAr^{Cl}]$ resulted in rapid formation of BCl₂H(2,6-lut), [*t*Bu₃PH][BAr^{Cl}] and $B(C_6F_5)_3$ [Eq. (7)]. This confirms that borenium cations can have higher HIAs than $B(C_6F_5)_3$. These calculations also correctly predicted the observed abstraction of hydride from $CatB(PtBu_3)H$ by $B(C_6F_5)_3$. However, $[CatB(NEt_3)]^+$ and [2]⁺ were both calculated to have HIAs greater than $B(C_6F_5)_3$ (by 2.6 and 0.6 kcalmol⁻¹, respectively). Repeating the HIA calculations for BEt₃, $B(C_6F_5)_3$ and $[CatB(NEt_3)]^+$ using a basis set including a diffuse function (M06-2X/6- $311G + (d,p)/PCM(CH_2Cl_2)$) to more accurately model the anionic component resulted in only minor differences. At this level of theory, the HIA of $B(C_6F_5)_3$ was effectively identical to $[CatB(NEt_3)]^+$ (44.0 and 44.1 kcalmol⁻¹, respectively). Relative HIA calculations are therefore only useful to predict reactivity when there was a considerable difference in ΔH values ($\delta \Delta H$) between the two LAs, as was found for [4]⁺ and $B(C_6F_5)_3$.

FLPs containing di-chloride-ligated borenium cations: Cation $[4]^+$ was selected to incorporate into FLPs for H₂ activation because it possesses a higher HIA than $B(C_6F_5)_3$ but has a diminished Lewis acidity towards LBs more sterically demanding than H⁻ (e.g., Cl⁻). The relatively low CIA allows facile access to [4]⁺ by abstraction of halide from (lutidine)BCl₃ by AlCl₃ or Na[BAr^{Cl}].^[47] FLPs were not accessible on addition of PtBu₃, PCy₃ or PPh₃ to [4]⁺. Instead, $[Cl_2B(2,6-lutidine)(PR_3)]^+$ cations, which did not activate H₂ even on heating to 100 °C under H₂ at 4 atm, were formed. A FLP is formed on addition of extremely bulky PMes₃ to [4]⁺, but this FLP did not activate H_2 (4 atm in o-C₆H₄Cl₂) at 20°C. At this temperature, equimolar mixtures of [4]⁺/PMes₃ displayed a slow decrease in the ¹¹B NMR resonance associated with [4]⁺ and a concomitant increase in a sharp ¹¹B NMR resonance at $\delta = 6.4$ ppm consistent with a four-coordinate boron environment. Full conversion to this new boron species can be achieved by heating equimolar [4]⁺/PMes₃ to 60°C for 1 h [Eq. (8)]. The phosphonium cation [Mes₃PH]⁺ was the only new phosphorus-containing species observed in the ³¹P{¹H} NMR spectrum, indicating deprotonation of lutidine. The carbanion produced by deprotonation is stabilized by coordination to boron forming the four-membered boracycle [(CH₂- $\{NC_5H_3Me\}$ BCl₂ (5). Coordination of 2,6-lutidine to the highly Lewis acidic {BCl₂}⁺ fragment significantly reduced the pK_a of the *ortho*-methyl protons enabling deprotonation by the bulky, but only moderately basic phosphine. Compound 5 can be independently synthesised, but requires the strong base nBuLi to deprotonate 2,6-lutidine; subsequent transmetalation with BCl₃ provides 5, analogous to the formation of $[(CH_{2}\{NC_{5}H_{4}\})BCy_{2}]^{[49]}$

$$\bigvee_{i=1}^{N} \xrightarrow{i=1}_{o-C_6H_4Cl_2} \xrightarrow{Cl_2B}_{i=1} + [Mes_3PH]^*$$
(8)

FULL PAPER

as the major product. However, resonances consistent with H_2 activation (specifically BHCl₂(lutidine)) as a minor product were also observed by multinuclear NMR spectroscopy. Confirmation of dihydrogen activation was forthcoming from the reaction of D₂ with [4]+/PMes₃, which produced [Mes₃PD]+ (a 1:1:1 triplet in the ³¹P{¹H} NMR spectrum). The ¹¹B NMR spectrum now showed the resonance for **5** and a broad signal centred at $\delta = 1$ ppm attributable to (lutidine)BDCl₂. Importantly, **5** did not react with H₂ at 100 °C (4 atm, 18 h),^[39] confirming that H₂ activation is by the FLP formed from the borenium cation [4]⁺ and PMes₃.

FLPs containing phenyl-ligated borenium cations: Mechanistically, extensive computational work indicated that the activation of H₂ by $B(C_6F_5)_3/LBs$ proceeds through a concerted process involving "encounter complexes".^[50] However, an alternative mechanism involving intramolecular heterolytic cleavage of H₂ across a B-C bond followed by subsequent intermolecular deprotonation cannot currently be precluded.^[51] Furthermore, Piers et al. have recently demonstrated that the highly electrophilic perfluoropenta phenylborole activates H₂ without an additional equivalent of LB, with H₂ heterolytically cleaved across the B-C bond.^[52] To probe if H₂ cleavage would occur with a borenium cation containing a B-Carvl moiety, PhBCl2(lutidine) was synthesized, and halide abstraction effected with AlCl₃ or Na[BAr^{Cl}]. Whilst pure [PhBCl(lutidine)]⁺ ([6]⁺) was not isolable despite numerous efforts, $[6]^+$ can be produced in situ as the major species (>90% by multinuclear NMR spectroscopy). In the absence of a LB, [6]+ displayed no reaction towards H₂ at 20°C or 100°C (4 atm of H₂, o- $C_6H_4Cl_2$). The addition of one equivalent of PMes₃ to [6]⁺ produced a FLP that also undergoes slow deprotonation of a methyl group of lutidine leading to boracycle 7 [Eq. (9)]. At high temperatures (100°C), D₂ activation was observed with [6]⁺/PMes₃ to form (lutidine)BD(Ph)Cl and [DPMes₃]⁺, but again the major product was the boracycle 7, formed by deprotonation of lutidine. With no observed difference in the propensity of [Cl₂B(lutidine)]⁺ and $[PhBCl(lutidine)]^+$ to activate H_2 , this suggests that both FLPs activate H₂ through a similar mechanism, presumably involving an encounter complex.

Conclusion

Because the formation of **5** is slow at 20 °C, the ability of $[4]^+/PMes_3$ to activate H₂ at elevated temperatures was investigated. Heating $[4]^+/PMes_3$ to 100 °C under 4 atm of H₂ (in *o*-C₆H₄Cl₂) resulted in the formation of the boracycle **5**

Borenium cations that possess a wide range of HIAs are easily accessible, which makes them readily tuneable catalysts for hydrogenations. The calculated relative HIA is a useful tool for assessing hydride-transfer ability, a key step in ionic hydrogenation.^[53] The HIA of borenium cations is

Chem. Eur. J. 2013, 19, 2462-2466

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 2465

highly dependent on both the degree of steric crowding in the four-coordinate neutral borane (HBX₂L) and the electrophilicity of the borenium cation. Borenium cations with high (relative to $B(C_6F_5)_3$) HIAs can be readily accessed by using the weak π -donor ligands Cl⁻ and/or Ph⁻ with lutidine as the LB. These borenium cations activate H₂ in FLPs with PMes₃, but due to their fierce electrophilicity, H₂ cleavage occurs concomitantly with deprotonation of lutidine to form boracycles [(CH₂{NC₅H₃Me})BCl(Y)]. FLPs containing high-HIA borenium cations that are stable to deactivation reactions, such as ligand deprotonation, are currently under investigation.

Acknowledgements

We gratefully acknowledge the Royal Society (M.J.I. for the award of a University Research Fellowship), the Leverhulme Trust (E.R.C.) and the University of Manchester for funding (A.D.G.). The authors would also like to acknowledge the use of the EPSRC U.K. National Service for Computational Chemistry Software (NSCCS) at Imperial College London in carrying out this work.

- [1] D. W. Stephan, G. Erker, Angew. Chem. 2010, 122, 50; Angew. Chem. Int. Ed. 2010, 49, 46.
- [2] D. W. Stephan, Chem. Commun. 2010, 46, 8526.
- [3] G. C. Welch, R. R. San-Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.
- [4] D. W. Stephan, Org. Biomol. Chem. 2012, 10, 5740.
- [5] P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. 2007, 119, 8196; Angew. Chem. Int. Ed. 2007, 46, 8050.
- [6] P. A. Chase, T. Jurca, D. W. Stephan, Chem. Commun. 2008, 1701.
- [7] P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich, G. Erker, Angew. Chem. 2008, 120, 7654; Angew. Chem. Int. Ed. 2008, 47, 7543.
- [8] K. V. Axenov, G. Kehr, R. Fröhlich, G. Erker, J. Am. Chem. Soc. 2009, 131, 3454.
- [9] V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskela, T. Repo, P. Pyykko, B. Rieger, J. Am. Chem. Soc. 2008, 130, 14117.
- [10] H. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun. 2008, 5966.
- [11] C. F. Jiang, O. Blacque, H. Berke, Chem. Commun. 2009, 5518.
- [12] G. Eros, H. Mehdi, I. Papai, T. A. Rokob, P. Kiraly, G. Tarkanyi, T. Soos, Angew. Chem. 2010, 122, 6709; Angew. Chem. Int. Ed. 2010, 49, 6559.
- [13] D. W. Stephan, S. Greenberg, T. W. Graham, P. Chase, J. J. Hastie, S. J. Geier, J. M. Farrell, C. C. Brown, Z. M. Heiden, G. C. Welch, M. Ullrich, *Inorg. Chem.* **2011**, *50*, 12338.
- [14] D. Chen, J. Klankermayer, Chem. Commun. 2008, 2130.
- [15] Z. M. Heiden, D. W. Stephan, Chem. Commun. 2011, 47, 5729.
- [16] T. Mahdi, D. W. Stephan, J. Am. Chem. Soc. 2012, 134, 4088.
- [17] A. Schäfer, M. Reissmann, A. Schäfer, W. Saak, D. Haase, T. Müller, Angew. Chem. 2011, 123, 12845; Angew. Chem. Int. Ed. 2011, 50, 12636.
- [18] A. M. Chapman, M. F. Haddow, D. F. Wass, J. Am. Chem. Soc. 2011, 133, 8826.
- [19] G. Ménard, D. W. Stephan, Angew. Chem. Int. Ed. 2012, 51, 8272.
- [20] F. Bertini, V. Lyaskovskyy, B. J. J. Timmer, F. J. J. d. Kanter, M. Lutz, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, J. Am. Chem. Soc. 2012, 134, 201.
- [21] T. A. Rokob, A. Hamza, I. Papai, J. Am. Chem. Soc. 2009, 131, 10701.

- [22] S. Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. 2010, 122, 1444; Angew. Chem. Int. Ed. 2010, 49, 1402.
- [23] G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei, D. W. Stephan, *Dalton Trans.* 2007, 3407.
- [24] A. M. Chapman, M. F. Haddow, J. P. H. Orton, D. F. Wass, *Dalton Trans.* 2010, 39, 6184.
- [25] A. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2010, 132, 3301.
- [26] P. Koelle, H. Nöth, Chem. Rev. 1985, 85, 399.
- [27] W. E. Piers, S. C. Bourke, K. D. Conroy, Angew. Chem. 2005, 117, 5142; Angew. Chem. Int. Ed. 2005, 44, 5016.
- [28] T. S. De Vries, A. Prokofjevs, E. Vedejs, Chem. Rev. 2012, 112, 4246.
- [29] A. Prokofjevs, A. Boussonniere, L. Li, H. Bonin, E. Lacote, D. P. Curran, E. Vedejs, J. Am. Chem. Soc. 2012, 134, 12281.
- [30] S. A. Solomon, A. Del Grosso, E. R. Clark, V. Bagutski, J. J. W. McDouall, M. J. Ingleson, *Organometallics* 2012, 31, 1908.
- [31] T. S. De Vries, A. Prokofjevs, J. N. Harvey, E. Vedejs, J. Am. Chem. Soc. 2009, 131, 14679.
- [32] M. A. Dureen, A. Lough, T. M. Gilbert, D. W. Stephan, *Chem. Commun.* 2008, 4303.
- [33] J. M. Farrell, J. A. Hatnean, D. W. Stephan, J. Am. Chem. Soc. 2012, 134, 15728.
- [34] M. A. Beckett, D. S. Brassington, S. J. Coles, M. B. Hursthouse, *Inorg. Chem. Commun.* 2000, 3, 530.
- [35] V. Gutmann, Coord. Chem. Rev. 1976, 18, 225.
- [36] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116; Angew. Chem. Int. Ed. 2004, 43, 2066.
- [37] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
- [38] G. J. P. Britovsek, J. Ugolotti, A. J. P. White, *Organometallics* 2005, 24, 1685.
- [39] See Supporting Information.
- [40] S. A. Westcott, H. P. Blom, T. B. Marder, R. T. Baker, J. C. Calabrese, *Inorg. Chem.* 1993, 32, 2175.
- [41] K. Burgess, W. A. v. d. Donk, S. A. Westcott, T. B. Marder, R. T. Naker, J. C. Calabrese, J. Am. Chem. Soc. 1992, 114, 9350.
- [42] R. B. Coapes, F. E. S. Souza, M. A. Fox, A. S. Batsanov, A. E. Goeta, D. S. Yufit, M. A. Leech, J. A. K. Howard, A. J. Scott, W. Clegg, T. B. Marder, *Dalton Trans.* 2001, 1201.
- [43] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- [44] M. T. Mock, R. G. Potter, D. M. Camaioni, J. Li, W. G. Dougherty, W. S. Kassel, B. Twamley, D. L. DuBois, J. Am. Chem. Soc. 2009, 131, 14454.
- [45] J. M. Slattery, S. Hussein, Dalton Trans. 2012, 41, 1808.
- [46] A. Kraft, J. Beck, I. Krossing, Chem. Eur. J. 2011, 17, 12975.
- [47] A. Del Grosso, M. D. Helm, S. A. Solomon, D. Caras-Quintero, M. J. Ingleson, *Chem. Commun.* 2011, 47, 12459.
- [48] A. Del Grosso, P. J. Singleton, C. A. Muryn, M. J. Ingleson, Angew. Chem. 2011, 123, 2150; Angew. Chem. Int. Ed. 2011, 50, 2102.
- [49] J. Vergnaud, T. Ayed, K. Hussein, L. Vendier, M. Grellier, G. Bouhadir, J.-C. Barthelat, S. Sabo-Etienne, D. Bourissou, *Dalton Trans.* 2007, 2370.
- [50] I. Bakó, A. Stirling, S. Balint, I. Papai, *Dalton Trans.* 2012, 41, 9023, and references therein.
- [51] R. Rajeev, R. B. Sunoj, Chem. Eur. J. 2009, 15, 12846.
- [52] C. Fan, L. G. Mercier, W. E. Piers, H. M. Tuononen, M. Parvez, J. Am. Chem. Soc. 2010, 132, 9604.
- [53] After submission of this article, Crudden et al. reported the superior reducing ability of PinB(amine)H relative to [HB(C₆F₅)₃]⁻ (pin=pinacolato) indicating that [PinB(amine)]⁺ borenium cations have a lower HIA than B(C₆F₅)₃, see: P. Eisenberger, A. M. Bailey, C. M. Crudden, J. Am. Chem. Soc. **2012**, 134, 17384.

Received: September 17, 2012 Published online: January 7, 2013

2466 -